Spaces:
Runtime error
Runtime error
File size: 25,747 Bytes
d2a8669 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 |
from collections import defaultdict
from contextlib import contextmanager
from copy import deepcopy
from logging import warning
import numpy as np
import pandas as pd
from aif360.datasets import Dataset
class StructuredDataset(Dataset):
"""Base class for all structured datasets.
A StructuredDataset requires data to be stored in :obj:`numpy.ndarray`
objects with :obj:`~numpy.dtype` as :obj:`~numpy.float64`.
Attributes:
features (numpy.ndarray): Dataset features for each instance.
labels (numpy.ndarray): Generic label corresponding to each instance
(could be ground-truth, predicted, cluster assignments, etc.).
scores (numpy.ndarray): Probability score associated with each label.
Same shape as `labels`. Only valid for binary labels (this includes
one-hot categorical labels as well).
protected_attributes (numpy.ndarray): A subset of `features` for which
fairness is desired.
feature_names (list(str)): Names describing each dataset feature.
label_names (list(str)): Names describing each label.
protected_attribute_names (list(str)): A subset of `feature_names`
corresponding to `protected_attributes`.
privileged_protected_attributes (list(numpy.ndarray)): A subset of
protected attribute values which are considered privileged from a
fairness perspective.
unprivileged_protected_attributes (list(numpy.ndarray)): The remaining
possible protected attribute values which are not included in
`privileged_protected_attributes`.
instance_names (list(str)): Indentifiers for each instance. Sequential
integers by default.
instance_weights (numpy.ndarray): Weighting for each instance. All
equal (ones) by default. Pursuant to standard practice in social
science data, 1 means one person or entity. These weights are hence
person or entity multipliers (see:
https://www.ibm.com/support/knowledgecenter/en/SS3RA7_15.0.0/com.ibm.spss.modeler.help/netezza_decisiontrees_weights.htm)
These weights *may not* be normalized to sum to 1 across the entire
dataset, rather the nominal (default) weight of each entity/record
in the data is 1. This is similar in spirit to the person weight in
census microdata samples.
https://www.census.gov/programs-surveys/acs/technical-documentation/pums/about.html
ignore_fields (set(str)): Attribute names to ignore when doing equality
comparisons. Always at least contains `'metadata'`.
metadata (dict): Details about the creation of this dataset. For
example::
{
'transformer': 'Dataset.__init__',
'params': kwargs,
'previous': None
}
"""
def __init__(self, df, label_names, protected_attribute_names,
instance_weights_name=None, scores_names=[],
unprivileged_protected_attributes=[],
privileged_protected_attributes=[], metadata=None):
"""
Args:
df (pandas.DataFrame): Input DataFrame with features, labels, and
protected attributes. Values should be preprocessed
to remove NAs and make all data numerical. Index values are
taken as instance names.
label_names (iterable): Names of the label columns in `df`.
protected_attribute_names (iterable): List of names corresponding to
protected attribute columns in `df`.
instance_weights_name (optional): Column name in `df` corresponding
to instance weights. If not provided, `instance_weights` will be
all set to 1.
unprivileged_protected_attributes (optional): If not provided, all
but the highest numerical value of each protected attribute will
be considered not privileged.
privileged_protected_attributes (optional): If not provided, the
highest numerical value of each protected attribute will be
considered privileged.
metadata (optional): Additional metadata to append.
Raises:
TypeError: Certain fields must be np.ndarrays as specified in the
class description.
ValueError: ndarray shapes must match.
"""
if df is None:
raise TypeError("Must provide a pandas DataFrame representing "
"the data (features, labels, protected attributes)")
#if df.isna().any().any():
# raise ValueError("Input DataFrames cannot contain NA values.")
#try:
# df = df.astype(np.float64)
#except ValueError as e:
# print("ValueError: {}".format(e))
# raise ValueError("DataFrame values must be numerical.")
# Convert all column names to strings
df.columns = df.columns.astype(str).tolist()
label_names = list(map(str, label_names))
protected_attribute_names = list(map(str, protected_attribute_names))
self.feature_names = [n for n in df.columns if n not in label_names
and (not scores_names or n not in scores_names)
and n != instance_weights_name]
self.label_names = label_names
self.features = df[self.feature_names].values.copy()
self.labels = df[self.label_names].values.copy()
self.instance_names = df.index.astype(str).tolist()
if scores_names:
self.scores = df[scores_names].values.copy()
else:
self.scores = self.labels.copy()
df_prot = df.loc[:, protected_attribute_names]
self.protected_attribute_names = df_prot.columns.astype(str).tolist()
self.protected_attributes = df_prot.values.copy()
# Infer the privileged and unprivileged values in not provided
if unprivileged_protected_attributes and privileged_protected_attributes:
self.unprivileged_protected_attributes = unprivileged_protected_attributes
self.privileged_protected_attributes = privileged_protected_attributes
else:
self.unprivileged_protected_attributes = [
np.sort(np.unique(df_prot[attr].values))[:-1]
for attr in self.protected_attribute_names]
self.privileged_protected_attributes = [
np.sort(np.unique(df_prot[attr].values))[-1:]
for attr in self.protected_attribute_names]
if instance_weights_name:
self.instance_weights = df[instance_weights_name].values.copy()
else:
self.instance_weights = np.ones_like(self.instance_names,
dtype=np.float64)
# always ignore metadata and ignore_fields
self.ignore_fields = {'metadata', 'ignore_fields'}
# sets metadata
super(StructuredDataset, self).__init__(df=df, label_names=label_names,
protected_attribute_names=protected_attribute_names,
instance_weights_name=instance_weights_name,
unprivileged_protected_attributes=unprivileged_protected_attributes,
privileged_protected_attributes=privileged_protected_attributes,
metadata=metadata)
def subset(self, indexes):
""" Subset of dataset based on position
Args:
indexes: iterable which contains row indexes
Returns:
`StructuredDataset`: subset of dataset based on indexes
"""
# convert each element of indexes to string
indexes_str = [self.instance_names[i] for i in indexes]
subset = self.copy()
subset.instance_names = indexes_str
subset.features = self.features[indexes]
subset.labels = self.labels[indexes]
subset.instance_weights = self.instance_weights[indexes]
subset.protected_attributes = self.protected_attributes[indexes]
subset.scores = self.scores[indexes]
return subset
def __eq__(self, other):
"""Equality comparison for StructuredDatasets.
Note: Compares all fields other than those specified in `ignore_fields`.
"""
if not isinstance(other, StructuredDataset):
return False
def _eq(x, y):
if isinstance(x, np.ndarray) and isinstance(y, np.ndarray):
return np.all(x == y)
elif isinstance(x, list) and isinstance(y, list):
return len(x) == len(y) and all(_eq(xi, yi) for xi, yi in zip(x, y))
return x == y
return all(_eq(self.__dict__[k], other.__dict__[k])
for k in self.__dict__.keys() if k not in self.ignore_fields)
def __ne__(self, other):
return not self == other
def __repr__(self):
# return repr(self.metadata)
return str(self)
def __str__(self):
df, _ = self.convert_to_dataframe()
df.insert(0, 'instance_weights', self.instance_weights)
highest_level = ['instance weights'] + \
['features']*len(self.feature_names) + \
['labels']*len(self.label_names)
middle_level = [''] + \
['protected attribute'
if f in self.protected_attribute_names else ''
for f in self.feature_names] + \
['']*len(self.label_names)
lowest_level = [''] + self.feature_names + ['']*len(self.label_names)
df.columns = pd.MultiIndex.from_arrays(
[highest_level, middle_level, lowest_level])
df.index.name = 'instance names'
return str(df)
# TODO: *_names checks
def validate_dataset(self):
"""Error checking and type validation.
Raises:
TypeError: Certain fields must be np.ndarrays as specified in the
class description.
ValueError: ndarray shapes must match.
"""
super(StructuredDataset, self).validate_dataset()
# =========================== TYPE CHECKING ============================
for f in [self.features, self.protected_attributes, self.labels,
self.scores, self.instance_weights]:
if not isinstance(f, np.ndarray):
raise TypeError("'{}' must be an np.ndarray.".format(f.__name__))
# convert ndarrays to float64
self.features = self.features.astype(np.float64)
self.protected_attributes = self.protected_attributes.astype(np.float64)
self.labels = self.labels.astype(np.float64)
self.instance_weights = self.instance_weights.astype(np.float64)
# =========================== SHAPE CHECKING ===========================
if len(self.labels.shape) == 1:
self.labels = self.labels.reshape((-1, 1))
try:
self.scores.reshape(self.labels.shape)
except ValueError as e:
print("ValueError: {}".format(e))
raise ValueError("'scores' should have the same shape as 'labels'.")
if not self.labels.shape[0] == self.features.shape[0]:
raise ValueError("Number of labels must match number of instances:"
"\n\tlabels.shape = {}\n\tfeatures.shape = {}".format(
self.labels.shape, self.features.shape))
if not self.instance_weights.shape[0] == self.features.shape[0]:
raise ValueError("Number of weights must match number of instances:"
"\n\tinstance_weights.shape = {}\n\tfeatures.shape = {}".format(
self.instance_weights.shape, self.features.shape))
# =========================== VALUE CHECKING ===========================
if np.any(np.logical_or(self.scores < 0., self.scores > 1.)):
warning("'scores' has no well-defined meaning out of range [0, 1].")
for i in range(len(self.privileged_protected_attributes)):
priv = set(self.privileged_protected_attributes[i])
unpriv = set(self.unprivileged_protected_attributes[i])
# check for duplicates
if priv & unpriv:
raise ValueError("'privileged_protected_attributes' and "
"'unprivileged_protected_attributes' should not share any "
"common elements:\n\tBoth contain {} for feature {}".format(
list(priv & unpriv), self.protected_attribute_names[i]))
# check for unclassified values
if not set(self.protected_attributes[:, i]) <= (priv | unpriv):
raise ValueError("All observed values for protected attributes "
"should be designated as either privileged or unprivileged:"
"\n\t{} not designated for feature {}".format(
list(set(self.protected_attributes[:, i])
- (priv | unpriv)),
self.protected_attribute_names[i]))
# warn for unobserved values
if not (priv | unpriv) <= set(self.protected_attributes[:, i]):
warning("{} listed but not observed for feature {}".format(
list((priv | unpriv) - set(self.protected_attributes[:, i])),
self.protected_attribute_names[i]))
@contextmanager
def temporarily_ignore(self, *fields):
"""Temporarily add the fields provided to `ignore_fields`.
To be used in a `with` statement. Upon completing the `with` block,
`ignore_fields` is restored to its original value.
Args:
*fields: Additional fields to ignore for equality comparison within
the scope of this context manager, e.g.
`temporarily_ignore('features', 'labels')`. The temporary
`ignore_fields` attribute is the union of the old attribute and
the set of these fields.
Examples:
>>> sd = StructuredDataset(...)
>>> modified = sd.copy()
>>> modified.labels = sd.labels + 1
>>> assert sd != modified
>>> with sd.temporarily_ignore('labels'):
>>> assert sd == modified
>>> assert 'labels' not in sd.ignore_fields
"""
old_ignore = deepcopy(self.ignore_fields)
self.ignore_fields |= set(fields)
try:
yield
finally:
self.ignore_fields = old_ignore
def align_datasets(self, other):
"""Align the other dataset features, labels and protected_attributes to
this dataset.
Args:
other (StructuredDataset): Other dataset that needs to be aligned
Returns:
StructuredDataset: New aligned dataset
"""
if (set(self.feature_names) != set(other.feature_names) or
set(self.label_names) != set(other.label_names) or
set(self.protected_attribute_names)
!= set(other.protected_attribute_names)):
raise ValueError(
"feature_names, label_names, and protected_attribute_names "
"should match between this and other dataset.")
# New dataset
new = other.copy()
# re-order the columns of the new dataset
feat_inds = [new.feature_names.index(f) for f in self.feature_names]
label_inds = [new.label_names.index(f) for f in self.label_names]
prot_inds = [new.protected_attribute_names.index(f)
for f in self.protected_attribute_names]
new.features = new.features[:, feat_inds]
new.labels = new.labels[:, label_inds]
new.scores = new.scores[:, label_inds]
new.protected_attributes = new.protected_attributes[:, prot_inds]
new.privileged_protected_attributes = [
new.privileged_protected_attributes[i] for i in prot_inds]
new.unprivileged_protected_attributes = [
new.unprivileged_protected_attributes[i] for i in prot_inds]
new.feature_names = deepcopy(self.feature_names)
new.label_names = deepcopy(self.label_names)
new.protected_attribute_names = deepcopy(self.protected_attribute_names)
return new
# TODO: Should we store the protected attributes as a separate dataframe
def convert_to_dataframe(self, de_dummy_code=False, sep='=',
set_category=True):
"""Convert the StructuredDataset to a :obj:`pandas.DataFrame`.
Args:
de_dummy_code (bool): Performs de_dummy_coding, converting dummy-
coded columns to categories. If `de_dummy_code` is `True` and
this dataset contains mappings for label and/or protected
attribute values to strings in the `metadata`, this method will
convert those as well.
sep (char): Separator between the prefix in the dummy indicators and
the dummy-coded categorical levels.
set_category (bool): Set the de-dummy coded features to categorical
type.
Returns:
(pandas.DataFrame, dict):
* `pandas.DataFrame`: Equivalent dataframe for a dataset. All
columns will have only numeric values. The
`protected_attributes` field in the dataset will override the
values in the `features` field.
* `dict`: Attributes. Will contain additional information pulled
from the dataset such as `feature_names`, `label_names`,
`protected_attribute_names`, `instance_names`,
`instance_weights`, `privileged_protected_attributes`,
`unprivileged_protected_attributes`. The metadata will not be
returned.
"""
df = pd.DataFrame(np.hstack((self.features, self.labels)),
columns=self.feature_names+self.label_names,
index=self.instance_names)
df.loc[:, self.protected_attribute_names] = self.protected_attributes
# De-dummy code if necessary
if de_dummy_code:
df = self._de_dummy_code_df(df, sep=sep, set_category=set_category)
if 'label_maps' in self.metadata:
for i, label in enumerate(self.label_names):
df[label] = df[label].replace(self.metadata['label_maps'][i])
if 'protected_attribute_maps' in self.metadata:
for i, prot_attr in enumerate(self.protected_attribute_names):
df[prot_attr] = df[prot_attr].replace(
self.metadata['protected_attribute_maps'][i])
# Attributes
attributes = {
"feature_names": self.feature_names,
"label_names": self.label_names,
"protected_attribute_names": self.protected_attribute_names,
"instance_names": self.instance_names,
"instance_weights": self.instance_weights,
"privileged_protected_attributes": self.privileged_protected_attributes,
"unprivileged_protected_attributes": self.unprivileged_protected_attributes
}
return df, attributes
def export_dataset(self, export_metadata=False):
"""
Export the dataset and supporting attributes
TODO: The preferred file format is HDF
"""
if export_metadata:
raise NotImplementedError("The option to export metadata has not been implemented yet")
return None
def import_dataset(self, import_metadata=False):
""" Import the dataset and supporting attributes
TODO: The preferred file format is HDF
"""
if import_metadata:
raise NotImplementedError("The option to import metadata has not been implemented yet")
return None
def split(self, num_or_size_splits, shuffle=False, seed=None):
"""Split this dataset into multiple partitions.
Args:
num_or_size_splits (array or int): If `num_or_size_splits` is an
int, *k*, the value is the number of equal-sized folds to make
(if *k* does not evenly divide the dataset these folds are
approximately equal-sized). If `num_or_size_splits` is an array
of type int, the values are taken as the indices at which to
split the dataset. If the values are floats (< 1.), they are
considered to be fractional proportions of the dataset at which
to split.
shuffle (bool, optional): Randomly shuffle the dataset before
splitting.
seed (int or array_like): Takes the same argument as
:func:`numpy.random.seed()`.
Returns:
list: Splits. Contains *k* or `len(num_or_size_splits) + 1`
datasets depending on `num_or_size_splits`.
"""
# Set seed
if seed is not None:
np.random.seed(seed)
n = self.features.shape[0]
if isinstance(num_or_size_splits, list):
num_folds = len(num_or_size_splits) + 1
if num_folds > 1 and all(x <= 1. for x in num_or_size_splits):
num_or_size_splits = [int(x * n) for x in num_or_size_splits]
else:
num_folds = num_or_size_splits
order = list(np.random.permutation(n) if shuffle else range(n))
folds = [self.copy() for _ in range(num_folds)]
features = np.array_split(self.features[order], num_or_size_splits)
labels = np.array_split(self.labels[order], num_or_size_splits)
scores = np.array_split(self.scores[order], num_or_size_splits)
protected_attributes = np.array_split(self.protected_attributes[order],
num_or_size_splits)
instance_weights = np.array_split(self.instance_weights[order],
num_or_size_splits)
instance_names = np.array_split(np.array(self.instance_names)[order],
num_or_size_splits)
for fold, feats, labs, scors, prot_attrs, inst_wgts, inst_name in zip(
folds, features, labels, scores, protected_attributes, instance_weights,
instance_names):
fold.features = feats
fold.labels = labs
fold.scores = scors
fold.protected_attributes = prot_attrs
fold.instance_weights = inst_wgts
fold.instance_names = list(map(str, inst_name))
fold.metadata = fold.metadata.copy()
fold.metadata.update({
'transformer': '{}.split'.format(type(self).__name__),
'params': {'num_or_size_splits': num_or_size_splits,
'shuffle': shuffle},
'previous': [self]
})
return folds
@staticmethod
def _de_dummy_code_df(df, sep="=", set_category=False):
"""De-dummy code a dummy-coded dataframe obtained with pd.get_dummies().
After reversing dummy coding the corresponding fields will be converted
to categorical.
Args:
df (pandas.DataFrame): Input dummy coded dataframe
sep (char): Separator between base name and dummy code
set_category (bool): Set the de-dummy coded features
to categorical type
Examples:
>>> columns = ["Age", "Gender=Male", "Gender=Female"]
>>> df = pd.DataFrame([[10, 1, 0], [20, 0, 1]], columns=columns)
>>> _de_dummy_code_df(df, sep="=")
Age Gender
0 10 Male
1 20 Female
"""
feature_names_dum_d, feature_names_nodum = \
StructuredDataset._parse_feature_names(df.columns)
df_new = pd.DataFrame(index=df.index,
columns=feature_names_nodum + list(feature_names_dum_d.keys()))
for fname in feature_names_nodum:
df_new[fname] = df[fname].values.copy()
for fname, vl in feature_names_dum_d.items():
for v in vl:
df_new.loc[df[fname+sep+str(v)] == 1, fname] = str(v)
if set_category:
for fname in feature_names_dum_d.keys():
df_new[fname] = df_new[fname].astype('category')
return df_new
@staticmethod
def _parse_feature_names(feature_names, sep="="):
"""Parse feature names to ordinary and dummy coded candidates.
Args:
feature_names (list): Names of features
sep (char): Separator to designate the dummy coded category in the
feature name
Returns:
(dict, list):
* feature_names_dum_d (dict): Keys are the base feature names
and values are the categories.
* feature_names_nodum (list): Non-dummy coded feature names.
Examples:
>>> feature_names = ["Age", "Gender=Male", "Gender=Female"]
>>> StructuredDataset._parse_feature_names(feature_names, sep="=")
(defaultdict(<type 'list'>, {'Gender': ['Male', 'Female']}), ['Age'])
"""
feature_names_dum_d = defaultdict(list)
feature_names_nodum = list()
for fname in feature_names:
if sep in fname:
fname_dum, v = fname.split(sep, 1)
feature_names_dum_d[fname_dum].append(v)
else:
feature_names_nodum.append(fname)
return feature_names_dum_d, feature_names_nodum
|