File size: 38,003 Bytes
d2a8669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
from collections import OrderedDict
import json

from aif360.explainers import MetricTextExplainer
from aif360.metrics import BinaryLabelDatasetMetric


class MetricJSONExplainer(MetricTextExplainer):
    """Class for explaining metric values in JSON format.

    These briefly explain what a metric is and/or how it is calculated unless
    it is obvious (e.g. accuracy) and print the value.

    This class contains JSON explanations for all metric values regardless of
    which subclass they appear in. This will raise an error if the metric does
    not apply (e.g. calling `true_positive_rate` if
    `type(metric) == DatasetMetric`).
    """

    def accuracy(self, privileged=None):
        outcome = super(MetricJSONExplainer, self).accuracy(privileged=privileged)
        response = OrderedDict((
            ("metric", "Accuracy"),
            ("message", outcome),
            ("numTruePositives", self.metric.num_true_positives(privileged=privileged)),
            ("numTrueNegatives", self.metric.num_true_negatives(privileged=privileged)),
            ("numPositives", self.metric.num_positives(privileged=privileged)),
            ("numNegatives", self.metric.num_negatives(privileged=privileged)),
            ("description", "Computed as (true positive count + "
                "true negative count)/(positive_count + negative_count)."),
            ("ideal", "The ideal value of this metric is 1.0")
        ))
        return json.dumps(response)

    def average_abs_odds_difference(self):
        outcome = super(MetricJSONExplainer, self).average_abs_odds_difference()
        response = OrderedDict((
            ("metric", "Average Absolute Odds Difference"),
            ("message", outcome),
            ("numFalsePositivesUnprivileged", self.metric.num_false_positives(privileged=False)),
            ("numNegativesUnprivileged", self.metric.num_negatives(privileged=False)),
            ("numTruePositivesUnprivileged", self.metric.num_true_positives(privileged=False)),
            ("numPositivesUnprivileged", self.metric.num_positives(privileged=False)),
            ("numFalsePositivesPrivileged", self.metric.num_false_positives(privileged=True)),
            ("numNegativesPrivileged", self.metric.num_negatives(privileged=True)),
            ("numTruePositivesPrivileged", self.metric.num_true_positives(privileged=True)),
            ("numPositivesPrivileged", self.metric.num_positives(privileged=True)),
            ("description", "Computed as average difference of false positive rate (false positives / actual negatives) and true positive rate (true positives / actual positives) between unprivileged and privileged groups."),
            ("ideal", "The ideal value of this metric is 0.0.  A value of < 0 implies higher benefit for the privileged group and a value > 0 implies higher benefit for the unprivileged group.")
        ))
        return json.dumps(response)

    def average_odds_difference(self):
        outcome = super(MetricJSONExplainer, self).average_odds_difference()
        response = OrderedDict((
            ("metric", "Average Odds Difference"),
            ("message", outcome),
            ("numFalsePositivesUnprivileged", self.metric.num_false_positives(privileged=False)),
            ("numNegativesUnprivileged", self.metric.num_negatives(privileged=False)),
            ("numTruePositivesUnprivileged", self.metric.num_true_positives(privileged=False)),
            ("numPositivesUnprivileged", self.metric.num_positives(privileged=False)),
            ("numFalsePositivesPrivileged", self.metric.num_false_positives(privileged=True)),
            ("numNegativesPrivileged", self.metric.num_negatives(privileged=True)),
            ("numTruePositivesPrivileged", self.metric.num_true_positives(privileged=True)),
            ("numPositivesPrivileged", self.metric.num_positives(privileged=True)),
            ("description", "Computed as average difference of false positive rate (false positives / negatives) and true positive rate (true positives / positives) between unprivileged and privileged groups."),
            ("ideal", "The ideal value of this metric is 0.  A value of < 0 implies higher benefit for the privileged group and a value > 0 implies higher benefit for the unprivileged group.")
        ))
        return json.dumps(response)

    def between_all_groups_coefficient_of_variation(self):
        outcome = super(MetricJSONExplainer, self).between_all_groups_coefficient_of_variation()
        response = OrderedDict((
            ("metric", "Between All Groups Coefficient Of Variation"),
            ("message", outcome),
            ("description", "Computed as the square root of twice the pairwise entropy between every pair of privileged and underprivileged groups with alpha = 2."),
            ("ideal", "The ideal value of this metric is 0.") #2.0"
        ))
        return json.dumps(response)

    def between_all_groups_generalized_entropy_index(self, alpha=2):
        outcome = super(MetricJSONExplainer, self).between_all_groups_generalized_entropy_index(alpha)
        response = OrderedDict((
            ("metric", "Between All Groups Generalized Entropy Index"),
            ("message", outcome),
            ("description", "Computed as the pairwise entropy between every pair of privileged and underprivileged groups."),
            ("ideal", "The ideal value of this metric is 0.0") #1.0"
        ))
        return json.dumps(response)

    def between_all_groups_theil_index(self):
        outcome = super(MetricJSONExplainer, self).between_all_groups_theil_index()
        response = OrderedDict((
            ("metric", "Between All Groups Theil Index"),
            ("message", outcome),
            ("description", "Computed as the pairwise entropy between every pair of privileged and underprivileged groups with alpha = 1."),
            ("ideal", "The ideal value of this metric is 0.0") #1.0"
        ))
        return json.dumps(response)

    def between_group_coefficient_of_variation(self):
        outcome = super(MetricJSONExplainer, self).between_group_coefficient_of_variation()
        response = OrderedDict((
            ("metric", "Between Group Coefficient Of Variation"),
            ("message", outcome),
            ("description", "Computed as the square root of twice the pairwise entropy between a given pair of privileged and underprivileged groups with alpha = 2."),
            ("ideal", "The ideal value of this metric is 0.0") #2.0"
        ))
        return json.dumps(response)

    def between_group_generalized_entropy_index(self, alpha=2):
        outcome = super(MetricJSONExplainer, self).between_group_generalized_entropy_index(alpha)
        response = OrderedDict((
            ("metric", "Between Group Generalized Entropy Index"),
            ("message", outcome),
            ("description", "Computed as the pairwise entropy between a given pair of privileged and underprivileged groups."),
            ("ideal", "The ideal value of this metric is 0.0") #1.0"
        ))
        return json.dumps(response)

    def between_group_theil_index(self):
        outcome = super(MetricJSONExplainer, self).between_group_theil_index()
        response = OrderedDict((
            ("metric", "Between Group Theil Index"),
            ("message", outcome),
            ("description", "Computed as the pairwise entropy between a given pair of privileged and underprivileged groups with alpha = 1."),
            ("ideal", "The ideal value of this metric is 0.0") #1.0"
        ))
        return json.dumps(response)

    def coefficient_of_variation(self):
        outcome = super(MetricJSONExplainer, self).coefficient_of_variation()
        response = OrderedDict((
            ("metric", "Coefficient Of Variation"),
            ("message", outcome),
            ("description", "Computed as the square root of twice the generalized entropy index with alpha = 2."),
            ("ideal", "The ideal value of this metric is 0.0") #2.0"
        ))
        return json.dumps(response)

    def consistency(self, n_neighbors=5):
        outcome = super(MetricJSONExplainer, self).consistency(n_neighbors)
        response = OrderedDict((
            ("metric", "Consistency"),
            ("message", outcome),
            ("description", "Individual fairness metric from Zemel, Rich, et al. \"Learning fair representations.\", ICML 2013. "
                            "Measures how similar the labels are for similar instances."),
            ("ideal", "The ideal value of this metric is 1.0")
        ))
        return json.dumps(response)

    def disparate_impact(self):
        outcome = super(MetricJSONExplainer, self).disparate_impact()
        response = []
        if type(self.metric) is BinaryLabelDatasetMetric:
            response = OrderedDict((
                ("metric", "Disparate Impact"),
                ("message", outcome),
                ("numPositivePredictionsUnprivileged", self.metric.num_positives(privileged=False)),
                ("numUnprivileged", self.metric.num_instances(privileged=False)),
                ("numPositivePredictionsPrivileged", self.metric.num_positives(privileged=True)),
                ("numPrivileged", self.metric.num_instances(privileged=True)),
                ("description", "Computed as the ratio of rate of favorable outcome for the unprivileged group to that of the privileged group."),
                ("ideal", "The ideal value of this metric is 1.0 A value < 1 implies higher benefit for the privileged group and a value >1 implies a higher benefit for the unprivileged group.")
            ))
        else:
            response = OrderedDict((
                ("metric", "Disparate Impact"),
                ("message", outcome),
                ("numPositivePredictionsUnprivileged", self.metric.num_pred_positives(privileged=False)),
                ("numUnprivileged", self.metric.num_instances(privileged=False)),
                ("numPositivePredictionsPrivileged", self.metric.num_pred_positives(privileged=True)),
                ("numPrivileged", self.metric.num_instances(privileged=True)),
                ("description", "Computed as the ratio of likelihood of favorable outcome for the unprivileged group to that of the privileged group."),
                ("ideal", "The ideal value of this metric is 1.0")
            ))
        return json.dumps(response)

    def error_rate(self, privileged=None):
        outcome = super(MetricJSONExplainer, self).error_rate(privileged=privileged)
        response = OrderedDict((
            ("metric", "Error Rate"),
            ("message", outcome),
            ("numTruePositives", self.metric.num_true_positives(privileged=privileged)),
            ("numTrueNegatives", self.metric.num_true_negatives(privileged=privileged)),
            ("numPositives", self.metric.num_positives(privileged=privileged)),
            ("numNegatives", self.metric.num_negatives(privileged=privileged)),
            ("description", "Computed as  (1 -(true positive count + true negative count)/(positive_count + negative_count)). "),
            ("ideal", "The ideal value of this metric is 0.0")
        ))
        return json.dumps(response)

    def error_rate_difference(self):
        outcome = super(MetricJSONExplainer, self).error_rate_difference()
        response = OrderedDict((
            ("metric", "Error Rate Difference"),
            ("message", outcome),
            ("numTruePositivesUnprivileged", self.metric.num_true_positives(privileged=False)),
            ("numTrueNegativesUnprivileged", self.metric.num_true_negatives(privileged=False)),
            ("numPositivesUnprivileged", self.metric.num_positives(privileged=False)),
            ("numNegativesUnprivileged", self.metric.num_negatives(privileged=False)),
            ("numTruePositivesPrivileged", self.metric.num_true_positives(privileged=True)),
            ("numTrueNegativesPrivileged", self.metric.num_true_negatives(privileged=True)),
            ("numPositivePrivileged", self.metric.num_positives(privileged=True)),
            ("numNegativePrivileged", self.metric.num_negatives(privileged=True)),
            ("description", "Error rate = 1 -(true positive count + true negative count)/(positive_count + negative_count). "
                "This metric is computed as the difference of error rates between unprivileged and privileged groups."),
            ("ideal", "The ideal value of this metric is 0.0")
        ))
        return json.dumps(response)

    def error_rate_ratio(self):
        outcome = super(MetricJSONExplainer, self).error_rate_ratio()
        response = OrderedDict((
            ("metric", "Error Rate Ratio"),
            ("message", outcome),
            ("numTruePositivesUnprivileged", self.metric.num_true_positives(privileged=False)),
            ("numTrueNegativesUnprivileged", self.metric.num_true_negatives(privileged=False)),
            ("numPositivesUnprivileged", self.metric.num_positives(privileged=False)),
            ("numNegativesUnprivileged", self.metric.num_negatives(privileged=False)),
            ("numTruePositivesPrivileged", self.metric.num_true_positives(privileged=True)),
            ("numTrueNegativesPrivileged", self.metric.num_true_negatives(privileged=True)),
            ("numPositivePrivileged", self.metric.num_positives(privileged=True)),
            ("numNegativePrivileged", self.metric.num_negatives(privileged=True)),
            ("description", "Error rate = 1 -(true positive count + true negative count)/(positive_count + negative_count). "
                "This metric is computed as the ratio of error rates between unprivileged and privileged groups."),
            ("ideal", "The ideal value of this metric is 1.0")
        ))
        return json.dumps(response)

    def false_discovery_rate(self, privileged=None):
        outcome = super(MetricJSONExplainer, self).false_discovery_rate(privileged=privileged)
        response = OrderedDict((
            ("metric", "False Discovery Rate"),
            ("message", outcome),
            ("numTruePositives", self.metric.num_true_positives(privileged=privileged)),
            ("numFalsePositives", self.metric.num_false_positives(privileged=privileged)),
            ("description", "Computed as  (false positive count / (true positive count + false positive count))."),
            ("ideal", "The ideal value of this metric is 0.0")
        ))
        return json.dumps(response)

    def false_discovery_rate_difference(self):
        outcome = super(MetricJSONExplainer, self).false_discovery_rate_difference()
        response = OrderedDict((
            ("metric", "False Discovery Rate Difference"),
            ("message", outcome),
            ("numTruePositivesUnprivileged", self.metric.num_true_positives(privileged=False)),
            ("numFalsePositivesUnprivileged", self.metric.num_false_positives(privileged=False)),
            ("numTruePositivesPrivileged", self.metric.num_true_positives(privileged=True)),
            ("numFalsePositivesPrivileged", self.metric.num_false_positives(privileged=True)),
            ("description", "False discovery rate is computed as  (false positive count / (true positive count + false positive count)). "
                "This metric is computed as the difference of false discovery rate of unprivileged and privileged instances."),
            ("ideal", "The ideal value of this metric is 0.0")
        ))
        return json.dumps(response)

    def false_discovery_rate_ratio(self):
        outcome = super(MetricJSONExplainer, self).false_discovery_rate_ratio()
        response = OrderedDict((
            ("metric", "False Discovery Rate Ratio"),
            ("message", outcome),
            ("numTruePositivesUnprivileged", self.metric.num_true_positives(privileged=False)),
            ("numFalsePositivesUnprivileged", self.metric.num_false_positives(privileged=False)),
            ("numTruePositivesPrivileged", self.metric.num_true_positives(privileged=True)),
            ("numFalsePositivesPrivileged", self.metric.num_false_positives(privileged=True)),
            ("description", "False discovery rate is computed as  (false positive count / (true positive count + false positive count)). "
                "This metric is computed as the ratio of false discovery rate of unprivileged and privileged instances."),
            ("ideal", "The ideal value of this metric is 1.0")
        ))
        return json.dumps(response)

    def false_negative_rate(self, privileged=None):
        outcome = super(MetricJSONExplainer, self).false_negative_rate(privileged=privileged)
        response = OrderedDict((
            ("metric", "False Negative Rate"),
            ("message", outcome),
            ("numFalseNegatives", self.metric.num_false_negatives(privileged=privileged)),
            ("numPositives", self.metric.num_positives(privileged=privileged)),
            ("description", "Computed as  (false negagive count / total positive count)."),
            ("ideal", "The ideal value of this metric is 0.0")
        ))
        return json.dumps(response)

    def false_negative_rate_difference(self):
        outcome = super(MetricJSONExplainer, self).false_negative_rate_difference()
        response = OrderedDict((
            ("metric", "False Negative Rate Difference"),
            ("message", outcome),
            ("numFalseNegativesUnprivileged", self.metric.num_false_negatives(privileged=False)),
            ("numPositivesUnprivileged", self.metric.num_positives(privileged=False)),
            ("numFalseNegativesPrivileged", self.metric.num_false_negatives(privileged=True)),
            ("numPositivesPrivileged", self.metric.num_positives(privileged=True)),
            ("description", "False negative rate is computed as  (false negagive count / total positive count). "
                "This metric is computed as the difference of false negative rate between unprivileged and privileged instances."),
            ("ideal", "The ideal value of this metric is 0.0")
        ))
        return json.dumps(response)

    def false_negative_rate_ratio(self):
        outcome = super(MetricJSONExplainer, self).false_negative_rate_ratio()
        response = OrderedDict((
            ("metric", "False Negative Rate Ratio"),
            ("message", outcome),
            ("numFalseNegativesUnprivileged", self.metric.num_false_negatives(privileged=False)),
            ("numPositiveaUnprivileged", self.metric.num_positives(privileged=False)),
            ("numFalseNegativesPrivileged", self.metric.num_false_negatives(privileged=True)),
            ("numPositiveaPrivileged", self.metric.num_positives(privileged=True)),
            ("description", "False negative rate is computed as  (false negagive count / total positive count). "
                "This metric is computed as the ratio of false negative rate between unprivileged and privileged instances."),
            ("ideal", "The ideal value of this metric is 1.0")
        ))
        return json.dumps(response)

    def false_omission_rate(self, privileged=None):
        outcome = super(MetricJSONExplainer, self).false_omission_rate(privileged=privileged)
        response = OrderedDict((
            ("metric", "False Omission Rate"),
            ("message", outcome),
            ("numTrueNegatives", self.metric.num_true_negatives(privileged=privileged)),
            ("numFalseNegatives", self.metric.num_false_negatives(privileged=privileged)),
            ("description", "Computed as  (false negative count / (true negative count + false negative count))."),
            ("ideal", "The ideal value of this metric is 0.0")
        ))
        return json.dumps(response)

    def false_omission_rate_difference(self):
        outcome = super(MetricJSONExplainer, self).falses_omission_rate_difference()
        response = OrderedDict((
            ("metric", "False Omission Rate Difference"),
            ("message", outcome),
            ("numTrueNegativesUnprivileged", self.metric.num_true_negatives(privileged=False)),
            ("numFalseNegativesUnprivileged", self.metric.num_false_negatives(privileged=False)),
            ("numTrueNegativesPrivileged", self.metric.num_true_negatives(privileged=True)),
            ("numFalseNegativesPrivileged", self.metric.num_false_negatives(privileged=True)),
            ("description", "False omission rate is computed as  (false negative count / (true negative count + false negative count)). "
                "This metric is computed as the difference of false omission rate of underprivileged and privileged groups."),
            ("ideal", "The ideal value of this metric is 0.0")
        ))
        return json.dumps(response)

    def false_omission_rate_ratio(self):
        outcome = super(MetricJSONExplainer, self).false_omission_rate_ratio()
        response = OrderedDict((
            ("metric", "False Omission Rate Ratio"),
            ("message", outcome),
            ("numTrueNegativesUnprivileged", self.metric.num_true_negatives(privileged=False)),
            ("numFalseNegativesUnprivileged", self.metric.num_false_negatives(privileged=False)),
            ("numTrueNegativesPrivileged", self.metric.num_true_negatives(privileged=True)),
            ("numFalseNegativesPrivileged", self.metric.num_false_negatives(privileged=True)),
            ("description", "False omission rate is computed as  (false negative count / (true negative count + false negative count)). "
                "This metric is computed as the ratio of false omission rate of underprivileged and privileged groups."),
            ("ideal", "The ideal value of this metric is 1.0")
        ))
        return json.dumps(response)

    def false_positive_rate(self, privileged=None):
        outcome = super(MetricJSONExplainer, self).false_positive_rate(privileged=privileged)
        response = OrderedDict((
            ("metric", "False Positive Rate"),
            ("message", outcome),
            ("numFalsePositives", self.metric.num_false_positives(privileged=privileged)),
            ("numNegatives", self.metric.num_negatives(privileged=privileged)),
            ("description", "Computed as (false positive count / total negative count)."),
            ("ideal", "The ideal value of this metric is 0.0")
        ))
        return json.dumps(response)

    def false_positive_rate_difference(self):
        outcome = super(MetricJSONExplainer, self).false_positive_rate_difference()
        response = OrderedDict((
            ("metric", "False Positive Rate Difference"),
            ("message", outcome),
            ("numFalsePositivesUnprivileged", self.metric.num_false_positives(privileged=False)),
            ("numNegativesUnprivileged", self.metric.num_negatives(privileged=False)),
            ("numPositivesPrivileged", self.metric.num_false_positives(privileged=True)),
            ("numNegativesPrivileged", self.metric.num_negatives(privileged=True)),
            ("description", "False positive rate is computed as (false positive count / total negative count). "
                "This metric is computed as the difference of false positive rates between the unprivileged and privileged groups"),
            ("ideal", "The ideal value of this metric is 0.0")
        ))
        return json.dumps(response)

    def false_positive_rate_ratio(self):
        outcome = super(MetricJSONExplainer, self).false_positive_rate_ratio()
        response = OrderedDict((
            ("metric", "False Positive Rate Ratio"),
            ("message", outcome),
            ("numFalsePositivesUnprivileged", self.metric.num_false_positives(privileged=False)),
            ("numNegativesUnprivileged", self.metric.num_negatives(privileged=False)),
            ("numFalsePositivesPrivileged", self.metric.num_false_positives(privileged=True)),
            ("numNegativesPrivileged", self.metric.num_negatives(privileged=True)),
            ("description", "False positive rate is computed as (false positive count / total negative count). "
                "This metric is computed as the ratio of false positive rates between the unprivileged and privileged groups"),
            ("ideal", "The ideal value of this metric is 1.0")
        ))
        return json.dumps(response)

    def generalized_entropy_index(self, alpha=2):
        outcome = super(MetricJSONExplainer, self).generalized_entropy_index(alpha=alpha)
        response = OrderedDict((
            ("metric", "Generalized Entropy Index"),
            ("message", outcome),
            ("description", "This metric represents the generalized entropy index measured between the predicted and actual favorable outcomes."),
            ("ideal", "The ideal value of this metric is 0.0")
        ))
        return json.dumps(response)

    def mean_difference(self):
        outcome = super(MetricJSONExplainer, self).mean_difference()
        response = OrderedDict((
            ("metric", "Mean Difference"),
            ("message", outcome),
            ("numPositivesUnprivileged", self.metric.num_positives(privileged=False)),
            ("numInstancesUnprivileged", self.metric.num_instances(privileged=False)),
            ("numPositivesPrivileged", self.metric.num_positives(privileged=True)),
            ("numInstancesPrivileged", self.metric.num_instances(privileged=True)),
            ("description", "Computed as the difference of the rate of favorable outcomes received by the unprivileged group to the privileged group."),
            ("ideal", "The ideal value of this metric is 0.0")
        ))
        return json.dumps(response)

    def negative_predictive_value(self, privileged=None):
        outcome = super(MetricJSONExplainer, self).negative_predictive_value(privileged=privileged)
        response = OrderedDict((
            ("metric", "Negative Predictive Value"),
            ("message", outcome),
            ("numTrueNegatives", self.metric.num_true_negatives(privileged=privileged)),
            ("numFalseNegatives", self.metric.num_false_negatives(privileged=privileged)),
            ("description", "Computed as (number of true negatives / (number of true negatives + number of false negatives))."),
            ("ideal", "The ideal value of this metric is 1.0")
        ))
        return json.dumps(response)

    def num_false_negatives(self, privileged=None):
        outcome = super(MetricJSONExplainer, self).num_false_negatives(privileged=privileged)
        response = OrderedDict((
            ("metric", "Number Of False Negatives"),
            ("message", outcome),
            ("numFalseNegatives", self.metric.num_false_negatives(privileged=privileged)),
            ("description", "Computed as the number of false negative instances for the given (privileged or unprivileged) group."),
            ("ideal", "The ideal value of this metric is 0.0")
        ))
        return json.dumps(response)

    def num_false_positives(self, privileged=None):
        outcome = super(MetricJSONExplainer, self).num_false_positives(privileged=privileged)
        response = OrderedDict((
            ("metric", "Number Of False Positives"),
            ("message", outcome),
            ("numFalsePositives", self.metric.num_false_positives(privileged=privileged)),
            ("description", "Computed as the number of false positive instances for the given (privileged or unprivileged) group."),
            ("ideal", "The ideal value of this metric is 0.0")
        ))
        return json.dumps(response)

    def num_instances(self, privileged=None):
        outcome = super(MetricJSONExplainer, self).num_instances(privileged=privileged)
        response = OrderedDict((
            ("metric", "Number Of Instances"),
            ("message", outcome),
            ("numInstances", self.metric.num_instances(privileged=privileged)),
            ("description", "Computed as the number of instances for the given (privileged or unprivileged) group."),
            ("ideal", "The ideal value is the total number of instances made available")
        ))
        return json.dumps(response)

    def num_negatives(self, privileged=None):
        outcome = super(MetricJSONExplainer, self).num_negatives(privileged=privileged)
        response = OrderedDict((
            ("metric", "Number Of Negatives"),
            ("message", outcome),
            ("numNegatives", self.metric.num_negatives(privileged=privileged)),
            ("description", "Computed as the number of negative instances for the given (privileged or unprivileged) group."),
            ("ideal", "The ideal value of this metric lies in the total number of negative instances made available")
        ))
        return json.dumps(response)

    def num_positives(self, privileged=None):
        outcome = super(MetricJSONExplainer, self).num_positives(privileged=privileged)
        response = OrderedDict((
            ("metric", "Number Of Positives"),
            ("message", outcome),
            ("numPositives", self.metric.num_positives(privileged=privileged)),
            ("description", "Computed as the number of positive instances for the given (privileged or unprivileged) group."),
            ("ideal", "The ideal value of this metric lies in the total number of positive instances made available")
        ))
        return json.dumps(response)

    def num_pred_negatives(self, privileged=None):
        outcome = super(MetricJSONExplainer, self).num_pred_negatives(privileged=privileged)
        response = OrderedDict((
            ("metric", "Number Of Predicted Negatives"),
            ("message", outcome),
            ("numPredNegatives", self.metric.num_pred_negatives(privileged=privileged)),
            ("description", "Computed as the number of predicted negative instances for the given (privileged or unprivileged) group."),
            ("ideal", "The ideal value is the total number of negative instances made available")
        ))
        return json.dumps(response)

    def num_pred_positives(self, privileged=None):
        outcome = super(MetricJSONExplainer, self).num_pred_positives(privileged=privileged)
        response = OrderedDict((
            ("metric", "Number Of Predicted Positives"),
            ("message", outcome),
            ("numPredPositives", self.metric.num_pred_positives(privileged=privileged)),
            ("description", "Computed as the number of predicted positive instances for the given (privileged or unprivileged) group."),
            ("ideal", "The ideal value is the total number of positive instances made available")
        ))
        return json.dumps(response)

    def num_true_negatives(self, privileged=None):
        outcome = super(MetricJSONExplainer, self).num_true_negatives(privileged=privileged)
        response = OrderedDict((
            ("metric", "Number Of True Negatives"),
            ("message", outcome),
            ("numTrueNegatives", self.metric.num_true_negatives(privileged=privileged)),
            ("description", "Computed as the number of true negative instances for the given (privileged or unprivileged) group."),
            ("ideal", "The ideal value is the total number of negative instances made available")
        ))
        return json.dumps(response)

    def num_true_positives(self, privileged=None):
        outcome = super(MetricJSONExplainer, self).num_true_positives(privileged=privileged)
        response = OrderedDict((
            ("metric", "Number Of True Positives"),
            ("message", outcome),
            ("numTruePositives", self.metric.num_true_positives(privileged=privileged)),
            ("description", "Computed as the number of true positive instances for the given (privileged or unprivileged) group."),
            ("ideal", "The ideal value is the total number of positive instances made available")
        ))
        return json.dumps(response)

    def positive_predictive_value(self, privileged=None):
        outcome = super(MetricJSONExplainer, self).positive_predictive_value(privileged=privileged)
        response = OrderedDict((
            ("metric", "Positive Predictive Value"),
            ("message", outcome),
            ("numTruePositives", self.metric.num_true_positives(privileged=privileged)),
            ("numFalsePositives", self.metric.num_false_positives(privileged=privileged)),
            ("description", "Computed as (true positives / (true positives + false positives)) for the given (privileged or unprivileged) group."),
            ("ideal", "The ideal value is 1.0")
        ))
        return json.dumps(response)

    def statistical_parity_difference(self):
        outcome = super(MetricJSONExplainer, self).statistical_parity_difference()
        response = []
        if type(self.metric) is BinaryLabelDatasetMetric:
            response = OrderedDict((
                ("metric", "Statistical Parity Difference"),
                ("message", outcome),
                ("numPositivesUnprivileged", self.metric.num_positives(privileged=False)),
                ("numInstancesUnprivileged", self.metric.num_instances(privileged=False)),
                ("numPositivesPrivileged", self.metric.num_positives(privileged=True)),
                ("numInstancesPrivileged", self.metric.num_instances(privileged=True)),
                ("description", "Computed as the difference of the rate of favorable outcomes received by the unprivileged group to the privileged group."),
                ("ideal", " The ideal value of this metric is 0")
            ))
        else:
            response = OrderedDict((
                ("metric", "Statistical Parity Difference"),
                ("message", outcome),
                ("numPositivesUnprivileged", self.metric.num_pred_positives(privileged=False)),
                ("numInstancesUnprivileged", self.metric.num_instances(privileged=False)),
                ("numPositivesPrivileged", self.metric.num_pred_positives(privileged=True)),
                ("numInstancesPrivileged", self.metric.num_instances(privileged=True)),
                ("description", "Computed as the difference of the rate of favorable outcomes received by the unprivileged group to the privileged group."),
                ("ideal", " The ideal value of this metric is 0")
            ))
        return json.dumps(response)

    def theil_index(self):
        outcome = super(MetricJSONExplainer, self).theil_index()
        response = OrderedDict((
            ("metric", "Theil Index"),
            ("message", outcome),
            ("description", "Computed as the generalized entropy of benefit for all individuals in the dataset, with alpha = 1. It measures the inequality in benefit allocation for individuals."),
            ("ideal", "A value of 0 implies perfect fairness.")
        ))
        return json.dumps(response)

    def true_negative_rate(self, privileged=None):
        outcome = super(MetricJSONExplainer, self).true_negative_rate(privileged=privileged)
        response = OrderedDict((
            ("metric", "True Negative Rate"),
            ("message", outcome),
            ("numTrueNegatives", self.metric.num_true_negatives(privileged=privileged)),
            ("numNegatives", self.metric.num_negatives(privileged=privileged)),
            ("description", "Computed as the ratio of true negatives to the total number of negatives for the given (privileged or unprivileged) group."),
            ("ideal", "The ideal value is 1.0")
        ))
        return json.dumps(response)

    def true_positive_rate(self, privileged=None):
        outcome = super(MetricJSONExplainer, self).true_positive_rate(privileged=privileged)
        response = OrderedDict((
            ("metric", "True Positive Rate"),
            ("message", outcome),
            ("numTruePositives", self.metric.num_true_positives(privileged=privileged)),
            ("numPositives", self.metric.num_positives(privileged=privileged)),
            ("description", "Computed as the ratio of true positives to the total number of positives for the given (privileged or unprivileged) group."),
            ("ideal", "The ideal value is 1.0")
        ))
        return json.dumps(response)

    def true_positive_rate_difference(self):
        outcome = super(MetricJSONExplainer, self).true_positive_rate_difference()
        response = OrderedDict((
            ("metric", "True Positive Rate Difference"),
            ("message", outcome),
            ("numTruePositivesUnprivileged", self.metric.num_true_positives(privileged=False)),
            ("numPositivesUnprivileged", self.metric.num_positives(privileged=False)),
            ("numTruePositivesPrivileged", self.metric.num_true_positives(privileged=True)),
            ("numPositivesPrivileged", self.metric.num_positives(privileged=True)),
            ("description", "This metric is computed as the difference of true positive rates between the unprivileged and the privileged groups. "
                " The true positive rate is the ratio of true positives to the total number of actual positives for a given group."),
            ("ideal", "The ideal value is 0. A value of < 0 implies higher benefit for the privileged group and a value > 0 implies higher benefit for the unprivileged group.")
        ))
        return json.dumps(response)

    # ============================== ALIASES ===================================
    def equal_opportunity_difference(self):
        return self.true_positive_rate_difference()

    def power(self, privileged=None):
        return self.num_true_positives(privileged=privileged)

    def precision(self, privileged=None):
        return self.positive_predictive_value(privileged=privileged)

    def recall(self, privileged=None):
        return self.true_positive_rate(privileged=privileged)

    def sensitivity(self, privileged=None):
        return self.true_positive_rate(privileged=privileged)

    def specificity(self, privileged=None):
        return self.true_negative_rate(privileged=privileged)