Spaces:
Runtime error
Runtime error
File size: 38,003 Bytes
d2a8669 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 |
from collections import OrderedDict
import json
from aif360.explainers import MetricTextExplainer
from aif360.metrics import BinaryLabelDatasetMetric
class MetricJSONExplainer(MetricTextExplainer):
"""Class for explaining metric values in JSON format.
These briefly explain what a metric is and/or how it is calculated unless
it is obvious (e.g. accuracy) and print the value.
This class contains JSON explanations for all metric values regardless of
which subclass they appear in. This will raise an error if the metric does
not apply (e.g. calling `true_positive_rate` if
`type(metric) == DatasetMetric`).
"""
def accuracy(self, privileged=None):
outcome = super(MetricJSONExplainer, self).accuracy(privileged=privileged)
response = OrderedDict((
("metric", "Accuracy"),
("message", outcome),
("numTruePositives", self.metric.num_true_positives(privileged=privileged)),
("numTrueNegatives", self.metric.num_true_negatives(privileged=privileged)),
("numPositives", self.metric.num_positives(privileged=privileged)),
("numNegatives", self.metric.num_negatives(privileged=privileged)),
("description", "Computed as (true positive count + "
"true negative count)/(positive_count + negative_count)."),
("ideal", "The ideal value of this metric is 1.0")
))
return json.dumps(response)
def average_abs_odds_difference(self):
outcome = super(MetricJSONExplainer, self).average_abs_odds_difference()
response = OrderedDict((
("metric", "Average Absolute Odds Difference"),
("message", outcome),
("numFalsePositivesUnprivileged", self.metric.num_false_positives(privileged=False)),
("numNegativesUnprivileged", self.metric.num_negatives(privileged=False)),
("numTruePositivesUnprivileged", self.metric.num_true_positives(privileged=False)),
("numPositivesUnprivileged", self.metric.num_positives(privileged=False)),
("numFalsePositivesPrivileged", self.metric.num_false_positives(privileged=True)),
("numNegativesPrivileged", self.metric.num_negatives(privileged=True)),
("numTruePositivesPrivileged", self.metric.num_true_positives(privileged=True)),
("numPositivesPrivileged", self.metric.num_positives(privileged=True)),
("description", "Computed as average difference of false positive rate (false positives / actual negatives) and true positive rate (true positives / actual positives) between unprivileged and privileged groups."),
("ideal", "The ideal value of this metric is 0.0. A value of < 0 implies higher benefit for the privileged group and a value > 0 implies higher benefit for the unprivileged group.")
))
return json.dumps(response)
def average_odds_difference(self):
outcome = super(MetricJSONExplainer, self).average_odds_difference()
response = OrderedDict((
("metric", "Average Odds Difference"),
("message", outcome),
("numFalsePositivesUnprivileged", self.metric.num_false_positives(privileged=False)),
("numNegativesUnprivileged", self.metric.num_negatives(privileged=False)),
("numTruePositivesUnprivileged", self.metric.num_true_positives(privileged=False)),
("numPositivesUnprivileged", self.metric.num_positives(privileged=False)),
("numFalsePositivesPrivileged", self.metric.num_false_positives(privileged=True)),
("numNegativesPrivileged", self.metric.num_negatives(privileged=True)),
("numTruePositivesPrivileged", self.metric.num_true_positives(privileged=True)),
("numPositivesPrivileged", self.metric.num_positives(privileged=True)),
("description", "Computed as average difference of false positive rate (false positives / negatives) and true positive rate (true positives / positives) between unprivileged and privileged groups."),
("ideal", "The ideal value of this metric is 0. A value of < 0 implies higher benefit for the privileged group and a value > 0 implies higher benefit for the unprivileged group.")
))
return json.dumps(response)
def between_all_groups_coefficient_of_variation(self):
outcome = super(MetricJSONExplainer, self).between_all_groups_coefficient_of_variation()
response = OrderedDict((
("metric", "Between All Groups Coefficient Of Variation"),
("message", outcome),
("description", "Computed as the square root of twice the pairwise entropy between every pair of privileged and underprivileged groups with alpha = 2."),
("ideal", "The ideal value of this metric is 0.") #2.0"
))
return json.dumps(response)
def between_all_groups_generalized_entropy_index(self, alpha=2):
outcome = super(MetricJSONExplainer, self).between_all_groups_generalized_entropy_index(alpha)
response = OrderedDict((
("metric", "Between All Groups Generalized Entropy Index"),
("message", outcome),
("description", "Computed as the pairwise entropy between every pair of privileged and underprivileged groups."),
("ideal", "The ideal value of this metric is 0.0") #1.0"
))
return json.dumps(response)
def between_all_groups_theil_index(self):
outcome = super(MetricJSONExplainer, self).between_all_groups_theil_index()
response = OrderedDict((
("metric", "Between All Groups Theil Index"),
("message", outcome),
("description", "Computed as the pairwise entropy between every pair of privileged and underprivileged groups with alpha = 1."),
("ideal", "The ideal value of this metric is 0.0") #1.0"
))
return json.dumps(response)
def between_group_coefficient_of_variation(self):
outcome = super(MetricJSONExplainer, self).between_group_coefficient_of_variation()
response = OrderedDict((
("metric", "Between Group Coefficient Of Variation"),
("message", outcome),
("description", "Computed as the square root of twice the pairwise entropy between a given pair of privileged and underprivileged groups with alpha = 2."),
("ideal", "The ideal value of this metric is 0.0") #2.0"
))
return json.dumps(response)
def between_group_generalized_entropy_index(self, alpha=2):
outcome = super(MetricJSONExplainer, self).between_group_generalized_entropy_index(alpha)
response = OrderedDict((
("metric", "Between Group Generalized Entropy Index"),
("message", outcome),
("description", "Computed as the pairwise entropy between a given pair of privileged and underprivileged groups."),
("ideal", "The ideal value of this metric is 0.0") #1.0"
))
return json.dumps(response)
def between_group_theil_index(self):
outcome = super(MetricJSONExplainer, self).between_group_theil_index()
response = OrderedDict((
("metric", "Between Group Theil Index"),
("message", outcome),
("description", "Computed as the pairwise entropy between a given pair of privileged and underprivileged groups with alpha = 1."),
("ideal", "The ideal value of this metric is 0.0") #1.0"
))
return json.dumps(response)
def coefficient_of_variation(self):
outcome = super(MetricJSONExplainer, self).coefficient_of_variation()
response = OrderedDict((
("metric", "Coefficient Of Variation"),
("message", outcome),
("description", "Computed as the square root of twice the generalized entropy index with alpha = 2."),
("ideal", "The ideal value of this metric is 0.0") #2.0"
))
return json.dumps(response)
def consistency(self, n_neighbors=5):
outcome = super(MetricJSONExplainer, self).consistency(n_neighbors)
response = OrderedDict((
("metric", "Consistency"),
("message", outcome),
("description", "Individual fairness metric from Zemel, Rich, et al. \"Learning fair representations.\", ICML 2013. "
"Measures how similar the labels are for similar instances."),
("ideal", "The ideal value of this metric is 1.0")
))
return json.dumps(response)
def disparate_impact(self):
outcome = super(MetricJSONExplainer, self).disparate_impact()
response = []
if type(self.metric) is BinaryLabelDatasetMetric:
response = OrderedDict((
("metric", "Disparate Impact"),
("message", outcome),
("numPositivePredictionsUnprivileged", self.metric.num_positives(privileged=False)),
("numUnprivileged", self.metric.num_instances(privileged=False)),
("numPositivePredictionsPrivileged", self.metric.num_positives(privileged=True)),
("numPrivileged", self.metric.num_instances(privileged=True)),
("description", "Computed as the ratio of rate of favorable outcome for the unprivileged group to that of the privileged group."),
("ideal", "The ideal value of this metric is 1.0 A value < 1 implies higher benefit for the privileged group and a value >1 implies a higher benefit for the unprivileged group.")
))
else:
response = OrderedDict((
("metric", "Disparate Impact"),
("message", outcome),
("numPositivePredictionsUnprivileged", self.metric.num_pred_positives(privileged=False)),
("numUnprivileged", self.metric.num_instances(privileged=False)),
("numPositivePredictionsPrivileged", self.metric.num_pred_positives(privileged=True)),
("numPrivileged", self.metric.num_instances(privileged=True)),
("description", "Computed as the ratio of likelihood of favorable outcome for the unprivileged group to that of the privileged group."),
("ideal", "The ideal value of this metric is 1.0")
))
return json.dumps(response)
def error_rate(self, privileged=None):
outcome = super(MetricJSONExplainer, self).error_rate(privileged=privileged)
response = OrderedDict((
("metric", "Error Rate"),
("message", outcome),
("numTruePositives", self.metric.num_true_positives(privileged=privileged)),
("numTrueNegatives", self.metric.num_true_negatives(privileged=privileged)),
("numPositives", self.metric.num_positives(privileged=privileged)),
("numNegatives", self.metric.num_negatives(privileged=privileged)),
("description", "Computed as (1 -(true positive count + true negative count)/(positive_count + negative_count)). "),
("ideal", "The ideal value of this metric is 0.0")
))
return json.dumps(response)
def error_rate_difference(self):
outcome = super(MetricJSONExplainer, self).error_rate_difference()
response = OrderedDict((
("metric", "Error Rate Difference"),
("message", outcome),
("numTruePositivesUnprivileged", self.metric.num_true_positives(privileged=False)),
("numTrueNegativesUnprivileged", self.metric.num_true_negatives(privileged=False)),
("numPositivesUnprivileged", self.metric.num_positives(privileged=False)),
("numNegativesUnprivileged", self.metric.num_negatives(privileged=False)),
("numTruePositivesPrivileged", self.metric.num_true_positives(privileged=True)),
("numTrueNegativesPrivileged", self.metric.num_true_negatives(privileged=True)),
("numPositivePrivileged", self.metric.num_positives(privileged=True)),
("numNegativePrivileged", self.metric.num_negatives(privileged=True)),
("description", "Error rate = 1 -(true positive count + true negative count)/(positive_count + negative_count). "
"This metric is computed as the difference of error rates between unprivileged and privileged groups."),
("ideal", "The ideal value of this metric is 0.0")
))
return json.dumps(response)
def error_rate_ratio(self):
outcome = super(MetricJSONExplainer, self).error_rate_ratio()
response = OrderedDict((
("metric", "Error Rate Ratio"),
("message", outcome),
("numTruePositivesUnprivileged", self.metric.num_true_positives(privileged=False)),
("numTrueNegativesUnprivileged", self.metric.num_true_negatives(privileged=False)),
("numPositivesUnprivileged", self.metric.num_positives(privileged=False)),
("numNegativesUnprivileged", self.metric.num_negatives(privileged=False)),
("numTruePositivesPrivileged", self.metric.num_true_positives(privileged=True)),
("numTrueNegativesPrivileged", self.metric.num_true_negatives(privileged=True)),
("numPositivePrivileged", self.metric.num_positives(privileged=True)),
("numNegativePrivileged", self.metric.num_negatives(privileged=True)),
("description", "Error rate = 1 -(true positive count + true negative count)/(positive_count + negative_count). "
"This metric is computed as the ratio of error rates between unprivileged and privileged groups."),
("ideal", "The ideal value of this metric is 1.0")
))
return json.dumps(response)
def false_discovery_rate(self, privileged=None):
outcome = super(MetricJSONExplainer, self).false_discovery_rate(privileged=privileged)
response = OrderedDict((
("metric", "False Discovery Rate"),
("message", outcome),
("numTruePositives", self.metric.num_true_positives(privileged=privileged)),
("numFalsePositives", self.metric.num_false_positives(privileged=privileged)),
("description", "Computed as (false positive count / (true positive count + false positive count))."),
("ideal", "The ideal value of this metric is 0.0")
))
return json.dumps(response)
def false_discovery_rate_difference(self):
outcome = super(MetricJSONExplainer, self).false_discovery_rate_difference()
response = OrderedDict((
("metric", "False Discovery Rate Difference"),
("message", outcome),
("numTruePositivesUnprivileged", self.metric.num_true_positives(privileged=False)),
("numFalsePositivesUnprivileged", self.metric.num_false_positives(privileged=False)),
("numTruePositivesPrivileged", self.metric.num_true_positives(privileged=True)),
("numFalsePositivesPrivileged", self.metric.num_false_positives(privileged=True)),
("description", "False discovery rate is computed as (false positive count / (true positive count + false positive count)). "
"This metric is computed as the difference of false discovery rate of unprivileged and privileged instances."),
("ideal", "The ideal value of this metric is 0.0")
))
return json.dumps(response)
def false_discovery_rate_ratio(self):
outcome = super(MetricJSONExplainer, self).false_discovery_rate_ratio()
response = OrderedDict((
("metric", "False Discovery Rate Ratio"),
("message", outcome),
("numTruePositivesUnprivileged", self.metric.num_true_positives(privileged=False)),
("numFalsePositivesUnprivileged", self.metric.num_false_positives(privileged=False)),
("numTruePositivesPrivileged", self.metric.num_true_positives(privileged=True)),
("numFalsePositivesPrivileged", self.metric.num_false_positives(privileged=True)),
("description", "False discovery rate is computed as (false positive count / (true positive count + false positive count)). "
"This metric is computed as the ratio of false discovery rate of unprivileged and privileged instances."),
("ideal", "The ideal value of this metric is 1.0")
))
return json.dumps(response)
def false_negative_rate(self, privileged=None):
outcome = super(MetricJSONExplainer, self).false_negative_rate(privileged=privileged)
response = OrderedDict((
("metric", "False Negative Rate"),
("message", outcome),
("numFalseNegatives", self.metric.num_false_negatives(privileged=privileged)),
("numPositives", self.metric.num_positives(privileged=privileged)),
("description", "Computed as (false negagive count / total positive count)."),
("ideal", "The ideal value of this metric is 0.0")
))
return json.dumps(response)
def false_negative_rate_difference(self):
outcome = super(MetricJSONExplainer, self).false_negative_rate_difference()
response = OrderedDict((
("metric", "False Negative Rate Difference"),
("message", outcome),
("numFalseNegativesUnprivileged", self.metric.num_false_negatives(privileged=False)),
("numPositivesUnprivileged", self.metric.num_positives(privileged=False)),
("numFalseNegativesPrivileged", self.metric.num_false_negatives(privileged=True)),
("numPositivesPrivileged", self.metric.num_positives(privileged=True)),
("description", "False negative rate is computed as (false negagive count / total positive count). "
"This metric is computed as the difference of false negative rate between unprivileged and privileged instances."),
("ideal", "The ideal value of this metric is 0.0")
))
return json.dumps(response)
def false_negative_rate_ratio(self):
outcome = super(MetricJSONExplainer, self).false_negative_rate_ratio()
response = OrderedDict((
("metric", "False Negative Rate Ratio"),
("message", outcome),
("numFalseNegativesUnprivileged", self.metric.num_false_negatives(privileged=False)),
("numPositiveaUnprivileged", self.metric.num_positives(privileged=False)),
("numFalseNegativesPrivileged", self.metric.num_false_negatives(privileged=True)),
("numPositiveaPrivileged", self.metric.num_positives(privileged=True)),
("description", "False negative rate is computed as (false negagive count / total positive count). "
"This metric is computed as the ratio of false negative rate between unprivileged and privileged instances."),
("ideal", "The ideal value of this metric is 1.0")
))
return json.dumps(response)
def false_omission_rate(self, privileged=None):
outcome = super(MetricJSONExplainer, self).false_omission_rate(privileged=privileged)
response = OrderedDict((
("metric", "False Omission Rate"),
("message", outcome),
("numTrueNegatives", self.metric.num_true_negatives(privileged=privileged)),
("numFalseNegatives", self.metric.num_false_negatives(privileged=privileged)),
("description", "Computed as (false negative count / (true negative count + false negative count))."),
("ideal", "The ideal value of this metric is 0.0")
))
return json.dumps(response)
def false_omission_rate_difference(self):
outcome = super(MetricJSONExplainer, self).falses_omission_rate_difference()
response = OrderedDict((
("metric", "False Omission Rate Difference"),
("message", outcome),
("numTrueNegativesUnprivileged", self.metric.num_true_negatives(privileged=False)),
("numFalseNegativesUnprivileged", self.metric.num_false_negatives(privileged=False)),
("numTrueNegativesPrivileged", self.metric.num_true_negatives(privileged=True)),
("numFalseNegativesPrivileged", self.metric.num_false_negatives(privileged=True)),
("description", "False omission rate is computed as (false negative count / (true negative count + false negative count)). "
"This metric is computed as the difference of false omission rate of underprivileged and privileged groups."),
("ideal", "The ideal value of this metric is 0.0")
))
return json.dumps(response)
def false_omission_rate_ratio(self):
outcome = super(MetricJSONExplainer, self).false_omission_rate_ratio()
response = OrderedDict((
("metric", "False Omission Rate Ratio"),
("message", outcome),
("numTrueNegativesUnprivileged", self.metric.num_true_negatives(privileged=False)),
("numFalseNegativesUnprivileged", self.metric.num_false_negatives(privileged=False)),
("numTrueNegativesPrivileged", self.metric.num_true_negatives(privileged=True)),
("numFalseNegativesPrivileged", self.metric.num_false_negatives(privileged=True)),
("description", "False omission rate is computed as (false negative count / (true negative count + false negative count)). "
"This metric is computed as the ratio of false omission rate of underprivileged and privileged groups."),
("ideal", "The ideal value of this metric is 1.0")
))
return json.dumps(response)
def false_positive_rate(self, privileged=None):
outcome = super(MetricJSONExplainer, self).false_positive_rate(privileged=privileged)
response = OrderedDict((
("metric", "False Positive Rate"),
("message", outcome),
("numFalsePositives", self.metric.num_false_positives(privileged=privileged)),
("numNegatives", self.metric.num_negatives(privileged=privileged)),
("description", "Computed as (false positive count / total negative count)."),
("ideal", "The ideal value of this metric is 0.0")
))
return json.dumps(response)
def false_positive_rate_difference(self):
outcome = super(MetricJSONExplainer, self).false_positive_rate_difference()
response = OrderedDict((
("metric", "False Positive Rate Difference"),
("message", outcome),
("numFalsePositivesUnprivileged", self.metric.num_false_positives(privileged=False)),
("numNegativesUnprivileged", self.metric.num_negatives(privileged=False)),
("numPositivesPrivileged", self.metric.num_false_positives(privileged=True)),
("numNegativesPrivileged", self.metric.num_negatives(privileged=True)),
("description", "False positive rate is computed as (false positive count / total negative count). "
"This metric is computed as the difference of false positive rates between the unprivileged and privileged groups"),
("ideal", "The ideal value of this metric is 0.0")
))
return json.dumps(response)
def false_positive_rate_ratio(self):
outcome = super(MetricJSONExplainer, self).false_positive_rate_ratio()
response = OrderedDict((
("metric", "False Positive Rate Ratio"),
("message", outcome),
("numFalsePositivesUnprivileged", self.metric.num_false_positives(privileged=False)),
("numNegativesUnprivileged", self.metric.num_negatives(privileged=False)),
("numFalsePositivesPrivileged", self.metric.num_false_positives(privileged=True)),
("numNegativesPrivileged", self.metric.num_negatives(privileged=True)),
("description", "False positive rate is computed as (false positive count / total negative count). "
"This metric is computed as the ratio of false positive rates between the unprivileged and privileged groups"),
("ideal", "The ideal value of this metric is 1.0")
))
return json.dumps(response)
def generalized_entropy_index(self, alpha=2):
outcome = super(MetricJSONExplainer, self).generalized_entropy_index(alpha=alpha)
response = OrderedDict((
("metric", "Generalized Entropy Index"),
("message", outcome),
("description", "This metric represents the generalized entropy index measured between the predicted and actual favorable outcomes."),
("ideal", "The ideal value of this metric is 0.0")
))
return json.dumps(response)
def mean_difference(self):
outcome = super(MetricJSONExplainer, self).mean_difference()
response = OrderedDict((
("metric", "Mean Difference"),
("message", outcome),
("numPositivesUnprivileged", self.metric.num_positives(privileged=False)),
("numInstancesUnprivileged", self.metric.num_instances(privileged=False)),
("numPositivesPrivileged", self.metric.num_positives(privileged=True)),
("numInstancesPrivileged", self.metric.num_instances(privileged=True)),
("description", "Computed as the difference of the rate of favorable outcomes received by the unprivileged group to the privileged group."),
("ideal", "The ideal value of this metric is 0.0")
))
return json.dumps(response)
def negative_predictive_value(self, privileged=None):
outcome = super(MetricJSONExplainer, self).negative_predictive_value(privileged=privileged)
response = OrderedDict((
("metric", "Negative Predictive Value"),
("message", outcome),
("numTrueNegatives", self.metric.num_true_negatives(privileged=privileged)),
("numFalseNegatives", self.metric.num_false_negatives(privileged=privileged)),
("description", "Computed as (number of true negatives / (number of true negatives + number of false negatives))."),
("ideal", "The ideal value of this metric is 1.0")
))
return json.dumps(response)
def num_false_negatives(self, privileged=None):
outcome = super(MetricJSONExplainer, self).num_false_negatives(privileged=privileged)
response = OrderedDict((
("metric", "Number Of False Negatives"),
("message", outcome),
("numFalseNegatives", self.metric.num_false_negatives(privileged=privileged)),
("description", "Computed as the number of false negative instances for the given (privileged or unprivileged) group."),
("ideal", "The ideal value of this metric is 0.0")
))
return json.dumps(response)
def num_false_positives(self, privileged=None):
outcome = super(MetricJSONExplainer, self).num_false_positives(privileged=privileged)
response = OrderedDict((
("metric", "Number Of False Positives"),
("message", outcome),
("numFalsePositives", self.metric.num_false_positives(privileged=privileged)),
("description", "Computed as the number of false positive instances for the given (privileged or unprivileged) group."),
("ideal", "The ideal value of this metric is 0.0")
))
return json.dumps(response)
def num_instances(self, privileged=None):
outcome = super(MetricJSONExplainer, self).num_instances(privileged=privileged)
response = OrderedDict((
("metric", "Number Of Instances"),
("message", outcome),
("numInstances", self.metric.num_instances(privileged=privileged)),
("description", "Computed as the number of instances for the given (privileged or unprivileged) group."),
("ideal", "The ideal value is the total number of instances made available")
))
return json.dumps(response)
def num_negatives(self, privileged=None):
outcome = super(MetricJSONExplainer, self).num_negatives(privileged=privileged)
response = OrderedDict((
("metric", "Number Of Negatives"),
("message", outcome),
("numNegatives", self.metric.num_negatives(privileged=privileged)),
("description", "Computed as the number of negative instances for the given (privileged or unprivileged) group."),
("ideal", "The ideal value of this metric lies in the total number of negative instances made available")
))
return json.dumps(response)
def num_positives(self, privileged=None):
outcome = super(MetricJSONExplainer, self).num_positives(privileged=privileged)
response = OrderedDict((
("metric", "Number Of Positives"),
("message", outcome),
("numPositives", self.metric.num_positives(privileged=privileged)),
("description", "Computed as the number of positive instances for the given (privileged or unprivileged) group."),
("ideal", "The ideal value of this metric lies in the total number of positive instances made available")
))
return json.dumps(response)
def num_pred_negatives(self, privileged=None):
outcome = super(MetricJSONExplainer, self).num_pred_negatives(privileged=privileged)
response = OrderedDict((
("metric", "Number Of Predicted Negatives"),
("message", outcome),
("numPredNegatives", self.metric.num_pred_negatives(privileged=privileged)),
("description", "Computed as the number of predicted negative instances for the given (privileged or unprivileged) group."),
("ideal", "The ideal value is the total number of negative instances made available")
))
return json.dumps(response)
def num_pred_positives(self, privileged=None):
outcome = super(MetricJSONExplainer, self).num_pred_positives(privileged=privileged)
response = OrderedDict((
("metric", "Number Of Predicted Positives"),
("message", outcome),
("numPredPositives", self.metric.num_pred_positives(privileged=privileged)),
("description", "Computed as the number of predicted positive instances for the given (privileged or unprivileged) group."),
("ideal", "The ideal value is the total number of positive instances made available")
))
return json.dumps(response)
def num_true_negatives(self, privileged=None):
outcome = super(MetricJSONExplainer, self).num_true_negatives(privileged=privileged)
response = OrderedDict((
("metric", "Number Of True Negatives"),
("message", outcome),
("numTrueNegatives", self.metric.num_true_negatives(privileged=privileged)),
("description", "Computed as the number of true negative instances for the given (privileged or unprivileged) group."),
("ideal", "The ideal value is the total number of negative instances made available")
))
return json.dumps(response)
def num_true_positives(self, privileged=None):
outcome = super(MetricJSONExplainer, self).num_true_positives(privileged=privileged)
response = OrderedDict((
("metric", "Number Of True Positives"),
("message", outcome),
("numTruePositives", self.metric.num_true_positives(privileged=privileged)),
("description", "Computed as the number of true positive instances for the given (privileged or unprivileged) group."),
("ideal", "The ideal value is the total number of positive instances made available")
))
return json.dumps(response)
def positive_predictive_value(self, privileged=None):
outcome = super(MetricJSONExplainer, self).positive_predictive_value(privileged=privileged)
response = OrderedDict((
("metric", "Positive Predictive Value"),
("message", outcome),
("numTruePositives", self.metric.num_true_positives(privileged=privileged)),
("numFalsePositives", self.metric.num_false_positives(privileged=privileged)),
("description", "Computed as (true positives / (true positives + false positives)) for the given (privileged or unprivileged) group."),
("ideal", "The ideal value is 1.0")
))
return json.dumps(response)
def statistical_parity_difference(self):
outcome = super(MetricJSONExplainer, self).statistical_parity_difference()
response = []
if type(self.metric) is BinaryLabelDatasetMetric:
response = OrderedDict((
("metric", "Statistical Parity Difference"),
("message", outcome),
("numPositivesUnprivileged", self.metric.num_positives(privileged=False)),
("numInstancesUnprivileged", self.metric.num_instances(privileged=False)),
("numPositivesPrivileged", self.metric.num_positives(privileged=True)),
("numInstancesPrivileged", self.metric.num_instances(privileged=True)),
("description", "Computed as the difference of the rate of favorable outcomes received by the unprivileged group to the privileged group."),
("ideal", " The ideal value of this metric is 0")
))
else:
response = OrderedDict((
("metric", "Statistical Parity Difference"),
("message", outcome),
("numPositivesUnprivileged", self.metric.num_pred_positives(privileged=False)),
("numInstancesUnprivileged", self.metric.num_instances(privileged=False)),
("numPositivesPrivileged", self.metric.num_pred_positives(privileged=True)),
("numInstancesPrivileged", self.metric.num_instances(privileged=True)),
("description", "Computed as the difference of the rate of favorable outcomes received by the unprivileged group to the privileged group."),
("ideal", " The ideal value of this metric is 0")
))
return json.dumps(response)
def theil_index(self):
outcome = super(MetricJSONExplainer, self).theil_index()
response = OrderedDict((
("metric", "Theil Index"),
("message", outcome),
("description", "Computed as the generalized entropy of benefit for all individuals in the dataset, with alpha = 1. It measures the inequality in benefit allocation for individuals."),
("ideal", "A value of 0 implies perfect fairness.")
))
return json.dumps(response)
def true_negative_rate(self, privileged=None):
outcome = super(MetricJSONExplainer, self).true_negative_rate(privileged=privileged)
response = OrderedDict((
("metric", "True Negative Rate"),
("message", outcome),
("numTrueNegatives", self.metric.num_true_negatives(privileged=privileged)),
("numNegatives", self.metric.num_negatives(privileged=privileged)),
("description", "Computed as the ratio of true negatives to the total number of negatives for the given (privileged or unprivileged) group."),
("ideal", "The ideal value is 1.0")
))
return json.dumps(response)
def true_positive_rate(self, privileged=None):
outcome = super(MetricJSONExplainer, self).true_positive_rate(privileged=privileged)
response = OrderedDict((
("metric", "True Positive Rate"),
("message", outcome),
("numTruePositives", self.metric.num_true_positives(privileged=privileged)),
("numPositives", self.metric.num_positives(privileged=privileged)),
("description", "Computed as the ratio of true positives to the total number of positives for the given (privileged or unprivileged) group."),
("ideal", "The ideal value is 1.0")
))
return json.dumps(response)
def true_positive_rate_difference(self):
outcome = super(MetricJSONExplainer, self).true_positive_rate_difference()
response = OrderedDict((
("metric", "True Positive Rate Difference"),
("message", outcome),
("numTruePositivesUnprivileged", self.metric.num_true_positives(privileged=False)),
("numPositivesUnprivileged", self.metric.num_positives(privileged=False)),
("numTruePositivesPrivileged", self.metric.num_true_positives(privileged=True)),
("numPositivesPrivileged", self.metric.num_positives(privileged=True)),
("description", "This metric is computed as the difference of true positive rates between the unprivileged and the privileged groups. "
" The true positive rate is the ratio of true positives to the total number of actual positives for a given group."),
("ideal", "The ideal value is 0. A value of < 0 implies higher benefit for the privileged group and a value > 0 implies higher benefit for the unprivileged group.")
))
return json.dumps(response)
# ============================== ALIASES ===================================
def equal_opportunity_difference(self):
return self.true_positive_rate_difference()
def power(self, privileged=None):
return self.num_true_positives(privileged=privileged)
def precision(self, privileged=None):
return self.positive_predictive_value(privileged=privileged)
def recall(self, privileged=None):
return self.true_positive_rate(privileged=privileged)
def sensitivity(self, privileged=None):
return self.true_positive_rate(privileged=privileged)
def specificity(self, privileged=None):
return self.true_negative_rate(privileged=privileged)
|