Spaces:
Runtime error
Runtime error
File size: 11,349 Bytes
d2a8669 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
import numpy as np
from sklearn.neighbors import NearestNeighbors
from aif360.algorithms.inprocessing.gerryfair.auditor import Auditor
from aif360.datasets import BinaryLabelDataset
from aif360.datasets.multiclass_label_dataset import MulticlassLabelDataset
from aif360.metrics import DatasetMetric, utils
from aif360.algorithms.inprocessing.gerryfair.clean import *
class BinaryLabelDatasetMetric(DatasetMetric):
"""Class for computing metrics based on a single
:obj:`~aif360.datasets.BinaryLabelDataset`.
"""
def __init__(self, dataset, unprivileged_groups=None, privileged_groups=None):
"""
Args:
dataset (BinaryLabelDataset): A BinaryLabelDataset.
privileged_groups (list(dict)): Privileged groups. Format is a list
of `dicts` where the keys are `protected_attribute_names` and
the values are values in `protected_attributes`. Each `dict`
element describes a single group. See examples for more details.
unprivileged_groups (list(dict)): Unprivileged groups in the same
format as `privileged_groups`.
Raises:
TypeError: `dataset` must be a
:obj:`~aif360.datasets.BinaryLabelDataset` type.
"""
if not isinstance(dataset, BinaryLabelDataset) and not isinstance(dataset, MulticlassLabelDataset) :
raise TypeError("'dataset' should be a BinaryLabelDataset or a MulticlassLabelDataset")
# sets self.dataset, self.unprivileged_groups, self.privileged_groups
super(BinaryLabelDatasetMetric, self).__init__(dataset,
unprivileged_groups=unprivileged_groups,
privileged_groups=privileged_groups)
if isinstance(dataset, MulticlassLabelDataset):
fav_label_value = 1.
unfav_label_value = 0.
self.dataset = self.dataset.copy()
# Find all labels which match any of the favorable labels
fav_idx = np.logical_or.reduce(np.equal.outer(self.dataset.favorable_label, self.dataset.labels))
# Replace labels with corresponding values
self.dataset.labels = np.where(fav_idx, fav_label_value, unfav_label_value)
self.dataset.favorable_label = float(fav_label_value)
self.dataset.unfavorable_label = float(unfav_label_value)
def num_positives(self, privileged=None):
r"""Compute the number of positives,
:math:`P = \sum_{i=1}^n \mathbb{1}[y_i = 1]`,
optionally conditioned on protected attributes.
Args:
privileged (bool, optional): Boolean prescribing whether to
condition this metric on the `privileged_groups`, if `True`, or
the `unprivileged_groups`, if `False`. Defaults to `None`
meaning this metric is computed over the entire dataset.
Raises:
AttributeError: `privileged_groups` or `unprivileged_groups` must be
must be provided at initialization to condition on them.
"""
condition = self._to_condition(privileged)
return utils.compute_num_pos_neg(self.dataset.protected_attributes,
self.dataset.labels, self.dataset.instance_weights,
self.dataset.protected_attribute_names,
self.dataset.favorable_label, condition=condition)
def num_negatives(self, privileged=None):
r"""Compute the number of negatives,
:math:`N = \sum_{i=1}^n \mathbb{1}[y_i = 0]`, optionally conditioned on
protected attributes.
Args:
privileged (bool, optional): Boolean prescribing whether to
condition this metric on the `privileged_groups`, if `True`, or
the `unprivileged_groups`, if `False`. Defaults to `None`
meaning this metric is computed over the entire dataset.
Raises:
AttributeError: `privileged_groups` or `unprivileged_groups` must be
must be provided at initialization to condition on them.
"""
condition = self._to_condition(privileged)
return utils.compute_num_pos_neg(self.dataset.protected_attributes,
self.dataset.labels, self.dataset.instance_weights,
self.dataset.protected_attribute_names,
self.dataset.unfavorable_label, condition=condition)
def base_rate(self, privileged=None):
"""Compute the base rate, :math:`Pr(Y = 1) = P/(P+N)`, optionally
conditioned on protected attributes.
Args:
privileged (bool, optional): Boolean prescribing whether to
condition this metric on the `privileged_groups`, if `True`, or
the `unprivileged_groups`, if `False`. Defaults to `None`
meaning this metric is computed over the entire dataset.
Returns:
float: Base rate (optionally conditioned).
"""
return (self.num_positives(privileged=privileged)
/ self.num_instances(privileged=privileged))
def disparate_impact(self):
r"""
.. math::
\frac{Pr(Y = 1 | D = \text{unprivileged})}
{Pr(Y = 1 | D = \text{privileged})}
"""
return self.ratio(self.base_rate)
def statistical_parity_difference(self):
r"""
.. math::
Pr(Y = 1 | D = \text{unprivileged})
- Pr(Y = 1 | D = \text{privileged})
"""
return self.difference(self.base_rate)
def consistency(self, n_neighbors=5):
r"""Individual fairness metric from [1]_ that measures how similar the
labels are for similar instances.
.. math::
1 - \frac{1}{n}\sum_{i=1}^n |\hat{y}_i -
\frac{1}{\text{n_neighbors}} \sum_{j\in\mathcal{N}_{\text{n_neighbors}}(x_i)} \hat{y}_j|
Args:
n_neighbors (int, optional): Number of neighbors for the knn
computation.
References:
.. [1] R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork,
"Learning Fair Representations,"
International Conference on Machine Learning, 2013.
"""
X = self.dataset.features
num_samples = X.shape[0]
y = self.dataset.labels
# learn a KNN on the features
nbrs = NearestNeighbors(n_neighbors=n_neighbors, algorithm='ball_tree')
nbrs.fit(X)
_, indices = nbrs.kneighbors(X)
# compute consistency score
consistency = 0.0
for i in range(num_samples):
consistency += np.abs(y[i] - np.mean(y[indices[i]]))
consistency = 1.0 - consistency/num_samples
return consistency
def _smoothed_base_rates(self, labels, concentration=1.0):
"""Dirichlet-smoothed base rates for each intersecting group in the
dataset.
"""
# Dirichlet smoothing parameters
if concentration < 0:
raise ValueError("Concentration parameter must be non-negative.")
num_classes = 2 # binary label dataset
dirichlet_alpha = concentration / num_classes
# compute counts for all intersecting groups, e.g. black-women, white-man, etc
intersect_groups = np.unique(self.dataset.protected_attributes, axis=0)
num_intersects = len(intersect_groups)
counts_pos = np.zeros(num_intersects)
counts_total = np.zeros(num_intersects)
for i in range(num_intersects):
condition = [dict(zip(self.dataset.protected_attribute_names,
intersect_groups[i]))]
counts_total[i] = utils.compute_num_instances(
self.dataset.protected_attributes,
self.dataset.instance_weights,
self.dataset.protected_attribute_names, condition=condition)
counts_pos[i] = utils.compute_num_pos_neg(
self.dataset.protected_attributes, labels,
self.dataset.instance_weights,
self.dataset.protected_attribute_names,
self.dataset.favorable_label, condition=condition)
# probability of y given S (p(y=1|S))
return (counts_pos + dirichlet_alpha) / (counts_total + concentration)
def smoothed_empirical_differential_fairness(self, concentration=1.0):
"""Smoothed EDF from [#foulds18]_.
Args:
concentration (float, optional): Concentration parameter for
Dirichlet smoothing. Must be non-negative.
Examples:
To use with non-binary protected attributes, the column must be
converted to ordinal:
>>> mapping = {'Black': 0, 'White': 1, 'Asian-Pac-Islander': 2,
... 'Amer-Indian-Eskimo': 3, 'Other': 4}
>>> def map_race(df):
... df['race-num'] = df.race.map(mapping)
... return df
...
>>> adult = AdultDataset(protected_attribute_names=['sex',
... 'race-num'], privileged_classes=[['Male'], [1]],
... categorical_features=['workclass', 'education',
... 'marital-status', 'occupation', 'relationship',
... 'native-country', 'race'], custom_preprocessing=map_race)
>>> metric = BinaryLabelDatasetMetric(adult)
>>> metric.smoothed_empirical_differential_fairness()
1.7547611985549287
References:
.. [#foulds18] J. R. Foulds, R. Islam, K. N. Keya, and S. Pan,
"An Intersectional Definition of Fairness," arXiv preprint
arXiv:1807.08362, 2018.
"""
sbr = self._smoothed_base_rates(self.dataset.labels, concentration)
def pos_ratio(i, j):
return abs(np.log(sbr[i]) - np.log(sbr[j]))
def neg_ratio(i, j):
return abs(np.log(1 - sbr[i]) - np.log(1 - sbr[j]))
# overall DF of the mechanism
return max(max(pos_ratio(i, j), neg_ratio(i, j))
for i in range(len(sbr)) for j in range(len(sbr)) if i != j)
# ============================== ALIASES ===================================
def mean_difference(self):
"""Alias of :meth:`statistical_parity_difference`."""
return self.statistical_parity_difference()
def rich_subgroup(self, predictions, fairness_def='FP'):
"""Audit dataset with respect to rich subgroups defined by linear thresholds of sensitive attributes
Args: fairness_def is 'FP' or 'FN' for rich subgroup wrt to false positive or false negative rate.
predictions is a hashable tuple of predictions. Typically the labels attribute of a GerryFairClassifier
Returns: the gamma disparity with respect to the fairness_def.
Examples: see examples/gerry_plots.ipynb
"""
auditor = Auditor(self.dataset, fairness_def)
# make hashable type
y = array_to_tuple(self.dataset.labels)
predictions = array_to_tuple(predictions)
# returns mean(predictions | y = 0) if 'FP' 1-mean(predictions | y = 1) if FN
metric_baseline = auditor.get_baseline(y, predictions)
# return the group with the largest disparity
group = auditor.get_group(predictions, metric_baseline)
return group.weighted_disparity
|