File size: 11,349 Bytes
d2a8669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
import numpy as np
from sklearn.neighbors import NearestNeighbors
from aif360.algorithms.inprocessing.gerryfair.auditor import Auditor
from aif360.datasets import BinaryLabelDataset
from aif360.datasets.multiclass_label_dataset import MulticlassLabelDataset
from aif360.metrics import DatasetMetric, utils
from aif360.algorithms.inprocessing.gerryfair.clean import *


class BinaryLabelDatasetMetric(DatasetMetric):
    """Class for computing metrics based on a single
    :obj:`~aif360.datasets.BinaryLabelDataset`.
    """

    def __init__(self, dataset, unprivileged_groups=None, privileged_groups=None):
        """
        Args:
            dataset (BinaryLabelDataset): A BinaryLabelDataset.
            privileged_groups (list(dict)): Privileged groups. Format is a list
                of `dicts` where the keys are `protected_attribute_names` and
                the values are values in `protected_attributes`. Each `dict`
                element describes a single group. See examples for more details.
            unprivileged_groups (list(dict)): Unprivileged groups in the same
                format as `privileged_groups`.

        Raises:
            TypeError: `dataset` must be a
                :obj:`~aif360.datasets.BinaryLabelDataset` type.
        """
        if not isinstance(dataset, BinaryLabelDataset) and not isinstance(dataset, MulticlassLabelDataset) :
            raise TypeError("'dataset' should be a BinaryLabelDataset or a MulticlassLabelDataset")

        # sets self.dataset, self.unprivileged_groups, self.privileged_groups
        super(BinaryLabelDatasetMetric, self).__init__(dataset,
            unprivileged_groups=unprivileged_groups,
            privileged_groups=privileged_groups)

        if isinstance(dataset, MulticlassLabelDataset):
            fav_label_value = 1.
            unfav_label_value = 0.

            self.dataset = self.dataset.copy()
            # Find all labels which match any of the favorable labels
            fav_idx = np.logical_or.reduce(np.equal.outer(self.dataset.favorable_label, self.dataset.labels))
            # Replace labels with corresponding values
            self.dataset.labels = np.where(fav_idx, fav_label_value, unfav_label_value)

            self.dataset.favorable_label = float(fav_label_value)
            self.dataset.unfavorable_label = float(unfav_label_value)

    def num_positives(self, privileged=None):
        r"""Compute the number of positives,
        :math:`P = \sum_{i=1}^n \mathbb{1}[y_i = 1]`,
        optionally conditioned on protected attributes.

        Args:
            privileged (bool, optional): Boolean prescribing whether to
                condition this metric on the `privileged_groups`, if `True`, or
                the `unprivileged_groups`, if `False`. Defaults to `None`
                meaning this metric is computed over the entire dataset.

        Raises:
            AttributeError: `privileged_groups` or `unprivileged_groups` must be
                must be provided at initialization to condition on them.
        """
        condition = self._to_condition(privileged)
        return utils.compute_num_pos_neg(self.dataset.protected_attributes,
            self.dataset.labels, self.dataset.instance_weights,
            self.dataset.protected_attribute_names,
            self.dataset.favorable_label, condition=condition)

    def num_negatives(self, privileged=None):
        r"""Compute the number of negatives,
        :math:`N = \sum_{i=1}^n \mathbb{1}[y_i = 0]`, optionally conditioned on
        protected attributes.

        Args:
            privileged (bool, optional): Boolean prescribing whether to
                condition this metric on the `privileged_groups`, if `True`, or
                the `unprivileged_groups`, if `False`. Defaults to `None`
                meaning this metric is computed over the entire dataset.

        Raises:
            AttributeError: `privileged_groups` or `unprivileged_groups` must be
                must be provided at initialization to condition on them.
        """
        condition = self._to_condition(privileged)
        return utils.compute_num_pos_neg(self.dataset.protected_attributes,
            self.dataset.labels, self.dataset.instance_weights,
            self.dataset.protected_attribute_names,
            self.dataset.unfavorable_label, condition=condition)

    def base_rate(self, privileged=None):
        """Compute the base rate, :math:`Pr(Y = 1) = P/(P+N)`, optionally
        conditioned on protected attributes.

        Args:
            privileged (bool, optional): Boolean prescribing whether to
                condition this metric on the `privileged_groups`, if `True`, or
                the `unprivileged_groups`, if `False`. Defaults to `None`
                meaning this metric is computed over the entire dataset.
        Returns:
            float: Base rate (optionally conditioned).
        """
        return (self.num_positives(privileged=privileged)
              / self.num_instances(privileged=privileged))

    def disparate_impact(self):
        r"""
        .. math::
           \frac{Pr(Y = 1 | D = \text{unprivileged})}
           {Pr(Y = 1 | D = \text{privileged})}
        """
        return self.ratio(self.base_rate)

    def statistical_parity_difference(self):
        r"""
        .. math::
           Pr(Y = 1 | D = \text{unprivileged})
           - Pr(Y = 1 | D = \text{privileged})
        """
        return self.difference(self.base_rate)

    def consistency(self, n_neighbors=5):
        r"""Individual fairness metric from [1]_ that measures how similar the
        labels are for similar instances.

        .. math::
           1 - \frac{1}{n}\sum_{i=1}^n |\hat{y}_i -
           \frac{1}{\text{n_neighbors}} \sum_{j\in\mathcal{N}_{\text{n_neighbors}}(x_i)} \hat{y}_j|

        Args:
            n_neighbors (int, optional): Number of neighbors for the knn
                computation.

        References:
            .. [1] R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork,
               "Learning Fair Representations,"
               International Conference on Machine Learning, 2013.
        """

        X = self.dataset.features
        num_samples = X.shape[0]
        y = self.dataset.labels

        # learn a KNN on the features
        nbrs = NearestNeighbors(n_neighbors=n_neighbors, algorithm='ball_tree')
        nbrs.fit(X)
        _, indices = nbrs.kneighbors(X)

        # compute consistency score
        consistency = 0.0
        for i in range(num_samples):
            consistency += np.abs(y[i] - np.mean(y[indices[i]]))
        consistency = 1.0 - consistency/num_samples

        return consistency

    def _smoothed_base_rates(self, labels, concentration=1.0):
        """Dirichlet-smoothed base rates for each intersecting group in the
        dataset.
        """
        # Dirichlet smoothing parameters
        if concentration < 0:
            raise ValueError("Concentration parameter must be non-negative.")
        num_classes = 2  # binary label dataset
        dirichlet_alpha = concentration / num_classes

        # compute counts for all intersecting groups, e.g. black-women, white-man, etc
        intersect_groups = np.unique(self.dataset.protected_attributes, axis=0)
        num_intersects = len(intersect_groups)
        counts_pos = np.zeros(num_intersects)
        counts_total = np.zeros(num_intersects)
        for i in range(num_intersects):
            condition = [dict(zip(self.dataset.protected_attribute_names,
                                  intersect_groups[i]))]
            counts_total[i] = utils.compute_num_instances(
                    self.dataset.protected_attributes,
                    self.dataset.instance_weights,
                    self.dataset.protected_attribute_names, condition=condition)
            counts_pos[i] = utils.compute_num_pos_neg(
                    self.dataset.protected_attributes, labels,
                    self.dataset.instance_weights,
                    self.dataset.protected_attribute_names,
                    self.dataset.favorable_label, condition=condition)

        # probability of y given S (p(y=1|S))
        return (counts_pos + dirichlet_alpha) / (counts_total + concentration)

    def smoothed_empirical_differential_fairness(self, concentration=1.0):
        """Smoothed EDF from [#foulds18]_.

        Args:
            concentration (float, optional): Concentration parameter for
                Dirichlet smoothing. Must be non-negative.

        Examples:
            To use with non-binary protected attributes, the column must be
            converted to ordinal:

            >>> mapping = {'Black': 0, 'White': 1, 'Asian-Pac-Islander': 2,
            ... 'Amer-Indian-Eskimo': 3, 'Other': 4}
            >>> def map_race(df):
            ...     df['race-num'] = df.race.map(mapping)
            ...     return df
            ...
            >>> adult = AdultDataset(protected_attribute_names=['sex',
            ... 'race-num'], privileged_classes=[['Male'], [1]],
            ... categorical_features=['workclass', 'education',
            ... 'marital-status', 'occupation', 'relationship',
            ... 'native-country', 'race'], custom_preprocessing=map_race)
            >>> metric = BinaryLabelDatasetMetric(adult)
            >>> metric.smoothed_empirical_differential_fairness()
            1.7547611985549287

        References:
            .. [#foulds18] J. R. Foulds, R. Islam, K. N. Keya, and S. Pan,
               "An Intersectional Definition of Fairness," arXiv preprint
               arXiv:1807.08362, 2018.
        """
        sbr = self._smoothed_base_rates(self.dataset.labels, concentration)

        def pos_ratio(i, j):
            return abs(np.log(sbr[i]) - np.log(sbr[j]))

        def neg_ratio(i, j):
            return abs(np.log(1 - sbr[i]) - np.log(1 - sbr[j]))

        # overall DF of the mechanism
        return max(max(pos_ratio(i, j), neg_ratio(i, j))
                   for i in range(len(sbr)) for j in range(len(sbr)) if i != j)

    # ============================== ALIASES ===================================
    def mean_difference(self):
        """Alias of :meth:`statistical_parity_difference`."""
        return self.statistical_parity_difference()


    def rich_subgroup(self, predictions, fairness_def='FP'):
        """Audit dataset with respect to rich subgroups defined by linear thresholds of sensitive attributes

            Args: fairness_def is 'FP' or 'FN' for rich subgroup wrt to false positive or false negative rate.
                  predictions is a hashable tuple of predictions. Typically the labels attribute of a GerryFairClassifier

            Returns: the gamma disparity with respect to the fairness_def.

            Examples: see examples/gerry_plots.ipynb
        """

        auditor = Auditor(self.dataset, fairness_def)

        # make hashable type
        y = array_to_tuple(self.dataset.labels)
        predictions = array_to_tuple(predictions)

        # returns mean(predictions | y = 0) if 'FP' 1-mean(predictions | y = 1) if FN
        metric_baseline = auditor.get_baseline(y, predictions)

        # return the group with the largest disparity
        group = auditor.get_group(predictions, metric_baseline)

        return group.weighted_disparity