Spaces:
Runtime error
Runtime error
File size: 39,702 Bytes
d2a8669 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 |
from itertools import product
import numpy as np
from aif360.metrics import BinaryLabelDatasetMetric, utils
from aif360.datasets import BinaryLabelDataset
from aif360.datasets.multiclass_label_dataset import MulticlassLabelDataset
class ClassificationMetric(BinaryLabelDatasetMetric):
"""Class for computing metrics based on two BinaryLabelDatasets.
The first dataset is the original one and the second is the output of the
classification transformer (or similar).
"""
def __init__(self, dataset, classified_dataset,
unprivileged_groups=None, privileged_groups=None):
"""
Args:
dataset (BinaryLabelDataset): Dataset containing ground-truth
labels.
classified_dataset (BinaryLabelDataset): Dataset containing
predictions.
privileged_groups (list(dict)): Privileged groups. Format is a list
of `dicts` where the keys are `protected_attribute_names` and
the values are values in `protected_attributes`. Each `dict`
element describes a single group. See examples for more details.
unprivileged_groups (list(dict)): Unprivileged groups in the same
format as `privileged_groups`.
Raises:
TypeError: `dataset` and `classified_dataset` must be
:obj:`~aif360.datasets.BinaryLabelDataset` types.
"""
if not isinstance(dataset, BinaryLabelDataset) and not isinstance(dataset, MulticlassLabelDataset) :
raise TypeError("'dataset' should be a BinaryLabelDataset or a MulticlassLabelDataset")
# sets self.dataset, self.unprivileged_groups, self.privileged_groups
super(ClassificationMetric, self).__init__(dataset,
unprivileged_groups=unprivileged_groups,
privileged_groups=privileged_groups)
if isinstance(classified_dataset, BinaryLabelDataset) or isinstance(classified_dataset, MulticlassLabelDataset) :
self.classified_dataset = classified_dataset
else:
raise TypeError("'classified_dataset' should be a "
"BinaryLabelDataset or a MulticlassLabelDataset.")
if isinstance(self.classified_dataset, MulticlassLabelDataset):
fav_label_value = 1.
unfav_label_value = 0.
self.classified_dataset = self.classified_dataset.copy()
# Find all the labels which match any of the favorable labels
fav_idx = np.logical_or.reduce(np.equal.outer(self.classified_dataset.favorable_label, self.classified_dataset.labels))
# Replace labels with corresponding values
self.classified_dataset.labels = np.where(fav_idx, fav_label_value, unfav_label_value)
self.classified_dataset.favorable_label = float(fav_label_value)
self.classified_dataset.unfavorable_label = float(unfav_label_value)
# Verify if everything except the predictions and metadata are the same
# for the two datasets
with self.dataset.temporarily_ignore('labels', 'scores'):
if self.dataset != self.classified_dataset:
raise ValueError("The two datasets are expected to differ only "
"in 'labels' or 'scores'.")
def binary_confusion_matrix(self, privileged=None):
"""Compute the number of true/false positives/negatives, optionally
conditioned on protected attributes.
Args:
privileged (bool, optional): Boolean prescribing whether to
condition this metric on the `privileged_groups`, if `True`, or
the `unprivileged_groups`, if `False`. Defaults to `None`
meaning this metric is computed over the entire dataset.
Returns:
dict: Number of true positives, false positives, true negatives,
false negatives (optionally conditioned).
"""
condition = self._to_condition(privileged)
return utils.compute_num_TF_PN(self.dataset.protected_attributes,
self.dataset.labels, self.classified_dataset.labels,
self.dataset.instance_weights,
self.dataset.protected_attribute_names,
self.dataset.favorable_label, self.dataset.unfavorable_label,
condition=condition)
def generalized_binary_confusion_matrix(self, privileged=None):
"""Compute the number of generalized true/false positives/negatives,
optionally conditioned on protected attributes. Generalized counts are
based on scores and not on the hard predictions.
Args:
privileged (bool, optional): Boolean prescribing whether to
condition this metric on the `privileged_groups`, if `True`, or
the `unprivileged_groups`, if `False`. Defaults to `None`
meaning this metric is computed over the entire dataset.
Returns:
dict: Number of generalized true positives, generalized false
positives, generalized true negatives, generalized false negatives
(optionally conditioned).
"""
condition = self._to_condition(privileged)
return utils.compute_num_gen_TF_PN(self.dataset.protected_attributes,
self.dataset.labels, self.classified_dataset.scores,
self.dataset.instance_weights,
self.dataset.protected_attribute_names,
self.dataset.favorable_label, self.dataset.unfavorable_label,
condition=condition)
def num_true_positives(self, privileged=None):
r"""Return the number of instances in the dataset where both the
predicted and true labels are 'favorable',
:math:`TP = \sum_{i=1}^n \mathbb{1}[y_i = \text{favorable}]\mathbb{1}[\hat{y}_i = \text{favorable}]`,
optionally conditioned on protected attributes.
Args:
privileged (bool, optional): Boolean prescribing whether to
condition this metric on the `privileged_groups`, if `True`, or
the `unprivileged_groups`, if `False`. Defaults to `None`
meaning this metric is computed over the entire dataset.
Raises:
AttributeError: `privileged_groups` or `unprivileged_groups`
must be provided at initialization to condition on them.
"""
return self.binary_confusion_matrix(privileged=privileged)['TP']
def num_false_positives(self, privileged=None):
r""":math:`FP = \sum_{i=1}^n \mathbb{1}[y_i = \text{unfavorable}]\mathbb{1}[\hat{y}_i = \text{favorable}]`
Args:
privileged (bool, optional): Boolean prescribing whether to
condition this metric on the `privileged_groups`, if `True`, or
the `unprivileged_groups`, if `False`. Defaults to `None`
meaning this metric is computed over the entire dataset.
Raises:
AttributeError: `privileged_groups` or `unprivileged_groups`
must be provided at initialization to condition on them.
"""
return self.binary_confusion_matrix(privileged=privileged)['FP']
def num_false_negatives(self, privileged=None):
r""":math:`FN = \sum_{i=1}^n \mathbb{1}[y_i = \text{favorable}]\mathbb{1}[\hat{y}_i = \text{unfavorable}]`
Args:
privileged (bool, optional): Boolean prescribing whether to
condition this metric on the `privileged_groups`, if `True`, or
the `unprivileged_groups`, if `False`. Defaults to `None`
meaning this metric is computed over the entire dataset.
Raises:
AttributeError: `privileged_groups` or `unprivileged_groups`
must be provided at initialization to condition on them.
"""
return self.binary_confusion_matrix(privileged=privileged)['FN']
def num_true_negatives(self, privileged=None):
r""":math:`TN = \sum_{i=1}^n \mathbb{1}[y_i = \text{unfavorable}]\mathbb{1}[\hat{y}_i = \text{unfavorable}]`
Args:
privileged (bool, optional): Boolean prescribing whether to
condition this metric on the `privileged_groups`, if `True`, or
the `unprivileged_groups`, if `False`. Defaults to `None`
meaning this metric is computed over the entire dataset.
Raises:
AttributeError: `privileged_groups` or `unprivileged_groups`
must be provided at initialization to condition on them.
"""
return self.binary_confusion_matrix(privileged=privileged)['TN']
def num_generalized_true_positives(self, privileged=None):
"""Return the generalized number of true positives, :math:`GTP`, the
weighted sum of predicted scores where true labels are 'favorable',
optionally conditioned on protected attributes.
Args:
privileged (bool, optional): Boolean prescribing whether to
condition this metric on the `privileged_groups`, if `True`, or
the `unprivileged_groups`, if `False`. Defaults to `None`
meaning this metric is computed over the entire dataset.
Raises:
AttributeError: `privileged_groups` or `unprivileged_groups`
must be provided at initialization to condition on them.
"""
return self.generalized_binary_confusion_matrix(
privileged=privileged)['GTP']
def num_generalized_false_positives(self, privileged=None):
"""Return the generalized number of false positives, :math:`GFP`, the
weighted sum of predicted scores where true labels are 'unfavorable',
optionally conditioned on protected attributes.
Args:
privileged (bool, optional): Boolean prescribing whether to
condition this metric on the `privileged_groups`, if `True`, or
the `unprivileged_groups`, if `False`. Defaults to `None`
meaning this metric is computed over the entire dataset.
Raises:
AttributeError: `privileged_groups` or `unprivileged_groups` must be
must be provided at initialization to condition on them.
"""
return self.generalized_binary_confusion_matrix(
privileged=privileged)['GFP']
def num_generalized_false_negatives(self, privileged=None):
"""Return the generalized number of false negatives, :math:`GFN`, the
weighted sum of 1 - predicted scores where true labels are 'favorable',
optionally conditioned on protected attributes.
Args:
privileged (bool, optional): Boolean prescribing whether to
condition this metric on the `privileged_groups`, if `True`, or
the `unprivileged_groups`, if `False`. Defaults to `None`
meaning this metric is computed over the entire dataset.
Raises:
AttributeError: `privileged_groups` or `unprivileged_groups`
must be provided at initialization to condition on them.
"""
return self.generalized_binary_confusion_matrix(
privileged=privileged)['GFN']
def num_generalized_true_negatives(self, privileged=None):
"""Return the generalized number of true negatives, :math:`GTN`, the
weighted sum of 1 - predicted scores where true labels are 'unfavorable',
optionally conditioned on protected attributes.
Args:
privileged (bool, optional): Boolean prescribing whether to
condition this metric on the `privileged_groups`, if `True`, or
the `unprivileged_groups`, if `False`. Defaults to `None`
meaning this metric is computed over the entire dataset.
Raises:
AttributeError: `privileged_groups` or `unprivileged_groups`
must be provided at initialization to condition on them.
"""
return self.generalized_binary_confusion_matrix(
privileged=privileged)['GTN']
def performance_measures(self, privileged=None):
"""Compute various performance measures on the dataset, optionally
conditioned on protected attributes.
Args:
privileged (bool, optional): Boolean prescribing whether to
condition this metric on the `privileged_groups`, if `True`, or
the `unprivileged_groups`, if `False`. Defaults to `None`
meaning this metric is computed over the entire dataset.
Returns:
dict: True positive rate, true negative rate, false positive rate,
false negative rate, positive predictive value, negative predictive
value, false discover rate, false omission rate, and accuracy
(optionally conditioned).
"""
TP = self.num_true_positives(privileged=privileged)
FP = self.num_false_positives(privileged=privileged)
FN = self.num_false_negatives(privileged=privileged)
TN = self.num_true_negatives(privileged=privileged)
GTP = self.num_generalized_true_positives(privileged=privileged)
GFP = self.num_generalized_false_positives(privileged=privileged)
GFN = self.num_generalized_false_negatives(privileged=privileged)
GTN = self.num_generalized_true_negatives(privileged=privileged)
P = self.num_positives(privileged=privileged)
N = self.num_negatives(privileged=privileged)
return dict(
TPR=TP / P, TNR=TN / N, FPR=FP / N, FNR=FN / P,
GTPR=GTP / P, GTNR=GTN / N, GFPR=GFP / N, GFNR=GFN / P,
PPV=TP / (TP+FP) if (TP+FP) > 0.0 else np.float64(0.0),
NPV=TN / (TN+FN) if (TN+FN) > 0.0 else np.float64(0.0),
FDR=FP / (FP+TP) if (FP+TP) > 0.0 else np.float64(0.0),
FOR=FN / (FN+TN) if (FN+TN) > 0.0 else np.float64(0.0),
ACC=(TP+TN) / (P+N) if (P+N) > 0.0 else np.float64(0.0)
)
def true_positive_rate(self, privileged=None):
"""Return the ratio of true positives to positive examples in the
dataset, :math:`TPR = TP/P`, optionally conditioned on protected
attributes.
Args:
privileged (bool, optional): Boolean prescribing whether to
condition this metric on the `privileged_groups`, if `True`, or
the `unprivileged_groups`, if `False`. Defaults to `None`
meaning this metric is computed over the entire dataset.
Raises:
AttributeError: `privileged_groups` or `unprivileged_groups`
must be provided at initialization to condition on them.
"""
return self.performance_measures(privileged=privileged)['TPR']
def false_positive_rate(self, privileged=None):
""":math:`FPR = FP/N`
Args:
privileged (bool, optional): Boolean prescribing whether to
condition this metric on the `privileged_groups`, if `True`, or
the `unprivileged_groups`, if `False`. Defaults to `None`
meaning this metric is computed over the entire dataset.
Raises:
AttributeError: `privileged_groups` or `unprivileged_groups`
must be provided at initialization to condition on them.
"""
return self.performance_measures(privileged=privileged)['FPR']
def false_negative_rate(self, privileged=None):
""":math:`FNR = FN/P`
Args:
privileged (bool, optional): Boolean prescribing whether to
condition this metric on the `privileged_groups`, if `True`, or
the `unprivileged_groups`, if `False`. Defaults to `None`
meaning this metric is computed over the entire dataset.
Raises:
AttributeError: `privileged_groups` or `unprivileged_groups`
must be provided at initialization to condition on them.
"""
return self.performance_measures(privileged=privileged)['FNR']
def true_negative_rate(self, privileged=None):
""":math:`TNR = TN/N`
Args:
privileged (bool, optional): Boolean prescribing whether to
condition this metric on the `privileged_groups`, if `True`, or
the `unprivileged_groups`, if `False`. Defaults to `None`
meaning this metric is computed over the entire dataset.
Raises:
AttributeError: `privileged_groups` or `unprivileged_groups`
must be provided at initialization to condition on them.
"""
return self.performance_measures(privileged=privileged)['TNR']
def generalized_true_positive_rate(self, privileged=None):
"""Return the ratio of generalized true positives to positive examples
in the dataset, :math:`GTPR = GTP/P`, optionally conditioned on
protected attributes.
Args:
privileged (bool, optional): Boolean prescribing whether to
condition this metric on the `privileged_groups`, if `True`, or
the `unprivileged_groups`, if `False`. Defaults to `None`
meaning this metric is computed over the entire dataset.
Raises:
AttributeError: `privileged_groups` or `unprivileged_groups`
must be provided at initialization to condition on them.
"""
return self.performance_measures(privileged=privileged)['GTPR']
def generalized_false_positive_rate(self, privileged=None):
""":math:`GFPR = GFP/N`
Args:
privileged (bool, optional): Boolean prescribing whether to
condition this metric on the `privileged_groups`, if `True`, or
the `unprivileged_groups`, if `False`. Defaults to `None`
meaning this metric is computed over the entire dataset.
Raises:
AttributeError: `privileged_groups` or `unprivileged_groups`
must be provided at initialization to condition on them.
"""
return self.performance_measures(privileged=privileged)['GFPR']
def generalized_false_negative_rate(self, privileged=None):
""":math:`GFNR = GFN/P`
Args:
privileged (bool, optional): Boolean prescribing whether to
condition this metric on the `privileged_groups`, if `True`, or
the `unprivileged_groups`, if `False`. Defaults to `None`
meaning this metric is computed over the entire dataset.
Raises:
AttributeError: `privileged_groups` or `unprivileged_groups`
must be provided at initialization to condition on them.
"""
return self.performance_measures(privileged=privileged)['GFNR']
def generalized_true_negative_rate(self, privileged=None):
""":math:`GTNR = GTN/N`
Args:
privileged (bool, optional): Boolean prescribing whether to
condition this metric on the `privileged_groups`, if `True`, or
the `unprivileged_groups`, if `False`. Defaults to `None`
meaning this metric is computed over the entire dataset.
Raises:
AttributeError: `privileged_groups` or `unprivileged_groups`
must be provided at initialization to condition on them.
"""
return self.performance_measures(privileged=privileged)['GTNR']
def positive_predictive_value(self, privileged=None):
""":math:`PPV = TP/(TP + FP)`
Args:
privileged (bool, optional): Boolean prescribing whether to
condition this metric on the `privileged_groups`, if `True`, or
the `unprivileged_groups`, if `False`. Defaults to `None`
meaning this metric is computed over the entire dataset.
Raises:
AttributeError: `privileged_groups` or `unprivileged_groups`
must be provided at initialization to condition on them.
"""
return self.performance_measures(privileged=privileged)['PPV']
def false_discovery_rate(self, privileged=None):
""":math:`FDR = FP/(TP + FP)`
Args:
privileged (bool, optional): Boolean prescribing whether to
condition this metric on the `privileged_groups`, if `True`, or
the `unprivileged_groups`, if `False`. Defaults to `None`
meaning this metric is computed over the entire dataset.
Raises:
AttributeError: `privileged_groups` or `unprivileged_groups`
must be provided at initialization to condition on them.
"""
return self.performance_measures(privileged=privileged)['FDR']
def false_omission_rate(self, privileged=None):
""":math:`FOR = FN/(TN + FN)`
Args:
privileged (bool, optional): Boolean prescribing whether to
condition this metric on the `privileged_groups`, if `True`, or
the `unprivileged_groups`, if `False`. Defaults to `None`
meaning this metric is computed over the entire dataset.
Raises:
AttributeError: `privileged_groups` or `unprivileged_groups`
must be provided at initialization to condition on them.
"""
return self.performance_measures(privileged=privileged)['FOR']
def negative_predictive_value(self, privileged=None):
""":math:`NPV = TN/(TN + FN)`
Args:
privileged (bool, optional): Boolean prescribing whether to
condition this metric on the `privileged_groups`, if `True`, or
the `unprivileged_groups`, if `False`. Defaults to `None`
meaning this metric is computed over the entire dataset.
Raises:
AttributeError: `privileged_groups` or `unprivileged_groups`
must be provided at initialization to condition on them.
"""
return self.performance_measures(privileged=privileged)['NPV']
def accuracy(self, privileged=None):
""":math:`ACC = (TP + TN)/(P + N)`.
Args:
privileged (bool, optional): Boolean prescribing whether to
condition this metric on the `privileged_groups`, if `True`, or
the `unprivileged_groups`, if `False`. Defaults to `None`
meaning this metric is computed over the entire dataset.
Raises:
AttributeError: `privileged_groups` or `unprivileged_groups`
must be provided at initialization to condition on them.
"""
return self.performance_measures(privileged=privileged)['ACC']
def error_rate(self, privileged=None):
""":math:`ERR = (FP + FN)/(P + N)`
Args:
privileged (bool, optional): Boolean prescribing whether to
condition this metric on the `privileged_groups`, if `True`, or
the `unprivileged_groups`, if `False`. Defaults to `None`
meaning this metric is computed over the entire dataset.
Raises:
AttributeError: `privileged_groups` or `unprivileged_groups`
must be provided at initialization to condition on them.
"""
return 1. - self.accuracy(privileged=privileged)
def true_positive_rate_difference(self):
r""":math:`TPR_{D = \text{unprivileged}} - TPR_{D = \text{privileged}}`
"""
return self.difference(self.true_positive_rate)
def false_positive_rate_difference(self):
r""":math:`FPR_{D = \text{unprivileged}} - FPR_{D = \text{privileged}}`
"""
return self.difference(self.false_positive_rate)
def false_negative_rate_difference(self):
r""":math:`FNR_{D = \text{unprivileged}} - FNR_{D = \text{privileged}}`
"""
return self.difference(self.false_negative_rate)
def false_omission_rate_difference(self):
r""":math:`FOR_{D = \text{unprivileged}} - FOR_{D = \text{privileged}}`
"""
return self.difference(self.false_omission_rate)
def false_discovery_rate_difference(self):
r""":math:`FDR_{D = \text{unprivileged}} - FDR_{D = \text{privileged}}`
"""
return self.difference(self.false_discovery_rate)
def false_positive_rate_ratio(self):
r""":math:`\frac{FPR_{D = \text{unprivileged}}}{FPR_{D = \text{privileged}}}`
"""
return self.ratio(self.false_positive_rate)
def false_negative_rate_ratio(self):
r""":math:`\frac{FNR_{D = \text{unprivileged}}}{FNR_{D = \text{privileged}}}`
"""
return self.ratio(self.false_negative_rate)
def false_omission_rate_ratio(self):
r""":math:`\frac{FOR_{D = \text{unprivileged}}}{FOR_{D = \text{privileged}}}`
"""
return self.ratio(self.false_omission_rate)
def false_discovery_rate_ratio(self):
r""":math:`\frac{FDR_{D = \text{unprivileged}}}{FDR_{D = \text{privileged}}}`
"""
return self.ratio(self.false_discovery_rate)
def average_odds_difference(self):
r"""Average of difference in FPR and TPR for unprivileged and privileged
groups:
.. math::
\tfrac{1}{2}\left[(FPR_{D = \text{unprivileged}} - FPR_{D = \text{privileged}})
+ (TPR_{D = \text{unprivileged}} - TPR_{D = \text{privileged}}))\right]
A value of 0 indicates equality of odds.
"""
return 0.5 * (self.difference(self.false_positive_rate)
+ self.difference(self.true_positive_rate))
def average_abs_odds_difference(self):
r"""Average of absolute difference in FPR and TPR for unprivileged and
privileged groups:
.. math::
\tfrac{1}{2}\left[|FPR_{D = \text{unprivileged}} - FPR_{D = \text{privileged}}|
+ |TPR_{D = \text{unprivileged}} - TPR_{D = \text{privileged}}|\right]
A value of 0 indicates equality of odds.
"""
return 0.5 * (np.abs(self.difference(self.false_positive_rate))
+ np.abs(self.difference(self.true_positive_rate)))
def average_predictive_value_difference(self):
r"""Average of difference in PPV and FOR for unprivileged and privileged
groups:
.. math::
\tfrac{1}{2}\left[(PPV_{D = \text{unprivileged}} - PPV_{D = \text{privileged}})
+ (FOR_{D = \text{unprivileged}} - FOR_{D = \text{privileged}}))\right]
A value of 0 indicates equality of chance of success.
"""
return 0.5 * (self.difference(self.positive_predictive_value)
+ self.difference(self.false_omission_rate))
def error_rate_difference(self):
r"""Difference in error rates for unprivileged and privileged groups,
:math:`ERR_{D = \text{unprivileged}} - ERR_{D = \text{privileged}}`.
"""
return self.difference(self.error_rate)
def error_rate_ratio(self):
r"""Ratio of error rates for unprivileged and privileged groups,
:math:`\frac{ERR_{D = \text{unprivileged}}}{ERR_{D = \text{privileged}}}`.
"""
return self.ratio(self.error_rate)
def num_pred_positives(self, privileged=None):
r""":math:`\sum_{i=1}^n \mathbb{1}[\hat{y}_i = \text{favorable}]`
Args:
privileged (bool, optional): Boolean prescribing whether to
condition this metric on the `privileged_groups`, if `True`, or
the `unprivileged_groups`, if `False`. Defaults to `None`
meaning this metric is computed over the entire dataset.
Raises:
AttributeError: `privileged_groups` or `unprivileged_groups`
must be provided at initialization to condition on them.
"""
condition = self._to_condition(privileged)
return utils.compute_num_pos_neg(
self.classified_dataset.protected_attributes,
self.classified_dataset.labels,
self.classified_dataset.instance_weights,
self.classified_dataset.protected_attribute_names,
self.classified_dataset.favorable_label,
condition=condition)
def num_pred_negatives(self, privileged=None):
r""":math:`\sum_{i=1}^n \mathbb{1}[\hat{y}_i = \text{unfavorable}]`
Args:
privileged (bool, optional): Boolean prescribing whether to
condition this metric on the `privileged_groups`, if `True`, or
the `unprivileged_groups`, if `False`. Defaults to `None`
meaning this metric is computed over the entire dataset.
Raises:
AttributeError: `privileged_groups` or `unprivileged_groups`
must be provided at initialization to condition on them.
"""
condition = self._to_condition(privileged)
return utils.compute_num_pos_neg(
self.classified_dataset.protected_attributes,
self.classified_dataset.labels,
self.classified_dataset.instance_weights,
self.classified_dataset.protected_attribute_names,
self.classified_dataset.unfavorable_label,
condition=condition)
def selection_rate(self, privileged=None):
r""":math:`Pr(\hat{Y} = \text{favorable})`
Args:
privileged (bool, optional): Boolean prescribing whether to
condition this metric on the `privileged_groups`, if `True`, or
the `unprivileged_groups`, if `False`. Defaults to `None`
meaning this metric is computed over the entire dataset.
Raises:
AttributeError: `privileged_groups` or `unprivileged_groups`
must be provided at initialization to condition on them.
"""
return (self.num_pred_positives(privileged=privileged)
/ self.num_instances(privileged=privileged))
def disparate_impact(self):
r"""
.. math::
\frac{Pr(\hat{Y} = 1 | D = \text{unprivileged})}
{Pr(\hat{Y} = 1 | D = \text{privileged})}
"""
return self.ratio(self.selection_rate)
def statistical_parity_difference(self):
r"""
.. math::
Pr(\hat{Y} = 1 | D = \text{unprivileged})
- Pr(\hat{Y} = 1 | D = \text{privileged})
"""
return self.difference(self.selection_rate)
def generalized_entropy_index(self, alpha=2):
r"""Generalized entropy index is proposed as a unified individual and
group fairness measure in [3]_. With :math:`b_i = \hat{y}_i - y_i + 1`:
.. math::
\mathcal{E}(\alpha) = \begin{cases}
\frac{1}{n \alpha (\alpha-1)}\sum_{i=1}^n\left[\left(\frac{b_i}{\mu}\right)^\alpha - 1\right],& \alpha \ne 0, 1,\\
\frac{1}{n}\sum_{i=1}^n\frac{b_{i}}{\mu}\ln\frac{b_{i}}{\mu},& \alpha=1,\\
-\frac{1}{n}\sum_{i=1}^n\ln\frac{b_{i}}{\mu},& \alpha=0.
\end{cases}
Args:
alpha (int): Parameter that regulates the weight given to distances
between values at different parts of the distribution.
References:
.. [3] T. Speicher, H. Heidari, N. Grgic-Hlaca, K. P. Gummadi, A. Singla, A. Weller, and M. B. Zafar,
"A Unified Approach to Quantifying Algorithmic Unfairness: Measuring Individual and Group Unfairness via Inequality Indices,"
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2018.
"""
y_pred = self.classified_dataset.labels.ravel()
y_true = self.dataset.labels.ravel()
y_pred = (y_pred == self.classified_dataset.favorable_label).astype(
np.float64)
y_true = (y_true == self.dataset.favorable_label).astype(np.float64)
b = 1 + y_pred - y_true
if alpha == 1:
# moving the b inside the log allows for 0 values
return np.mean(np.log((b / np.mean(b))**b) / np.mean(b))
elif alpha == 0:
return -np.mean(np.log(b / np.mean(b)) / np.mean(b))
else:
return np.mean((b / np.mean(b))**alpha - 1) / (alpha * (alpha - 1))
def _between_group_generalized_entropy_index(self, groups, alpha=2):
r"""Between-group generalized entropy index is proposed as a group
fairness measure in [2]_ and is one of two terms that the generalized
entropy index decomposes to.
Args:
groups (list): A list of groups over which to calculate this metric.
Groups should be disjoint. By default, this will use the
`privileged_groups` and `unprivileged_groups` as the only two
groups.
alpha (int): See :meth:`generalized_entropy_index`.
References:
.. [2] T. Speicher, H. Heidari, N. Grgic-Hlaca, K. P. Gummadi, A. Singla, A. Weller, and M. B. Zafar,
"A Unified Approach to Quantifying Algorithmic Unfairness: Measuring Individual and Group Unfairness via Inequality Indices,"
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2018.
"""
b = np.zeros(self.dataset.labels.size, dtype=np.float64)
for group in groups:
classified_group = utils.compute_boolean_conditioning_vector(
self.classified_dataset.protected_attributes,
self.classified_dataset.protected_attribute_names,
condition=group)
true_group = utils.compute_boolean_conditioning_vector(
self.dataset.protected_attributes,
self.dataset.protected_attribute_names,
condition=group)
# ignore if there are no members of this group present
if not np.any(true_group):
continue
y_pred = self.classified_dataset.labels[classified_group].ravel()
y_true = self.dataset.labels[true_group].ravel()
y_pred = (y_pred == self.classified_dataset.favorable_label).astype(
np.float64)
y_true = (y_true == self.dataset.favorable_label).astype(np.float64)
b[true_group] = np.mean(1 + y_pred - y_true)
if alpha == 1:
return np.mean(np.log((b / np.mean(b))**b) / np.mean(b))
elif alpha == 0:
return -np.mean(np.log(b / np.mean(b)) / np.mean(b))
else:
return np.mean((b / np.mean(b))**alpha - 1) / (alpha * (alpha - 1))
def between_all_groups_generalized_entropy_index(self, alpha=2):
"""Between-group generalized entropy index that uses all combinations of
groups based on `self.dataset.protected_attributes`. See
:meth:`_between_group_generalized_entropy_index`.
Args:
alpha (int): See :meth:`generalized_entropy_index`.
"""
all_values = list(map(np.concatenate, zip(
self.dataset.privileged_protected_attributes,
self.dataset.unprivileged_protected_attributes)))
groups = [[dict(zip(self.dataset.protected_attribute_names, vals))]
for vals in product(*all_values)]
return self._between_group_generalized_entropy_index(groups=groups,
alpha=alpha)
def between_group_generalized_entropy_index(self, alpha=2):
"""Between-group generalized entropy index that uses
`self.privileged_groups` and `self.unprivileged_groups` as the only two
groups. See :meth:`_between_group_generalized_entropy_index`.
Args:
alpha (int): See :meth:`generalized_entropy_index`.
"""
groups = [self._to_condition(False), self._to_condition(True)]
return self._between_group_generalized_entropy_index(groups=groups,
alpha=alpha)
def theil_index(self):
r"""The Theil index is the :meth:`generalized_entropy_index` with
:math:`\alpha = 1`.
"""
return self.generalized_entropy_index(alpha=1)
def coefficient_of_variation(self):
r"""The coefficient of variation is the square root of two times the
:meth:`generalized_entropy_index` with :math:`\alpha = 2`.
"""
return np.sqrt(2*self.generalized_entropy_index(alpha=2))
def between_group_theil_index(self):
r"""The between-group Theil index is the
:meth:`between_group_generalized_entropy_index` with :math:`\alpha = 1`.
"""
return self.between_group_generalized_entropy_index(alpha=1)
def between_group_coefficient_of_variation(self):
r"""The between-group coefficient of variation is the square
root of two times the :meth:`between_group_generalized_entropy_index` with
:math:`\alpha = 2`.
"""
return np.sqrt(2*self.between_group_generalized_entropy_index(alpha=2))
def between_all_groups_theil_index(self):
r"""The between-group Theil index is the
:meth:`between_all_groups_generalized_entropy_index` with
:math:`\alpha = 1`.
"""
return self.between_all_groups_generalized_entropy_index(alpha=1)
def between_all_groups_coefficient_of_variation(self):
r"""The between-group coefficient of variation is the square
root of two times the :meth:`between_all_groups_generalized_entropy_index` with
:math:`\alpha = 2`.
"""
return np.sqrt(2*self.between_all_groups_generalized_entropy_index(
alpha=2))
def differential_fairness_bias_amplification(self, concentration=1.0):
"""Bias amplification is the difference in smoothed EDF between the
classifier and the original dataset. Positive values mean the bias
increased due to the classifier.
Args:
concentration (float, optional): Concentration parameter for
Dirichlet smoothing. Must be non-negative.
"""
ssr = self._smoothed_base_rates(self.classified_dataset.labels,
concentration)
def pos_ratio(i, j):
return abs(np.log(ssr[i]) - np.log(ssr[j]))
def neg_ratio(i, j):
return abs(np.log(1 - ssr[i]) - np.log(1 - ssr[j]))
edf_clf = max(max(pos_ratio(i, j), neg_ratio(i, j))
for i in range(len(ssr)) for j in range(len(ssr)) if i != j)
edf_data = self.smoothed_empirical_differential_fairness(concentration)
return edf_clf - edf_data
# ============================== ALIASES ===================================
def equal_opportunity_difference(self):
"""Alias of :meth:`true_positive_rate_difference`."""
return self.true_positive_rate_difference()
def power(self, privileged=None):
"""Alias of :meth:`num_true_positives`."""
return self.num_true_positives(privileged=privileged)
def precision(self, privileged=None):
"""Alias of :meth:`positive_predictive_value`."""
return self.positive_predictive_value(privileged=privileged)
def recall(self, privileged=None):
"""Alias of :meth:`true_positive_rate`."""
return self.true_positive_rate(privileged=privileged)
def sensitivity(self, privileged=None):
"""Alias of :meth:`true_positive_rate`."""
return self.true_positive_rate(privileged=privileged)
def specificity(self, privileged=None):
"""Alias of :meth:`true_negative_rate`."""
return self.true_negative_rate(privileged=privileged)
|