File size: 9,896 Bytes
d2a8669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
import os

import pandas as pd
from sklearn.datasets import fetch_openml

from aif360.sklearn.datasets.utils import standardize_dataset


# cache location
DATA_HOME_DEFAULT = os.path.join(os.path.dirname(os.path.abspath(__file__)),
                                 '..', 'data', 'raw')

def fetch_adult(subset='all', *, data_home=None, cache=True, binary_race=True,
                usecols=None, dropcols=None, numeric_only=False, dropna=True):
    """Load the Adult Census Income Dataset.

    Binarizes 'race' to 'White' (privileged) or 'Non-white' (unprivileged). The
    other protected attribute is 'sex' ('Male' is privileged and 'Female' is
    unprivileged). The outcome variable is 'annual-income': '>50K' (favorable)
    or '<=50K' (unfavorable).

    Note:
        By default, the data is downloaded from OpenML. See the `adult
        <https://www.openml.org/d/1590>`_ page for details.

    Args:
        subset ({'train', 'test', or 'all'}, optional): Select the dataset to
            load: 'train' for the training set, 'test' for the test set, 'all'
            for both.
        data_home (string, optional): Specify another download and cache folder
            for the datasets. By default all AIF360 datasets are stored in
            'aif360/sklearn/data/raw' subfolders.
        cache (bool): Whether to cache downloaded datasets.
        binary_race (bool, optional): Group all non-white races together. Only
            the protected attribute is affected, not the feature column, unless
            numeric_only is ``True``.
        usecols (list-like, optional): Feature column(s) to keep. All others are
            dropped.
        dropcols (list-like, optional): Feature column(s) to drop.
        numeric_only (bool): Drop all non-numeric feature columns.
        dropna (bool): Drop rows with NAs.

    Returns:
        namedtuple: Tuple containing X, y, and sample_weights for the Adult
        dataset accessible by index or name.

    See also:
        :func:`sklearn.datasets.fetch_openml`

    Examples:
        >>> adult = fetch_adult()
        >>> adult.X.shape
        (45222, 13)

        >>> adult_num = fetch_adult(numeric_only=True)
        >>> adult_num.X.shape
        (48842, 5)
    """
    if subset not in {'train', 'test', 'all'}:
        raise ValueError("subset must be either 'train', 'test', or 'all'; "
                         "cannot be {}".format(subset))
    df = fetch_openml(data_id=1590, data_home=data_home or DATA_HOME_DEFAULT,
                      cache=cache, as_frame=True).frame
    if subset == 'train':
        df = df.iloc[16281:]
    elif subset == 'test':
        df = df.iloc[:16281]

    df = df.rename(columns={'class': 'annual-income'})  # more descriptive name
    df['annual-income'] = df['annual-income'].cat.reorder_categories(
        ['<=50K', '>50K'], ordered=True)

    # binarize protected attributes
    race = df.race.cat.set_categories(['Non-white', 'White'], ordered=True)
    race = race.fillna('Non-white') if binary_race else 'race'
    if numeric_only and binary_race:
        df.race = race
        race = 'race'
    df.sex = df.sex.cat.reorder_categories(['Female', 'Male'], ordered=True)

    return standardize_dataset(df, prot_attr=[race, 'sex'],
                               target='annual-income', sample_weight='fnlwgt',
                               usecols=usecols, dropcols=dropcols,
                               numeric_only=numeric_only, dropna=dropna)

def fetch_german(*, data_home=None, cache=True, binary_age=True, usecols=None,
                 dropcols=None, numeric_only=False, dropna=True):
    """Load the German Credit Dataset.

    Protected attributes are 'sex' ('male' is privileged and 'female' is
    unprivileged) and 'age' (binarized by default as recommended by
    [#kamiran09]_: age >= 25 is considered privileged and age < 25 is considered
    unprivileged; see the binary_age flag to keep this continuous). The outcome
    variable is 'credit-risk': 'good' (favorable) or 'bad' (unfavorable).

    Note:
        By default, the data is downloaded from OpenML. See the `credit-g
        <https://www.openml.org/d/31>`_ page for details.

    Args:
        data_home (string, optional): Specify another download and cache folder
            for the datasets. By default all AIF360 datasets are stored in
            'aif360/sklearn/data/raw' subfolders.
        cache (bool): Whether to cache downloaded datasets.
        binary_age (bool, optional): If ``True``, split protected attribute,
            'age', into 'aged' (privileged) and 'youth' (unprivileged). The
            'age' feature remains continuous.
        usecols (list-like, optional): Column name(s) to keep. All others are
            dropped.
        dropcols (list-like, optional): Column name(s) to drop.
        numeric_only (bool): Drop all non-numeric feature columns.
        dropna (bool): Drop rows with NAs.

    Returns:
        namedtuple: Tuple containing X and y for the German dataset accessible
        by index or name.

    See also:
        :func:`sklearn.datasets.fetch_openml`

    References:
        .. [#kamiran09] `F. Kamiran and T. Calders, "Classifying without
           discriminating," 2nd International Conference on Computer,
           Control and Communication, 2009.
           <https://ieeexplore.ieee.org/abstract/document/4909197>`_

    Examples:
        >>> german = fetch_german()
        >>> german.X.shape
        (1000, 21)

        >>> german_num = fetch_german(numeric_only=True)
        >>> german_num.X.shape
        (1000, 7)



        >>> X, y = fetch_german(numeric_only=True)
        >>> y_pred = LogisticRegression().fit(X, y).predict(X)
        >>> disparate_impact_ratio(y, y_pred, prot_attr='age', priv_group=True,
        ... pos_label='good')
        0.9483094846144106
    """
    df = fetch_openml(data_id=31, data_home=data_home or DATA_HOME_DEFAULT,
                      cache=cache, as_frame=True).frame

    df = df.rename(columns={'class': 'credit-risk'})  # more descriptive name
    df['credit-risk'] = df['credit-risk'].cat.reorder_categories(
        ['bad', 'good'], ordered=True)

    # binarize protected attribute (but not corresponding feature)
    age = (pd.cut(df.age, [0, 25, 100],
                  labels=False if numeric_only else ['young', 'aged'])
           if binary_age else 'age')

    # Note: marital_status directly implies sex. i.e. 'div/dep/mar' => 'female'
    # and all others => 'male'
    personal_status = df.pop('personal_status').str.split(expand=True)
    personal_status.columns = ['sex', 'marital_status']
    df = df.join(personal_status.astype('category'))
    df.sex = df.sex.cat.reorder_categories(['female', 'male'], ordered=True)

    df.foreign_worker = df.foreign_worker.astype('category').cat.set_categories(
        ['no', 'yes'], ordered=True)

    return standardize_dataset(df, prot_attr=['sex', age, 'foreign_worker'],
                               target='credit-risk', usecols=usecols,
                               dropcols=dropcols, numeric_only=numeric_only,
                               dropna=dropna)

def fetch_bank(*, data_home=None, cache=True, percent10=False, usecols=None,
               dropcols=['duration'], numeric_only=False, dropna=False):
    """Load the Bank Marketing Dataset.

    The protected attribute is 'age' (left as continuous). The outcome variable
    is 'deposit': 'yes' or 'no'.

    Note:
        By default, the data is downloaded from OpenML. See the `bank-marketing
        <https://www.openml.org/d/1461>`_ page for details.

    Args:
        data_home (string, optional): Specify another download and cache folder
            for the datasets. By default all AIF360 datasets are stored in
            'aif360/sklearn/data/raw' subfolders.
        cache (bool): Whether to cache downloaded datasets.
        percent10 (bool, optional): Download the reduced version (10% of data).
        usecols (list-like, optional): Column name(s) to keep. All others are
            dropped.
        dropcols (list-like, optional): Column name(s) to drop.
        numeric_only (bool): Drop all non-numeric feature columns.
        dropna (bool): Drop rows with NAs. Note: this is False by default for
            this dataset.

    Returns:
        namedtuple: Tuple containing X and y for the Bank dataset accessible by
        index or name.

    See also:
        :func:`sklearn.datasets.fetch_openml`

    Examples:
        >>> bank = fetch_bank()
        >>> bank.X.shape
        (45211, 15)

        >>> bank_nona = fetch_bank(dropna=True)
        >>> bank_nona.X.shape
        (7842, 15)

        >>> bank_num = fetch_bank(numeric_only=True)
        >>> bank_num.X.shape
        (45211, 6)
    """
    # TODO: this seems to be an old version
    df = fetch_openml(data_id=1558 if percent10 else 1461, data_home=data_home
                      or DATA_HOME_DEFAULT, cache=cache, as_frame=True).frame
    df.columns = ['age', 'job', 'marital', 'education', 'default', 'balance',
                  'housing', 'loan', 'contact', 'day', 'month', 'duration',
                  'campaign', 'pdays', 'previous', 'poutcome', 'deposit']
    # remap target
    df.deposit = df.deposit.map({'1': 'no', '2': 'yes'}).astype('category')
    df.deposit = df.deposit.cat.set_categories(['no', 'yes'], ordered=True)

    # replace 'unknown' marker with NaN
    for col in df.select_dtypes('category'):
        if 'unknown' in df[col].cat.categories:
            df[col] = df[col].cat.remove_categories('unknown')
    df.education = df.education.astype('category').cat.reorder_categories(
        ['primary', 'secondary', 'tertiary'], ordered=True)

    return standardize_dataset(df, prot_attr='age', target='deposit',
                               usecols=usecols, dropcols=dropcols,
                               numeric_only=numeric_only, dropna=dropna)