Spaces:
Runtime error
Runtime error
File size: 9,896 Bytes
d2a8669 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import os
import pandas as pd
from sklearn.datasets import fetch_openml
from aif360.sklearn.datasets.utils import standardize_dataset
# cache location
DATA_HOME_DEFAULT = os.path.join(os.path.dirname(os.path.abspath(__file__)),
'..', 'data', 'raw')
def fetch_adult(subset='all', *, data_home=None, cache=True, binary_race=True,
usecols=None, dropcols=None, numeric_only=False, dropna=True):
"""Load the Adult Census Income Dataset.
Binarizes 'race' to 'White' (privileged) or 'Non-white' (unprivileged). The
other protected attribute is 'sex' ('Male' is privileged and 'Female' is
unprivileged). The outcome variable is 'annual-income': '>50K' (favorable)
or '<=50K' (unfavorable).
Note:
By default, the data is downloaded from OpenML. See the `adult
<https://www.openml.org/d/1590>`_ page for details.
Args:
subset ({'train', 'test', or 'all'}, optional): Select the dataset to
load: 'train' for the training set, 'test' for the test set, 'all'
for both.
data_home (string, optional): Specify another download and cache folder
for the datasets. By default all AIF360 datasets are stored in
'aif360/sklearn/data/raw' subfolders.
cache (bool): Whether to cache downloaded datasets.
binary_race (bool, optional): Group all non-white races together. Only
the protected attribute is affected, not the feature column, unless
numeric_only is ``True``.
usecols (list-like, optional): Feature column(s) to keep. All others are
dropped.
dropcols (list-like, optional): Feature column(s) to drop.
numeric_only (bool): Drop all non-numeric feature columns.
dropna (bool): Drop rows with NAs.
Returns:
namedtuple: Tuple containing X, y, and sample_weights for the Adult
dataset accessible by index or name.
See also:
:func:`sklearn.datasets.fetch_openml`
Examples:
>>> adult = fetch_adult()
>>> adult.X.shape
(45222, 13)
>>> adult_num = fetch_adult(numeric_only=True)
>>> adult_num.X.shape
(48842, 5)
"""
if subset not in {'train', 'test', 'all'}:
raise ValueError("subset must be either 'train', 'test', or 'all'; "
"cannot be {}".format(subset))
df = fetch_openml(data_id=1590, data_home=data_home or DATA_HOME_DEFAULT,
cache=cache, as_frame=True).frame
if subset == 'train':
df = df.iloc[16281:]
elif subset == 'test':
df = df.iloc[:16281]
df = df.rename(columns={'class': 'annual-income'}) # more descriptive name
df['annual-income'] = df['annual-income'].cat.reorder_categories(
['<=50K', '>50K'], ordered=True)
# binarize protected attributes
race = df.race.cat.set_categories(['Non-white', 'White'], ordered=True)
race = race.fillna('Non-white') if binary_race else 'race'
if numeric_only and binary_race:
df.race = race
race = 'race'
df.sex = df.sex.cat.reorder_categories(['Female', 'Male'], ordered=True)
return standardize_dataset(df, prot_attr=[race, 'sex'],
target='annual-income', sample_weight='fnlwgt',
usecols=usecols, dropcols=dropcols,
numeric_only=numeric_only, dropna=dropna)
def fetch_german(*, data_home=None, cache=True, binary_age=True, usecols=None,
dropcols=None, numeric_only=False, dropna=True):
"""Load the German Credit Dataset.
Protected attributes are 'sex' ('male' is privileged and 'female' is
unprivileged) and 'age' (binarized by default as recommended by
[#kamiran09]_: age >= 25 is considered privileged and age < 25 is considered
unprivileged; see the binary_age flag to keep this continuous). The outcome
variable is 'credit-risk': 'good' (favorable) or 'bad' (unfavorable).
Note:
By default, the data is downloaded from OpenML. See the `credit-g
<https://www.openml.org/d/31>`_ page for details.
Args:
data_home (string, optional): Specify another download and cache folder
for the datasets. By default all AIF360 datasets are stored in
'aif360/sklearn/data/raw' subfolders.
cache (bool): Whether to cache downloaded datasets.
binary_age (bool, optional): If ``True``, split protected attribute,
'age', into 'aged' (privileged) and 'youth' (unprivileged). The
'age' feature remains continuous.
usecols (list-like, optional): Column name(s) to keep. All others are
dropped.
dropcols (list-like, optional): Column name(s) to drop.
numeric_only (bool): Drop all non-numeric feature columns.
dropna (bool): Drop rows with NAs.
Returns:
namedtuple: Tuple containing X and y for the German dataset accessible
by index or name.
See also:
:func:`sklearn.datasets.fetch_openml`
References:
.. [#kamiran09] `F. Kamiran and T. Calders, "Classifying without
discriminating," 2nd International Conference on Computer,
Control and Communication, 2009.
<https://ieeexplore.ieee.org/abstract/document/4909197>`_
Examples:
>>> german = fetch_german()
>>> german.X.shape
(1000, 21)
>>> german_num = fetch_german(numeric_only=True)
>>> german_num.X.shape
(1000, 7)
>>> X, y = fetch_german(numeric_only=True)
>>> y_pred = LogisticRegression().fit(X, y).predict(X)
>>> disparate_impact_ratio(y, y_pred, prot_attr='age', priv_group=True,
... pos_label='good')
0.9483094846144106
"""
df = fetch_openml(data_id=31, data_home=data_home or DATA_HOME_DEFAULT,
cache=cache, as_frame=True).frame
df = df.rename(columns={'class': 'credit-risk'}) # more descriptive name
df['credit-risk'] = df['credit-risk'].cat.reorder_categories(
['bad', 'good'], ordered=True)
# binarize protected attribute (but not corresponding feature)
age = (pd.cut(df.age, [0, 25, 100],
labels=False if numeric_only else ['young', 'aged'])
if binary_age else 'age')
# Note: marital_status directly implies sex. i.e. 'div/dep/mar' => 'female'
# and all others => 'male'
personal_status = df.pop('personal_status').str.split(expand=True)
personal_status.columns = ['sex', 'marital_status']
df = df.join(personal_status.astype('category'))
df.sex = df.sex.cat.reorder_categories(['female', 'male'], ordered=True)
df.foreign_worker = df.foreign_worker.astype('category').cat.set_categories(
['no', 'yes'], ordered=True)
return standardize_dataset(df, prot_attr=['sex', age, 'foreign_worker'],
target='credit-risk', usecols=usecols,
dropcols=dropcols, numeric_only=numeric_only,
dropna=dropna)
def fetch_bank(*, data_home=None, cache=True, percent10=False, usecols=None,
dropcols=['duration'], numeric_only=False, dropna=False):
"""Load the Bank Marketing Dataset.
The protected attribute is 'age' (left as continuous). The outcome variable
is 'deposit': 'yes' or 'no'.
Note:
By default, the data is downloaded from OpenML. See the `bank-marketing
<https://www.openml.org/d/1461>`_ page for details.
Args:
data_home (string, optional): Specify another download and cache folder
for the datasets. By default all AIF360 datasets are stored in
'aif360/sklearn/data/raw' subfolders.
cache (bool): Whether to cache downloaded datasets.
percent10 (bool, optional): Download the reduced version (10% of data).
usecols (list-like, optional): Column name(s) to keep. All others are
dropped.
dropcols (list-like, optional): Column name(s) to drop.
numeric_only (bool): Drop all non-numeric feature columns.
dropna (bool): Drop rows with NAs. Note: this is False by default for
this dataset.
Returns:
namedtuple: Tuple containing X and y for the Bank dataset accessible by
index or name.
See also:
:func:`sklearn.datasets.fetch_openml`
Examples:
>>> bank = fetch_bank()
>>> bank.X.shape
(45211, 15)
>>> bank_nona = fetch_bank(dropna=True)
>>> bank_nona.X.shape
(7842, 15)
>>> bank_num = fetch_bank(numeric_only=True)
>>> bank_num.X.shape
(45211, 6)
"""
# TODO: this seems to be an old version
df = fetch_openml(data_id=1558 if percent10 else 1461, data_home=data_home
or DATA_HOME_DEFAULT, cache=cache, as_frame=True).frame
df.columns = ['age', 'job', 'marital', 'education', 'default', 'balance',
'housing', 'loan', 'contact', 'day', 'month', 'duration',
'campaign', 'pdays', 'previous', 'poutcome', 'deposit']
# remap target
df.deposit = df.deposit.map({'1': 'no', '2': 'yes'}).astype('category')
df.deposit = df.deposit.cat.set_categories(['no', 'yes'], ordered=True)
# replace 'unknown' marker with NaN
for col in df.select_dtypes('category'):
if 'unknown' in df[col].cat.categories:
df[col] = df[col].cat.remove_categories('unknown')
df.education = df.education.astype('category').cat.reorder_categories(
['primary', 'secondary', 'tertiary'], ordered=True)
return standardize_dataset(df, prot_attr='age', target='deposit',
usecols=usecols, dropcols=dropcols,
numeric_only=numeric_only, dropna=dropna)
|