Spaces:
Runtime error
Runtime error
File size: 15,593 Bytes
d2a8669 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 |
import numpy as np
import scipy.special
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.preprocessing import LabelEncoder
from sklearn.utils import check_random_state
from sklearn.utils.validation import check_is_fitted
try:
import tensorflow.compat.v1 as tf
except ImportError as error:
from logging import warning
warning("{}: AdversarialDebiasing will be unavailable. To install, run:\n"
"pip install 'aif360[AdversarialDebiasing]'".format(error))
from aif360.sklearn.utils import check_inputs, check_groups
class AdversarialDebiasing(BaseEstimator, ClassifierMixin):
"""Debiasing with adversarial learning.
Adversarial debiasing is an in-processing technique that learns a
classifier to maximize prediction accuracy and simultaneously reduce an
adversary's ability to determine the protected attribute from the
predictions [#zhang18]_. This approach leads to a fair classifier as the
predictions cannot carry any group discrimination information that the
adversary can exploit.
References:
.. [#zhang18] `B. H. Zhang, B. Lemoine, and M. Mitchell, "Mitigating
Unwanted Biases with Adversarial Learning," AAAI/ACM Conference on
Artificial Intelligence, Ethics, and Society, 2018.
<https://dl.acm.org/citation.cfm?id=3278779>`_
Attributes:
prot_attr_ (str or list(str)): Protected attribute(s) used for
debiasing.
groups_ (array, shape (n_groups,)): A list of group labels known to the
classifier.
classes_ (array, shape (n_classes,)): A list of class labels known to
the classifier.
sess_ (tensorflow.Session): The TensorFlow Session used for the
computations. Note: this can be manually closed to free up resources
with `self.sess_.close()`.
classifier_logits_ (tensorflow.Tensor): Tensor containing output logits
from the classifier.
adversary_logits_ (tensorflow.Tensor): Tensor containing output logits
from the adversary.
"""
def __init__(self, prot_attr=None, scope_name='classifier',
adversary_loss_weight=0.1, num_epochs=50, batch_size=128,
classifier_num_hidden_units=200, debias=True, verbose=False,
random_state=None):
r"""
Args:
prot_attr (single label or list-like, optional): Protected
attribute(s) to use in the debiasing process. If more than one
attribute, all combinations of values (intersections) are
considered. Default is ``None`` meaning all protected attributes
from the dataset are used.
scope_name (str, optional): TensorFlow "variable_scope" name for the
entire model (classifier and adversary).
adversary_loss_weight (float or ``None``, optional): If ``None``,
this will use the suggestion from the paper:
:math:`\alpha = \sqrt{global\_step}` with inverse time decay on
the learning rate. Otherwise, it uses the provided coefficient
with exponential learning rate decay.
num_epochs (int, optional): Number of epochs for which to train.
batch_size (int, optional): Size of mini-batch for training.
classifier_num_hidden_units (int, optional): Number of hidden units
in the classifier.
debias (bool, optional): If ``False``, learn a classifier without an
adversary.
verbose (bool, optional): If ``True``, print losses every 200 steps.
random_state (int or numpy.RandomState, optional): Seed of pseudo-
random number generator for shuffling data and seeding weights.
"""
self.prot_attr = prot_attr
self.scope_name = scope_name
self.adversary_loss_weight = adversary_loss_weight
self.num_epochs = num_epochs
self.batch_size = batch_size
self.classifier_num_hidden_units = classifier_num_hidden_units
self.debias = debias
self.verbose = verbose
self.random_state = random_state
def fit(self, X, y):
"""Train the classifier and adversary (if ``debias == True``) with the
given training data.
Args:
X (pandas.DataFrame): Training samples.
y (array-like): Training labels.
Returns:
self
"""
if tf.executing_eagerly():
raise RuntimeError("AdversarialDebiasing does not work in eager "
"execution mode. To fix, add `tf.disable_eager_execution()`"
" to the top of the calling script.")
X, y, _ = check_inputs(X, y)
rng = check_random_state(self.random_state)
ii32 = np.iinfo(np.int32)
s1, s2, s3, s4 = rng.randint(ii32.min, ii32.max, size=4)
tf.reset_default_graph()
self.sess_ = tf.Session()
groups, self.prot_attr_ = check_groups(X, self.prot_attr)
le = LabelEncoder()
y = le.fit_transform(y)
self.classes_ = le.classes_
# BUG: LabelEncoder converts to ndarray which removes tuple formatting
groups = groups.map(str)
groups = le.fit_transform(groups)
self.groups_ = le.classes_
n_classes = len(self.classes_)
n_groups = len(self.groups_)
# use sigmoid for binary case
if n_classes == 2:
n_classes = 1
if n_groups == 2:
n_groups = 1
n_samples, n_features = X.shape
with tf.variable_scope(self.scope_name):
# Setup placeholders
self.input_ph = tf.placeholder(tf.float32, shape=[None, n_features])
self.prot_attr_ph = tf.placeholder(tf.float32, shape=[None, 1])
self.true_labels_ph = tf.placeholder(tf.float32, shape=[None, 1])
self.keep_prob = tf.placeholder(tf.float32)
# Create classifier
with tf.variable_scope('classifier_model'):
W1 = tf.get_variable(
'W1', [n_features, self.classifier_num_hidden_units],
initializer=tf.initializers.glorot_uniform(seed=s1))
b1 = tf.Variable(tf.zeros(
shape=[self.classifier_num_hidden_units]), name='b1')
h1 = tf.nn.relu(tf.matmul(self.input_ph, W1) + b1)
h1 = tf.nn.dropout(h1, rate=1-self.keep_prob, seed=s2)
W2 = tf.get_variable(
'W2', [self.classifier_num_hidden_units, n_classes],
initializer=tf.initializers.glorot_uniform(seed=s3))
b2 = tf.Variable(tf.zeros(shape=[n_classes]), name='b2')
self.classifier_logits_ = tf.matmul(h1, W2) + b2
# Obtain classifier loss
if self.classifier_logits_.shape[1] == 1:
clf_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(
labels=self.true_labels_ph,
logits=self.classifier_logits_))
else:
clf_loss = tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=tf.squeeze(tf.cast(self.true_labels_ph,
tf.int32)),
logits=self.classifier_logits_))
if self.debias:
# Create adversary
with tf.variable_scope("adversary_model"):
c = tf.get_variable('c', initializer=tf.constant(1.0))
s = tf.sigmoid((1 + tf.abs(c)) * self.classifier_logits_)
W2 = tf.get_variable('W2', [3, n_groups],
initializer=tf.initializers.glorot_uniform(seed=s4))
b2 = tf.Variable(tf.zeros(shape=[n_groups]), name='b2')
self.adversary_logits_ = tf.matmul(
tf.concat([s, s * self.true_labels_ph,
s * (1. - self.true_labels_ph)], axis=1),
W2) + b2
# Obtain adversary loss
if self.adversary_logits_.shape[1] == 1:
adv_loss = tf.reduce_mean(
tf.nn.sigmoid_cross_entropy_with_logits(
labels=self.prot_attr_ph,
logits=self.adversary_logits_))
else:
adv_loss = tf.reduce_mean(
tf.nn.sparse_softmax_cross_entropy_with_logits(
labels=tf.squeeze(tf.cast(self.prot_attr_ph,
tf.int32)),
logits=self.adversary_logits_))
global_step = tf.Variable(0., trainable=False)
init_learning_rate = 0.001
if self.adversary_loss_weight is not None:
learning_rate = tf.train.exponential_decay(init_learning_rate,
global_step, 1000, 0.96, staircase=True)
else:
learning_rate = tf.train.inverse_time_decay(init_learning_rate,
global_step, 1000, 0.1, staircase=True)
# Setup optimizers
clf_opt = tf.train.AdamOptimizer(learning_rate)
if self.debias:
adv_opt = tf.train.AdamOptimizer(learning_rate)
clf_vars = [var for var in tf.trainable_variables()
if 'classifier_model' in var.name]
if self.debias:
adv_vars = [var for var in tf.trainable_variables()
if 'adversary_model' in var.name]
# Compute grad wrt classifier parameters
adv_grads = {var: grad for (grad, var) in
adv_opt.compute_gradients(adv_loss, var_list=clf_vars)}
normalize = lambda x: x / (tf.norm(x) + np.finfo(np.float32).tiny)
clf_grads = []
for (grad, var) in clf_opt.compute_gradients(clf_loss,
var_list=clf_vars):
if self.debias:
unit_adv_grad = normalize(adv_grads[var])
# proj_{adv_grad} clf_grad:
grad -= tf.reduce_sum(grad * unit_adv_grad) * unit_adv_grad
if self.adversary_loss_weight is not None:
grad -= self.adversary_loss_weight * adv_grads[var]
else:
grad -= tf.sqrt(global_step) * adv_grads[var]
clf_grads.append((grad, var))
clf_min = clf_opt.apply_gradients(clf_grads,
global_step=global_step)
if self.debias:
with tf.control_dependencies([clf_min]):
adv_min = adv_opt.minimize(adv_loss, var_list=adv_vars)
self.sess_.run(tf.global_variables_initializer())
# Begin training
for epoch in range(self.num_epochs):
shuffled_ids = rng.permutation(n_samples)
for i in range(n_samples // self.batch_size):
batch_ids = shuffled_ids[self.batch_size * i:
self.batch_size * (i+1)]
batch_features = X.iloc[batch_ids]
batch_labels = y[batch_ids][:, np.newaxis]
batch_prot_attr = groups[batch_ids][:, np.newaxis]
batch_feed_dict = {self.input_ph: batch_features,
self.true_labels_ph: batch_labels,
self.prot_attr_ph: batch_prot_attr,
self.keep_prob: 0.8}
if self.debias:
_, _, clf_loss_val, adv_loss_val = self.sess_.run(
[clf_min, adv_min, clf_loss, adv_loss],
feed_dict=batch_feed_dict)
if i % 200 == 0 and self.verbose:
print("epoch {:>3d}; iter: {:>4d}; batch classifier"
" loss: {:.4f}; batch adversarial loss: "
"{:.4f}".format(epoch, i, clf_loss_val,
adv_loss_val))
else:
_, clf_loss_val = self.sess_.run([clf_min, clf_loss],
feed_dict=batch_feed_dict)
if i % 200 == 0 and self.verbose:
print("epoch {:>3d}; iter: {:>4d}; batch classifier"
" loss: {:.4f}".format(epoch, i,
clf_loss_val))
return self
def decision_function(self, X):
"""Soft prediction scores.
Args:
X (pandas.DataFrame): Test samples.
Returns:
numpy.ndarray: Confidence scores per (sample, class) combination. In
the binary case, confidence score for ``self.classes_[1]`` where >0
means this class would be predicted.
"""
check_is_fitted(self, ['classes_', 'input_ph', 'keep_prob',
'classifier_logits_'])
n_samples = X.shape[0]
n_classes = len(self.classes_)
if n_classes == 2:
n_classes = 1
samples_covered = 0
scores = np.empty((n_samples, n_classes))
while samples_covered < n_samples:
start = samples_covered
end = samples_covered + self.batch_size
if end > n_samples:
end = n_samples
batch_ids = np.arange(start, end)
batch_features = X.iloc[batch_ids]
batch_feed_dict = {self.input_ph: batch_features,
self.keep_prob: 1.0}
scores[batch_ids] = self.sess_.run(self.classifier_logits_,
feed_dict=batch_feed_dict)
samples_covered += len(batch_features)
return scores.ravel() if scores.shape[1] == 1 else scores
def predict_proba(self, X):
"""Probability estimates.
The returned estimates for all classes are ordered by the label of
classes.
Args:
X (pandas.DataFrame): Test samples.
Returns:
numpy.ndarray: Returns the probability of the sample for each class
in the model, where classes are ordered as they are in
``self.classes_``.
"""
decision = self.decision_function(X)
if decision.ndim == 1:
decision_2d = np.c_[np.zeros_like(decision), decision]
else:
decision_2d = decision
return scipy.special.softmax(decision_2d, axis=1)
def predict(self, X):
"""Predict class labels for the given samples.
Args:
X (pandas.DataFrame): Test samples.
Returns:
numpy.ndarray: Predicted class label per sample.
"""
scores = self.decision_function(X)
if scores.ndim == 1:
indices = (scores > 0).astype(int)
else:
indices = scores.argmax(axis=1)
return self.classes_[indices]
|