File size: 15,593 Bytes
d2a8669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
import numpy as np
import scipy.special
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.preprocessing import LabelEncoder
from sklearn.utils import check_random_state
from sklearn.utils.validation import check_is_fitted
try:
    import tensorflow.compat.v1 as tf
except ImportError as error:
    from logging import warning
    warning("{}: AdversarialDebiasing will be unavailable. To install, run:\n"
            "pip install 'aif360[AdversarialDebiasing]'".format(error))

from aif360.sklearn.utils import check_inputs, check_groups


class AdversarialDebiasing(BaseEstimator, ClassifierMixin):
    """Debiasing with adversarial learning.

    Adversarial debiasing is an in-processing technique that learns a
    classifier to maximize prediction accuracy and simultaneously reduce an
    adversary's ability to determine the protected attribute from the
    predictions [#zhang18]_. This approach leads to a fair classifier as the
    predictions cannot carry any group discrimination information that the
    adversary can exploit.

    References:
        .. [#zhang18] `B. H. Zhang, B. Lemoine, and M. Mitchell, "Mitigating
           Unwanted Biases with Adversarial Learning," AAAI/ACM Conference on
           Artificial Intelligence, Ethics, and Society, 2018.
           <https://dl.acm.org/citation.cfm?id=3278779>`_

    Attributes:
        prot_attr_ (str or list(str)): Protected attribute(s) used for
            debiasing.
        groups_ (array, shape (n_groups,)): A list of group labels known to the
            classifier.
        classes_ (array, shape (n_classes,)): A list of class labels known to
            the classifier.
        sess_ (tensorflow.Session): The TensorFlow Session used for the
            computations. Note: this can be manually closed to free up resources
            with `self.sess_.close()`.
        classifier_logits_ (tensorflow.Tensor): Tensor containing output logits
            from the classifier.
        adversary_logits_ (tensorflow.Tensor): Tensor containing output logits
            from the adversary.
    """

    def __init__(self, prot_attr=None, scope_name='classifier',
                 adversary_loss_weight=0.1, num_epochs=50, batch_size=128,
                 classifier_num_hidden_units=200, debias=True, verbose=False,
                 random_state=None):
        r"""
        Args:
            prot_attr (single label or list-like, optional): Protected
                attribute(s) to use in the debiasing process. If more than one
                attribute, all combinations of values (intersections) are
                considered. Default is ``None`` meaning all protected attributes
                from the dataset are used.
            scope_name (str, optional): TensorFlow "variable_scope" name for the
                entire model (classifier and adversary).
            adversary_loss_weight (float or ``None``, optional): If ``None``,
                this will use the suggestion from the paper:
                :math:`\alpha = \sqrt{global\_step}` with inverse time decay on
                the learning rate. Otherwise, it uses the provided coefficient
                with exponential learning rate decay.
            num_epochs (int, optional): Number of epochs for which to train.
            batch_size (int, optional): Size of mini-batch for training.
            classifier_num_hidden_units (int, optional): Number of hidden units
                in the classifier.
            debias (bool, optional): If ``False``, learn a classifier without an
                adversary.
            verbose (bool, optional): If ``True``, print losses every 200 steps.
            random_state (int or numpy.RandomState, optional): Seed of pseudo-
                random number generator for shuffling data and seeding weights.
        """

        self.prot_attr = prot_attr
        self.scope_name = scope_name
        self.adversary_loss_weight = adversary_loss_weight
        self.num_epochs = num_epochs
        self.batch_size = batch_size
        self.classifier_num_hidden_units = classifier_num_hidden_units
        self.debias = debias
        self.verbose = verbose
        self.random_state = random_state

    def fit(self, X, y):
        """Train the classifier and adversary (if ``debias == True``) with the
        given training data.

        Args:
            X (pandas.DataFrame): Training samples.
            y (array-like): Training labels.

        Returns:
            self
        """
        if tf.executing_eagerly():
            raise RuntimeError("AdversarialDebiasing does not work in eager "
                    "execution mode. To fix, add `tf.disable_eager_execution()`"
                    " to the top of the calling script.")

        X, y, _ = check_inputs(X, y)
        rng = check_random_state(self.random_state)
        ii32 = np.iinfo(np.int32)
        s1, s2, s3, s4 = rng.randint(ii32.min, ii32.max, size=4)

        tf.reset_default_graph()
        self.sess_ = tf.Session()

        groups, self.prot_attr_ = check_groups(X, self.prot_attr)
        le = LabelEncoder()
        y = le.fit_transform(y)
        self.classes_ = le.classes_
        # BUG: LabelEncoder converts to ndarray which removes tuple formatting
        groups = groups.map(str)
        groups = le.fit_transform(groups)
        self.groups_ = le.classes_

        n_classes = len(self.classes_)
        n_groups = len(self.groups_)
        # use sigmoid for binary case
        if n_classes == 2:
            n_classes = 1
        if n_groups == 2:
            n_groups = 1

        n_samples, n_features = X.shape

        with tf.variable_scope(self.scope_name):
            # Setup placeholders
            self.input_ph = tf.placeholder(tf.float32, shape=[None, n_features])
            self.prot_attr_ph = tf.placeholder(tf.float32, shape=[None, 1])
            self.true_labels_ph = tf.placeholder(tf.float32, shape=[None, 1])
            self.keep_prob = tf.placeholder(tf.float32)

            # Create classifier
            with tf.variable_scope('classifier_model'):
                W1 = tf.get_variable(
                        'W1', [n_features, self.classifier_num_hidden_units],
                        initializer=tf.initializers.glorot_uniform(seed=s1))
                b1 = tf.Variable(tf.zeros(
                        shape=[self.classifier_num_hidden_units]), name='b1')

                h1 = tf.nn.relu(tf.matmul(self.input_ph, W1) + b1)
                h1 = tf.nn.dropout(h1, rate=1-self.keep_prob, seed=s2)

                W2 = tf.get_variable(
                        'W2', [self.classifier_num_hidden_units, n_classes],
                        initializer=tf.initializers.glorot_uniform(seed=s3))
                b2 = tf.Variable(tf.zeros(shape=[n_classes]), name='b2')

                self.classifier_logits_ = tf.matmul(h1, W2) + b2

            # Obtain classifier loss
            if self.classifier_logits_.shape[1] == 1:
                clf_loss = tf.reduce_mean(
                        tf.nn.sigmoid_cross_entropy_with_logits(
                                labels=self.true_labels_ph,
                                logits=self.classifier_logits_))
            else:
                clf_loss = tf.reduce_mean(
                        tf.nn.sparse_softmax_cross_entropy_with_logits(
                                labels=tf.squeeze(tf.cast(self.true_labels_ph,
                                                          tf.int32)),
                                logits=self.classifier_logits_))

            if self.debias:
                # Create adversary
                with tf.variable_scope("adversary_model"):
                    c = tf.get_variable('c', initializer=tf.constant(1.0))
                    s = tf.sigmoid((1 + tf.abs(c)) * self.classifier_logits_)

                    W2 = tf.get_variable('W2', [3, n_groups],
                            initializer=tf.initializers.glorot_uniform(seed=s4))
                    b2 = tf.Variable(tf.zeros(shape=[n_groups]), name='b2')

                    self.adversary_logits_ = tf.matmul(
                            tf.concat([s, s * self.true_labels_ph,
                                       s * (1. - self.true_labels_ph)], axis=1),
                            W2) + b2

                # Obtain adversary loss
                if self.adversary_logits_.shape[1] == 1:
                    adv_loss = tf.reduce_mean(
                            tf.nn.sigmoid_cross_entropy_with_logits(
                                    labels=self.prot_attr_ph,
                                    logits=self.adversary_logits_))
                else:
                    adv_loss = tf.reduce_mean(
                            tf.nn.sparse_softmax_cross_entropy_with_logits(
                                    labels=tf.squeeze(tf.cast(self.prot_attr_ph,
                                                              tf.int32)),
                                    logits=self.adversary_logits_))

            global_step = tf.Variable(0., trainable=False)
            init_learning_rate = 0.001
            if self.adversary_loss_weight is not None:
                learning_rate = tf.train.exponential_decay(init_learning_rate,
                    global_step, 1000, 0.96, staircase=True)
            else:
                learning_rate = tf.train.inverse_time_decay(init_learning_rate,
                        global_step, 1000, 0.1, staircase=True)

            # Setup optimizers
            clf_opt = tf.train.AdamOptimizer(learning_rate)
            if self.debias:
                adv_opt = tf.train.AdamOptimizer(learning_rate)

            clf_vars = [var for var in tf.trainable_variables()
                        if 'classifier_model' in var.name]
            if self.debias:
                adv_vars = [var for var in tf.trainable_variables()
                            if 'adversary_model' in var.name]
                # Compute grad wrt classifier parameters
                adv_grads = {var: grad for (grad, var) in
                        adv_opt.compute_gradients(adv_loss, var_list=clf_vars)}

            normalize = lambda x: x / (tf.norm(x) + np.finfo(np.float32).tiny)

            clf_grads = []
            for (grad, var) in clf_opt.compute_gradients(clf_loss,
                                                         var_list=clf_vars):
                if self.debias:
                    unit_adv_grad = normalize(adv_grads[var])
                    # proj_{adv_grad} clf_grad:
                    grad -= tf.reduce_sum(grad * unit_adv_grad) * unit_adv_grad
                    if self.adversary_loss_weight is not None:
                        grad -= self.adversary_loss_weight * adv_grads[var]
                    else:
                        grad -= tf.sqrt(global_step) * adv_grads[var]
                clf_grads.append((grad, var))

            clf_min = clf_opt.apply_gradients(clf_grads,
                                              global_step=global_step)
            if self.debias:
                with tf.control_dependencies([clf_min]):
                    adv_min = adv_opt.minimize(adv_loss, var_list=adv_vars)

            self.sess_.run(tf.global_variables_initializer())

            # Begin training
            for epoch in range(self.num_epochs):
                shuffled_ids = rng.permutation(n_samples)
                for i in range(n_samples // self.batch_size):
                    batch_ids = shuffled_ids[self.batch_size * i:
                                             self.batch_size * (i+1)]
                    batch_features = X.iloc[batch_ids]
                    batch_labels = y[batch_ids][:, np.newaxis]
                    batch_prot_attr = groups[batch_ids][:, np.newaxis]
                    batch_feed_dict = {self.input_ph: batch_features,
                                       self.true_labels_ph: batch_labels,
                                       self.prot_attr_ph: batch_prot_attr,
                                       self.keep_prob: 0.8}
                    if self.debias:
                        _, _, clf_loss_val, adv_loss_val = self.sess_.run(
                                [clf_min, adv_min, clf_loss, adv_loss],
                                feed_dict=batch_feed_dict)

                        if i % 200 == 0 and self.verbose:
                            print("epoch {:>3d}; iter: {:>4d}; batch classifier"
                                  " loss: {:.4f}; batch adversarial loss: "
                                  "{:.4f}".format(epoch, i, clf_loss_val,
                                                  adv_loss_val))
                    else:
                        _, clf_loss_val = self.sess_.run([clf_min, clf_loss],
                                feed_dict=batch_feed_dict)

                        if i % 200 == 0 and self.verbose:
                            print("epoch {:>3d}; iter: {:>4d}; batch classifier"
                                  " loss: {:.4f}".format(epoch, i,
                                                         clf_loss_val))

        return self

    def decision_function(self, X):
        """Soft prediction scores.

        Args:
            X (pandas.DataFrame): Test samples.

        Returns:
            numpy.ndarray: Confidence scores per (sample, class) combination. In
            the binary case, confidence score for ``self.classes_[1]`` where >0
            means this class would be predicted.
        """
        check_is_fitted(self, ['classes_', 'input_ph', 'keep_prob',
                               'classifier_logits_'])
        n_samples = X.shape[0]
        n_classes = len(self.classes_)
        if n_classes == 2:
            n_classes = 1

        samples_covered = 0
        scores = np.empty((n_samples, n_classes))
        while samples_covered < n_samples:
            start = samples_covered
            end = samples_covered + self.batch_size
            if end > n_samples:
                end = n_samples

            batch_ids = np.arange(start, end)
            batch_features = X.iloc[batch_ids]

            batch_feed_dict = {self.input_ph: batch_features,
                               self.keep_prob: 1.0}

            scores[batch_ids] = self.sess_.run(self.classifier_logits_,
                                               feed_dict=batch_feed_dict)
            samples_covered += len(batch_features)

        return scores.ravel() if scores.shape[1] == 1 else scores

    def predict_proba(self, X):
        """Probability estimates.

        The returned estimates for all classes are ordered by the label of
        classes.

        Args:
            X (pandas.DataFrame): Test samples.

        Returns:
            numpy.ndarray: Returns the probability of the sample for each class
            in the model, where classes are ordered as they are in
            ``self.classes_``.
        """
        decision = self.decision_function(X)

        if decision.ndim == 1:
            decision_2d = np.c_[np.zeros_like(decision), decision]
        else:
            decision_2d = decision
        return scipy.special.softmax(decision_2d, axis=1)

    def predict(self, X):
        """Predict class labels for the given samples.

        Args:
            X (pandas.DataFrame): Test samples.

        Returns:
            numpy.ndarray: Predicted class label per sample.
        """
        scores = self.decision_function(X)
        if scores.ndim == 1:
            indices = (scores > 0).astype(int)
        else:
            indices = scores.argmax(axis=1)
        return self.classes_[indices]