File size: 53,327 Bytes
d2a8669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
from itertools import permutations

import numpy as np
import pandas as pd
from scipy.special import rel_entr
from sklearn.metrics import make_scorer as _make_scorer, recall_score, precision_score
from sklearn.metrics import multilabel_confusion_matrix
from sklearn.metrics._classification import _prf_divide, _check_zero_division
from sklearn.neighbors import NearestNeighbors
from sklearn.utils import check_X_y
from sklearn.utils.deprecation import deprecated

from aif360.sklearn.utils import check_inputs, check_groups
from aif360.detectors.mdss.ScoringFunctions import BerkJones, Bernoulli
from aif360.detectors.mdss.MDSS import MDSS

__all__ = [
    # meta-metrics
    'difference', 'ratio', 'intersection', 'one_vs_rest',
    # scorer factory
    'make_scorer',
    # helpers
    'num_samples', 'num_pos_neg',
    'specificity_score', 'base_rate', 'selection_rate', 'smoothed_base_rate',
    'smoothed_selection_rate', 'generalized_fpr', 'generalized_fnr',
    # group fairness
    'statistical_parity_difference', 'disparate_impact_ratio',
    'equal_opportunity_difference', 'average_odds_difference', 'average_predictive_value_difference',
    'average_odds_error', 'class_imbalance', 'kl_divergence',
    'conditional_demographic_disparity', 'smoothed_edf',
    'df_bias_amplification', 'mdss_bias_scan', 'mdss_bias_score',
    # individual fairness
    'generalized_entropy_index', 'generalized_entropy_error',
    'between_group_generalized_entropy_error', 'theil_index',
    'coefficient_of_variation', 'consistency_score',
    # aliases
    'sensitivity_score', 'mean_difference', 'false_negative_rate_error',
    'false_positive_rate_error'
]

# ============================= META-METRICS ===================================
def difference(func, y_true, y_pred=None, prot_attr=None, priv_group=1,
               sample_weight=None, **kwargs):
    """Compute the difference between unprivileged and privileged subsets for an
    arbitrary metric.

    Note: The optimal value of a difference is 0. To make it a scorer, one must
    take the absolute value and set greater_is_better to False.

    Unprivileged group is taken to be the inverse of the privileged group.

    Args:
        func (function): A metric function from :mod:`sklearn.metrics` or
            :mod:`aif360.sklearn.metrics`.
        y_true (pandas.Series): Outcome vector with protected attributes as
            index.
        y_pred (array-like, optional): Estimated outcomes.
        prot_attr (array-like, keyword-only): Protected attribute(s). If
            ``None``, all protected attributes in y are used.
        priv_group (scalar, optional): The label of the privileged group.
        sample_weight (array-like, optional): Sample weights passed through to
            func.
        **kwargs: Additional keyword args to be passed through to func.

    Returns:
        scalar: Difference in metric value for unprivileged and privileged
        groups.

    Examples:
        >>> X, y = fetch_german(numeric_only=True)
        >>> y_pred = LogisticRegression().fit(X, y).predict(X)
        >>> difference(precision_score, y, y_pred, prot_attr='sex',
        ... priv_group='male')
        -0.06955430006277463
    """
    groups, _ = check_groups(y_true, prot_attr)
    idx = (groups == priv_group)
    unpriv = [y[~idx] for y in (y_true, y_pred) if y is not None]
    priv = [y[idx] for y in (y_true, y_pred) if y is not None]
    if sample_weight is not None:
        sample_weight = np.asarray(sample_weight)
        return (func(*unpriv, sample_weight=sample_weight[~idx], **kwargs)
              - func(*priv, sample_weight=sample_weight[idx], **kwargs))
    return func(*unpriv, **kwargs) - func(*priv, **kwargs)

def ratio(func, y_true, y_pred=None, prot_attr=None, priv_group=1,
          sample_weight=None, zero_division='warn', **kwargs):
    """Compute the ratio between unprivileged and privileged subsets for an
    arbitrary metric.

    Note: The optimal value of a ratio is 1. To make it a scorer, one must
    take the minimum of the ratio and its inverse.

    Unprivileged group is taken to be the inverse of the privileged group.

    Args:
        func (function): A metric function from :mod:`sklearn.metrics` or
            :mod:`aif360.sklearn.metrics`.
        y_true (pandas.Series): Outcome vector with protected attributes as
            index.
        y_pred (array-like, optional): Estimated outcomes.
        prot_attr (array-like, keyword-only): Protected attribute(s). If
            ``None``, all protected attributes in y are used.
        priv_group (scalar, optional): The label of the privileged group.
        sample_weight (array-like, optional): Sample weights passed through to
            func.
        zero_division ('warn', 0 or 1): Sets the value to return when there is a
            zero division. If set to “warn”, this acts as 0, but warnings are
            also raised.
        **kwargs: Additional keyword args to be passed through to func.

    Returns:
        scalar: Ratio of metric values for unprivileged and privileged groups.
    """
    _check_zero_division(zero_division)
    groups, _ = check_groups(y_true, prot_attr)
    idx = (groups == priv_group)
    unpriv = [y[~idx] for y in (y_true, y_pred) if y is not None]
    priv = [y[idx] for y in (y_true, y_pred) if y is not None]
    if sample_weight is not None:
        sample_weight = np.asarray(sample_weight)
        numerator = func(*unpriv, sample_weight=sample_weight[~idx], **kwargs)
        denominator = func(*priv, sample_weight=sample_weight[idx], **kwargs)
    else:
        numerator = func(*unpriv, **kwargs)
        denominator = func(*priv, **kwargs)

    if func == base_rate:
        modifier = 'positive privileged'
    elif func == selection_rate:
        modifier = 'predicted privileged'
    else:
        modifier = f'value for {func.__name__} on privileged'
    return _prf_divide(np.array([numerator]), np.array([denominator]), 'ratio',
                       modifier, None, ('ratio',), zero_division).item()

def intersection(func, y_true, y_pred=None, prot_attr=None, sample_weight=None,
                 return_groups=False, **kwargs):
    """Compute an arbitrary metric on all intersectional groups of the protected
    attributes provided.

    Args:
        func (function): A metric function from :mod:`sklearn.metrics` or
            :mod:`aif360.sklearn.metrics`.
        y_true (pandas.Series): Outcome vector with protected attributes as
            index.
        y_pred (array-like, optional): Estimated outcomes.
        prot_attr (array-like, keyword-only): Protected attribute(s). If
            ``None``, all protected attributes in y are used.
        sample_weight (array-like, optional): Sample weights passed through to
            func.
        return_groups (bool, optional): Return group names in addition to metric
            values. Names are tuples of protected attribute values.
        **kwargs: Additional keyword args to be passed through to func.

    Returns:
        list: List of metric values for each intersectional group.

        tuple:
            Metric values and their corresponding group names.

            * **vals** (`list`) -- List of metric values for each intersectional
              group
            * **groups** (:class:`numpy.ndarray`) -- Array of tuples containing
              unique intersectional groups derived from the provided protected
              attributes.

    Examples:
        >>> X, y = fetch_german()
        >>> v, k = intersection(base_rate, y, prot_attr=['sex', 'age'],
        ...                     return_groups=True, pos_label='good')
        >>> dict(zip(k, v))
        {('female', 'aged'): 0.697560975609756,
         ('female', 'young'): 0.5523809523809524,
         ('male', 'aged'): 0.7388429752066116,
         ('male', 'young'): 0.611764705882353}
    """
    groups, _ = check_groups(y_true, prot_attr)
    unique_groups = np.unique(groups)
    func_vals = []
    for g in unique_groups:
        idx = (groups == g)
        sub = [y[idx] for y in (y_true, y_pred) if y is not None]
        if sample_weight is not None:
            sample_weight = np.asarray(sample_weight)
            func_vals.append(func(*sub, sample_weight=sample_weight[idx],
                                  **kwargs))
        else:
            func_vals.append(func(*sub, **kwargs))
    if return_groups:
        return func_vals, unique_groups
    return func_vals

def one_vs_rest(func, y_true, y_pred=None, prot_attr=None, return_groups=False,
                **kwargs):
    """Compute an arbitrary difference/ratio metric on all intersectional groups
    of the protected attributes provided in a one-vs-rest manner.

    Args:
        func (function): A difference or ratio metric function from
            :mod:`aif360.sklearn.metrics`.
        y_true (pandas.Series): Outcome vector with protected attributes as
            index.
        y_pred (array-like, optional): Estimated outcomes.
        prot_attr (array-like, keyword-only): Protected attribute(s). If
            ``None``, all protected attributes in y are used.
        sample_weight (array-like, optional): Sample weights passed through to
            func.
        return_groups (bool): Return group names in addition to metric values.
            Names are tuples of protected attribute values.
        **kwargs: Additional keyword args to be passed through to func.

    Returns:
        list: List of metric values considering each intersectional group in
        turn as privileged and the rest as unprivileged.

        tuple:
            Metric values and their corresponding group names.

            * **vals** (`list`) -- List of metric values considering each
              group in turn as privileged and the rest as unprivileged.
            * **groups** (:class:`numpy.ndarray`) -- Array of tuples containing
              unique intersectional groups derived from the provided protected
              attributes.

    Examples:
        >>> X, y = fetch_german()
        >>> v, k = one_vs_rest(statistical_parity_difference, y,
        ...                    prot_attr=['sex', 'age'], return_groups=True,
        ...                    pos_label='good')
        >>> dict(zip(k, v))
        {(0, 0): 0.16493748337323755,
         (0, 1): 0.0030679552078539674,
         (1, 0): 0.09643201542912239,
         (1, 1): -0.09833664609268755}

        >>> from functools import partial
        >>> from sklearn.metrics import accuracy_score
        >>> from sklearn.linear_model import LogisticRegression
        >>> y_pred = LogisticRegression(solver='liblinear').fit(X, y).predict(X)
        >>> acc_diff = partial(difference, accuracy_score)
        >>> one_vs_rest(acc_diff, y, y_pred, prot_attr=['sex', 'age'])
        [0.11338121840915127,
         -0.013775118883264326,
         0.018450658952105403,
         -0.04119677790563869]
    """
    groups, _ = check_groups(y_true, prot_attr)
    unique_groups = np.unique(groups)
    func_vals = []
    for g in unique_groups:
        func_vals.append(func(y_true, y_pred, prot_attr=prot_attr, priv_group=g,
                              **kwargs))
    if return_groups:
        return func_vals, unique_groups
    return func_vals


# =========================== SCORER FACTORY =================================
def make_scorer(score_func, is_ratio=False, **kwargs):
    """Make a scorer from a 'difference' or 'ratio' metric (e.g.
    :func:`statistical_parity_difference`).

    Args:
        score_func (callable): A ratio/difference metric with signature
            ``score_func(y, y_pred, **kwargs)``.
        is_ratio (boolean, optional): Indicates if the metric is ratio or
        difference based.
    """
    if is_ratio:

        def score(y, y_pred, **kwargs):
            ratio = score_func(y, y_pred, **kwargs)
            eps = np.finfo(float).eps
            ratio_inverse = 1 / ratio if ratio > eps else eps
            return min(ratio, ratio_inverse)

        scorer = _make_scorer(score, **kwargs)
    else:

        def score(y, y_pred, **kwargs):
            diff = score_func(y, y_pred, **kwargs)
            return abs(diff)

        scorer = _make_scorer(score, greater_is_better=False, **kwargs)
    return scorer

# ================================ HELPERS =====================================
def num_samples(y_true, y_pred=None, sample_weight=None):
    """Compute the number of samples.

    Args:
        y_true (array-like): Ground truth (correct) target values.
        y_pred (array-like): Estimated targets. Ignored.
        sample_weight (array-like, optional): Sample weights.

    Returns:
        float: (Weighted) number of samples.
    """
    sample_weight = check_inputs(y_true, y_true, sample_weight, ensure_2d=False)[2]
    return sum(sample_weight)

def num_pos_neg(y_true, y_pred=None, pos_label=1, sample_weight=None):
    """Compute the number of positive and negative samples.

    Args:
        y_true (array-like): Ground truth (correct) target values. If y_pred is
            provided, this is ignored.
        y_pred (array-like): Estimated targets as returned by a classifier.
        pos_label (scalar, optional): The label of the positive class.
        sample_weight (array-like, optional): Sample weights.

    Returns:
        tuple:
            Number of positives and negatives.

            * **n_positive** (`float`) -- (Weighted) number of positive samples.
            * **n_negative** (`float`) -- (Weighted) number of negative samples.
    """
    y = y_true if y_pred is None else y_pred
    sample_weight = check_inputs(y_true, y, sample_weight, ensure_2d=False)[2]
    pos = (y == pos_label).tolist()
    neg = (y != pos_label).tolist()
    return sum(sample_weight[pos]), sum(sample_weight[neg])

def specificity_score(y_true, y_pred, *, pos_label=1, sample_weight=None,
                      zero_division='warn'):
    """Compute the specificity or true negative rate.

    Args:
        y_true (array-like): Ground truth (correct) target values.
        y_pred (array-like): Estimated targets as returned by a classifier.
        pos_label (scalar, optional): The label of the positive class.
        sample_weight (array-like, optional): Sample weights.
        zero_division ('warn', 0 or 1): Sets the value to return when there is a
            zero division. If set to “warn”, this acts as 0, but warnings are
            also raised.
    """
    _check_zero_division(zero_division)
    MCM = multilabel_confusion_matrix(y_true, y_pred, labels=[pos_label],
                                      sample_weight=sample_weight)
    tn, fp = MCM[:, 0, 0], MCM[:, 0, 1]
    negs = tn + fp
    return _prf_divide(tn, negs, 'specificity', 'negative', None,
                       ('specificity',), zero_division).item()

def false_omission_rate_error(y_true, y_pred, *, pos_label=1, sample_weight=None,
                      zero_division='warn'):
    """Compute the false omission rate.

    Args:
        y_true (array-like): Ground truth (correct) target values.
        y_pred (array-like): Estimated targets as returned by a classifier.
        pos_label (scalar, optional): The label of the positive class.
        sample_weight (array-like, optional): Sample weights.
        zero_division ('warn', 0 or 1): Sets the value to return when there is a
            zero division. If set to “warn”, this acts as 0, but warnings are
            also raised.
    """
    _check_zero_division(zero_division)
    MCM = multilabel_confusion_matrix(y_true, y_pred, labels=[pos_label],
                                      sample_weight=sample_weight)
    tn, fn = MCM[:, 0, 0], MCM[:, 1, 0]
    negs = tn + fn
    return _prf_divide(fn, negs, 'false omission rate', 'predicted negative', None,
                       ('false omission rate',), zero_division).item()

def base_rate(y_true, y_pred=None, *, pos_label=1, sample_weight=None):
    r"""Compute the base rate, :math:`Pr(Y = \text{pos_label}) = \frac{P}{P+N}`.

    Args:
        y_true (array-like): Ground truth (correct) target values.
        y_pred (array-like, optional): Estimated targets. Ignored.
        pos_label (scalar, optional): The label of the positive class.
        sample_weight (array-like, optional): Sample weights.

    Returns:
        float: Base rate.
    """
    idx = (y_true == pos_label)
    return np.average(idx, weights=sample_weight)

def selection_rate(y_true, y_pred, *, pos_label=1, sample_weight=None):
    r"""Compute the selection rate, :math:`Pr(\hat{Y} = \text{pos_label}) =
    \frac{TP + FP}{P + N}`.

    Args:
        y_true (array-like): Ground truth (correct) target values. Ignored.
        y_pred (array-like): Estimated targets as returned by a classifier.
        pos_label (scalar, optional): The label of the positive class.
        sample_weight (array-like, optional): Sample weights.

    Returns:
        float: Selection rate.
    """
    return base_rate(y_pred, pos_label=pos_label, sample_weight=sample_weight)

def smoothed_base_rate(y_true, y_pred=None, *, concentration=1.0, pos_label=1,
                       sample_weight=None):
    r"""Compute the smoothed base rate,
    :math:`\frac{P + \alpha}{P + N + |R_Y|\alpha}`.

    Args:
        y_true (array-like): Ground truth (correct) target values.
        y_pred (array-like, optional): Estimated targets. Ignored.
        concentration (scalar): Dirichlet smoothing concentration parameter
            :math:`|R_Y|\alpha` (must be non-negative).
        pos_label (scalar, optional): The label of the positive class.
        sample_weight (array-like, optional): Sample weights.

    Returns:
        float: Smoothed base rate.
    """
    if concentration < 0:
        raise ValueError("Concentration parameter must be non-negative.")
    num_classes = len(np.unique(y_true))
    idx = (y_true == pos_label)
    avg, tot = np.average(idx, weights=sample_weight, returned=True)
    return (avg*tot + concentration/num_classes) / (tot + concentration)

def smoothed_selection_rate(y_true, y_pred, *, concentration=1.0, pos_label=1,
                            sample_weight=None):
    r"""Compute the smoothed selection rate,
    :math:`\frac{TP + FP + \alpha}{P + N + |R_Y|\alpha}`.

    Args:
        y_true (array-like): Ground truth (correct) target values. Ignored.
        y_pred (array-like): Estimated targets as returned by a classifier.
        concentration (scalar): Dirichlet smoothing concentration parameter
            :math:`|R_Y|\alpha` (must be non-negative).
        pos_label (scalar, optional): The label of the positive class.
        sample_weight (array-like, optional): Sample weights.

    Returns:
        float: Smoothed selection rate.
    """
    return smoothed_base_rate(y_pred, concentration=concentration,
                              pos_label=pos_label, sample_weight=sample_weight)

def generalized_fpr(y_true, probas_pred, *, pos_label=1, sample_weight=None,
                    zero_division='warn'):
    r"""Return the ratio of generalized false positives to negative examples in
    the dataset, :math:`GFPR = \tfrac{GFP}{N}`.

    Generalized confusion matrix measures such as this are calculated by summing
    the probabilities of the positive class instead of the hard predictions.

    Args:
        y_true (array-like): Ground-truth (correct) target values.
        probas_pred (array-like): Probability estimates of the positive class.
        pos_label (scalar, optional): The label of the positive class.
        sample_weight (array-like, optional): Sample weights.
        zero_division ('warn', 0 or 1): Sets the value to return when there is a
            zero division. If set to “warn”, this acts as 0, but warnings are
            also raised.

    Returns:
        float: Generalized false positive rate.
    """
    _check_zero_division(zero_division)
    y_true, probas_pred, sample_weight = check_inputs(y_true, probas_pred,
                                                      sample_weight, False)

    idx = (y_true != pos_label)
    gfp = np.array([np.dot(probas_pred[idx], sample_weight[idx])])
    neg = np.array([sample_weight[idx].sum()])
    return _prf_divide(gfp, neg, 'generalized FPR', 'negative', None,
                       ('generalized FPR',), zero_division).item()

def generalized_fnr(y_true, probas_pred, *, pos_label=1, sample_weight=None,
                    zero_division='warn'):
    r"""Return the ratio of generalized false negatives to positive examples in
    the dataset, :math:`GFNR = \tfrac{GFN}{P}`.

    Generalized confusion matrix measures such as this are calculated by summing
    the probabilities of the positive class instead of the hard predictions.

    Args:
        y_true (array-like): Ground-truth (correct) target values.
        probas_pred (array-like): Probability estimates of the positive class.
        pos_label (scalar, optional): The label of the positive class.
        sample_weight (array-like, optional): Sample weights.
        zero_division ('warn', 0 or 1): Sets the value to return when there is a
            zero division. If set to “warn”, this acts as 0, but warnings are
            also raised.

    Returns:
        float: Generalized false negative rate.
    """
    _check_zero_division(zero_division)
    y_true, probas_pred, sample_weight = check_inputs(y_true, probas_pred,
                                                      sample_weight, False)

    idx = (y_true == pos_label)
    gfn = np.array([np.dot(1 - probas_pred[idx], sample_weight[idx])])
    pos = np.array([sample_weight[idx].sum()])
    return _prf_divide(gfn, pos, 'generalized FNR', 'positive', None,
                       ('generalized FNR',), zero_division).item()


# ============================ GROUP FAIRNESS ==================================
def statistical_parity_difference(y_true, y_pred=None, *, prot_attr=None,
                                  priv_group=1, pos_label=1, sample_weight=None):
    r"""Difference in selection rates.

    .. math::
        Pr(\hat{Y} = \text{pos_label} | D = \text{unprivileged})
        - Pr(\hat{Y} = \text{pos_label} | D = \text{privileged})

    Note:
        If only y_true is provided, this will return the difference in base
        rates (statistical parity difference of the original dataset). If both
        y_true and y_pred are provided, only y_pred is used.

    Args:
        y_true (pandas.Series): Ground truth (correct) target values. If y_pred
            is provided, this is ignored.
        y_pred (array-like, optional): Estimated targets as returned by a
            classifier.
        prot_attr (array-like, keyword-only): Protected attribute(s). If
            ``None``, all protected attributes in y_true are used.
        priv_group (scalar, optional): The label of the privileged group.
        pos_label (scalar, optional): The label of the positive class.
        sample_weight (array-like, optional): Sample weights.

    Returns:
        float: Statistical parity difference.

    See also:
        :func:`selection_rate`, :func:`base_rate`
    """
    rate = base_rate if y_pred is None else selection_rate
    return difference(rate, y_true, y_pred, prot_attr=prot_attr,
                      priv_group=priv_group, pos_label=pos_label,
                      sample_weight=sample_weight)

def disparate_impact_ratio(y_true, y_pred=None, *, prot_attr=None, priv_group=1,
                           pos_label=1, sample_weight=None, zero_division='warn'):
    r"""Ratio of selection rates.

    .. math::
        \frac{Pr(\hat{Y} = \text{pos_label} | D = \text{unprivileged})}
        {Pr(\hat{Y} = \text{pos_label} | D = \text{privileged})}

    Note:
        If only y_true is provided, this will return the ratio of base rates
        (disparate impact of the original dataset). If both y_true and y_pred
        are provided, only y_pred is used.

    Args:
        y_true (pandas.Series): Ground truth (correct) target values. If y_pred
            is provided, this is ignored.
        y_pred (array-like, optional): Estimated targets as returned by a
            classifier.
        prot_attr (array-like, keyword-only): Protected attribute(s). If
            ``None``, all protected attributes in y_true are used.
        priv_group (scalar, optional): The label of the privileged group.
        pos_label (scalar, optional): The label of the positive class.
        sample_weight (array-like, optional): Sample weights.
        zero_division ('warn', 0 or 1): Sets the value to return when there is a
            zero division. If set to “warn”, this acts as 0, but warnings are
            also raised.

    Returns:
        float: Disparate impact.

    See also:
        :func:`selection_rate`, :func:`base_rate`
    """
    rate = base_rate if y_pred is None else selection_rate
    return ratio(rate, y_true, y_pred, prot_attr=prot_attr,
                 priv_group=priv_group, pos_label=pos_label,
                 sample_weight=sample_weight, zero_division=zero_division)

def equal_opportunity_difference(y_true, y_pred, *, prot_attr=None,
                                 priv_group=1, pos_label=1, sample_weight=None):
    r"""A relaxed version of equality of opportunity.

    Returns the difference in recall scores (TPR) between the unprivileged and
    privileged groups. A value of 0 indicates equality of opportunity.

    Args:
        y_true (pandas.Series): Ground truth (correct) target values.
        y_pred (array-like): Estimated targets as returned by a classifier.
        prot_attr (array-like, keyword-only): Protected attribute(s). If
            ``None``, all protected attributes in y_true are used.
        priv_group (scalar, optional): The label of the privileged group.
        pos_label (scalar, optional): The label of the positive class.
        sample_weight (array-like, optional): Sample weights.

    Returns:
        float: Equal opportunity difference.

    See also:
        :func:`~sklearn.metrics.recall_score`
    """
    return difference(recall_score, y_true, y_pred, prot_attr=prot_attr,
                      priv_group=priv_group, pos_label=pos_label,
                      sample_weight=sample_weight)

def average_odds_difference(y_true, y_pred, *, prot_attr=None, priv_group=1,
                            pos_label=1, sample_weight=None):
    r"""A relaxed version of equality of odds.

    Returns the average of the difference in FPR and TPR for the unprivileged
    and privileged groups:

    .. math::

        \dfrac{(FPR_{D = \text{unprivileged}} - FPR_{D = \text{privileged}})
        + (TPR_{D = \text{unprivileged}} - TPR_{D = \text{privileged}})}{2}

    A value of 0 indicates equality of odds.

    Args:
        y_true (pandas.Series): Ground truth (correct) target values.
        y_pred (array-like): Estimated targets as returned by a classifier.
        prot_attr (array-like, keyword-only): Protected attribute(s). If
            ``None``, all protected attributes in y_true are used.
        priv_group (scalar, optional): The label of the privileged group.
        pos_label (scalar, optional): The label of the positive class.
        sample_weight (array-like, optional): Sample weights.

    Returns:
        float: Average odds difference.
    """
    fpr_diff = -difference(specificity_score, y_true, y_pred,
                           prot_attr=prot_attr, priv_group=priv_group,
                           pos_label=pos_label, sample_weight=sample_weight)
    tpr_diff = difference(recall_score, y_true, y_pred, prot_attr=prot_attr,
                          priv_group=priv_group, pos_label=pos_label,
                          sample_weight=sample_weight)
    return (tpr_diff + fpr_diff) / 2

def average_odds_error(y_true, y_pred, *, prot_attr=None, priv_group=None,
                       pos_label=1, sample_weight=None):
    r"""A relaxed version of equality of odds.

    Returns the average of the absolute difference in FPR and TPR for the
    unprivileged and privileged groups:

    .. math::

        \dfrac{|FPR_{D = \text{unprivileged}} - FPR_{D = \text{privileged}}|
        + |TPR_{D = \text{unprivileged}} - TPR_{D = \text{privileged}}|}{2}

    A value of 0 indicates equality of odds.

    Args:
        y_true (pandas.Series): Ground truth (correct) target values.
        y_pred (array-like): Estimated targets as returned by a classifier.
        prot_attr (array-like, keyword-only): Protected attribute(s). If
            ``None``, all protected attributes in y_true are used.
        priv_group (scalar, optional): The label of the privileged group. If
            prot_attr is binary, this may be ``None``.
        pos_label (scalar, optional): The label of the positive class.
        sample_weight (array-like, optional): Sample weights.

    Returns:
        float: Average odds error.
    """
    if priv_group is None:
        priv_group = check_groups(y_true, prot_attr=prot_attr,
                                  ensure_binary=True)[0][0]
    fpr_diff = -difference(specificity_score, y_true, y_pred,
                           prot_attr=prot_attr, priv_group=priv_group,
                           pos_label=pos_label, sample_weight=sample_weight)
    tpr_diff = difference(recall_score, y_true, y_pred, prot_attr=prot_attr,
                          priv_group=priv_group, pos_label=pos_label,
                          sample_weight=sample_weight)
    return (abs(tpr_diff) + abs(fpr_diff)) / 2

def average_predictive_value_difference(y_true, y_pred, *, prot_attr=None, priv_group=1,
                            pos_label=1, sample_weight=None):
    r"""Returns the average of the difference in positive predictive value and false omission rate for the unprivileged and privileged groups:

    .. math::

        \dfrac{(PPV_{D = \text{unprivileged}} - PPV_{D = \text{privileged}})
        + (FOR_{D = \text{unprivileged}} - FOR_{D = \text{privileged}})}{2}

    A value of 0 indicates equality of chance of success.

    Args:
        y_true (pandas.Series): Ground truth (correct) target values.
        y_pred (array-like): Estimated targets as returned by a classifier.
        prot_attr (array-like, keyword-only): Protected attribute(s). If
            ``None``, all protected attributes in y_true are used.
        priv_group (scalar, optional): The label of the privileged group.
        pos_label (scalar, optional): The label of the positive class.
        sample_weight (array-like, optional): Sample weights.

    Returns:
        float: Average predictive value difference.
    """
    for_diff = difference(false_omission_rate_error, y_true, y_pred,
                           prot_attr=prot_attr, priv_group=priv_group,
                           pos_label=pos_label, sample_weight=sample_weight)
    ppv_diff = difference(precision_score, y_true, y_pred, prot_attr=prot_attr,
                          priv_group=priv_group, pos_label=pos_label,
                          sample_weight=sample_weight)
    return (ppv_diff + for_diff) / 2

def class_imbalance(y_true, y_pred=None, *, prot_attr=None, priv_group=1,
                    sample_weight=None):
    r"""Compute the class imbalance, :math:`\frac{N_u - N_p}{N_u + N_p}`.

    Where :math:`N_u` is the number of samples in the unprivileged group and
    :math:`N_p` is the number of samples in the privileged group.

    Args:
        y_true (pandas.Series): Ground truth (correct) target values.
        y_pred (array-like, optional): Estimated targets. Ignored.
        prot_attr (array-like, keyword-only): Protected attribute(s). If
            ``None``, all protected attributes in y_true are used.
        priv_group (scalar): The label of the privileged group.
        sample_weight (array-like, optional): Sample weights.

    Returns:
        float: Class imbalance.
    """
    diff = difference(num_samples, y_true, prot_attr=prot_attr,
                      priv_group=priv_group, sample_weight=sample_weight)
    return diff / num_samples(y_true, sample_weight=sample_weight)

def kl_divergence(y_true, y_pred=None, *, prot_attr=None, priv_group=1,
                  sample_weight=None):
    r"""Compute the Kullback-Leibler divergence, :math:`KL(P_p||P_u) = \sum_y
    P_p(y)\log\left(\frac{P_p(y)}{P_u(y)}\right)`

    where :math:`P_p` is the probability distribution over labels of the
    privileged group and, similiarly, :math:`P_u` is the distribution of the
    unprivileged group.

    Args:
        y_true (pandas.Series): Ground truth (correct) target values. If y_pred
            is provided, this is ignored.
        y_pred (array-like, optional): Estimated targets as returned by a
            classifier.
        prot_attr (array-like, keyword-only): Protected attribute(s). If
            ``None``, all protected attributes in y_true are used.
        priv_group (scalar): The label of the privileged group.
        sample_weight (array-like, optional): Sample weights.

    Returns:
        float: KL divergence.
    """
    rate = base_rate if y_pred is None else selection_rate
    support = np.unique(y_true)  # TODO: is it correct to always use y_true?
    groups, _ = check_groups(y_true, prot_attr, ensure_binary=True)
    priv = np.unique(groups).tolist().index(priv_group)
    P1, P2 = zip(*[intersection(rate, y_true, y_pred, prot_attr=prot_attr,
                                pos_label=i, sample_weight=sample_weight)
                   for i in support])
    return sum(rel_entr(P1, P2)) if priv == 0 else sum(rel_entr(P2, P1))

def conditional_demographic_disparity(y_true, y_pred=None, *, prot_attr=None,
                                      pos_label=1, sample_weight=None):
    r"""Conditional demographic disparity, :math:`CDD = \frac{1}{\sum_i N_i}
    \sum_i N_i\cdot DD_i`

    where :math:`DD_i = \frac{N_{i, -}}{\sum_j N_{j, -}} - \frac{N_{i, +}}{
    \sum_j N_{j, +}}`.

    :math:`N_{i, +}` signifies the number of samples belonging to group
    :math:`i` that have favorable labels while :math:`N_{i, -}` signifies those
    that have negative labels [#watcher21]_.

    Args:
        y_true (pandas.Series): Ground truth (correct) target values. If y_pred
            is provided, this is ignored.
        y_pred (array-like): Estimated targets as returned by a classifier.
        prot_attr (array-like, keyword-only): Protected attribute(s). If
            ``None``, all protected attributes in y_true are used.
        pos_label (scalar, optional): The label of the positive class.
        sample_weight (array-like, optional): Sample weights.

    Returns:
        float: Conditional demographic disparity.

    References:
        .. [#watcher21] `S. Wachter, B. Mittelstadt, and C. Russell, "Why
           fairness cannot be automated: Bridging the gap between EU
           non-discrimination law and AI," Computer Law & Security Review,
           Volume 41, 2021. <https://doi.org/10.1016/j.clsr.2021.105567>`_
    """
    def dd(y_true, y_pred=None, pop_pos=1, pop_neg=1, pos_label=1,
           sample_weight=None):
        y_group = y_true if y_pred is None else y_pred
        y_pos, y_neg = num_pos_neg(y_group, pos_label=pos_label,
                                   sample_weight=sample_weight)
        return y_neg/pop_neg - y_pos/pop_pos

    pop_pos, pop_neg = num_pos_neg(y_true, y_pred, pos_label=pos_label,
                                   sample_weight=sample_weight)
    ddi = intersection(dd, y_true, y_pred, pop_pos=pop_pos, pop_neg=pop_neg,
                       prot_attr=prot_attr, pos_label=pos_label,
                       sample_weight=sample_weight)
    n = intersection(num_samples, y_true, prot_attr=prot_attr,
                     sample_weight=sample_weight)
    return np.dot(n, ddi) / sum(n)

# TODO: use soft scores if y is probas_pred
def smoothed_edf(y_true, y_pred=None, *, prot_attr=None, pos_label=1,
                 concentration=1.0, sample_weight=None):
    r"""Smoothed empirical differential fairness (EDF).

    .. math::
        e^{-\epsilon} \leq \frac{\sum_{A=s_i}{P(y|x)} + \alpha}{N_{s_i} + |R_Y|\alpha}
        \frac{N_{s_j} + |R_Y|\alpha}{\sum_{A=s_j}{P(y|x) + \alpha}} \leq e^\epsilon

    See [#foulds18]_ for more details.

    Note:
        If only y_true is provided, this will return the maximum epsilon for any
        two intersectional groups (smoothed EDF of the original dataset). If
        both y_true and y_pred are provided, only y_pred is used.

    Args:
        y_true (pandas.Series): Ground truth (correct) target values. If y_pred
            is provided, this is ignored.
        y_pred (array-like, optional): Estimated targets as returned by a
            classifier.
        prot_attr (array-like, keyword-only): Protected attribute(s). If
            ``None``, all protected attributes in y_true are used.
        pos_label (scalar, optional): The label of the positive class.
        concentration (scalar, optional): Dirichlet smoothing concentration
            parameter :math:`|R_Y|\alpha` (must be non-negative).
        sample_weight (array-like, optional): Sample weights.

    Returns:
        float: Smoothed EDF, :math:`\epsilon`. Lower is better.

    See also:
        :func:`intersection`, :func:`smoothed_base_rate`

    References:
        .. [#foulds18] J. R. Foulds, R. Islam, K. N. Keya, and S. Pan,
           "An Intersectional Definition of Fairness," arXiv preprint
           arXiv:1807.08362, 2018.
    """
    rate = smoothed_base_rate if y_pred is None else smoothed_selection_rate
    sbr = intersection(rate, y_true, y_pred, prot_attr=prot_attr,
                       sample_weight=sample_weight, pos_label=pos_label,
                       concentration=concentration)

    logsbr = np.log(sbr)
    pos_ratio = max(abs(i - j) for i, j in permutations(logsbr, 2))
    lognegsbr = np.log(1 - np.array(sbr))
    neg_ratio = max(abs(i - j) for i, j in permutations(lognegsbr, 2))
    return max(pos_ratio, neg_ratio)

def df_bias_amplification(y_true, y_pred, *, prot_attr=None, pos_label=1,
                          concentration=1.0, sample_weight=None):
    r"""Differential fairness bias amplification.

    Measures the increase in unfairness attributable to a classifier compared to
    the original data. See [#foulds18]_ for more details.

    Args:
        y_true (pandas.Series): Ground truth (correct) target values.
        y_pred (array-like): Estimated targets as returned by a classifier.
        prot_attr (array-like, keyword-only): Protected attribute(s). If
            ``None``, all protected attributes in y_true are used.
        pos_label (scalar, optional): The label of the positive class.
        concentration (scalar, optional): Dirichlet smoothing concentration
            parameter :math:`|R_Y|\alpha` (must be non-negative).
        sample_weight (array-like, optional): Sample weights.

    Returns:
        float: Difference in smoothed EDF between the classifier and the
        original dataset, :math:`\epsilon_{\text{classifier}}
        - \epsilon_{\text{data}}`. Lower is better.

    References:
        .. [#foulds18] J. R. Foulds, R. Islam, K. N. Keya, and S. Pan,
           "An Intersectional Definition of Fairness," arXiv preprint
           arXiv:1807.08362, 2018.
    """
    eps_true = smoothed_edf(y_true, prot_attr=prot_attr, pos_label=pos_label,
                            concentration=concentration,
                            sample_weight=sample_weight)
    eps_pred = smoothed_edf(y_true, y_pred, prot_attr=prot_attr,
                            pos_label=pos_label, concentration=concentration,
                            sample_weight=sample_weight)
    return eps_pred - eps_true

def mdss_bias_score(y_true, probas_pred, X=None, subset=None, *, pos_label=1,
                    scoring='Bernoulli', privileged=True, penalty=1e-17,
                    **kwargs):
    """Compute the bias score for a prespecified group of records using a
    given scoring function.

    Args:
        y_true (array-like): Ground truth (correct) target values.
        probas_pred (array-like): Probability estimates of the positive class.
        X (DataFrame, optional): The dataset (containing the features) that was
            used to predict `probas_pred`. If not specified, the subset is
            returned as indices.
        subset (dict, optional): Mapping of column names to list of values.
            Samples are included in the subset if they match any value in each
            of the columns provided. If `X` is not specified, `subset` may
            be of the form `{'index': [0, 1, ...]}` or `None`. If `None`, score
            over the full set (note: `penalty` is irrelevant in this case).
        pos_label (scalar, optional): Label of the positive class.
        scoring (str or class): One of 'Bernoulli' or 'BerkJones' or
            subclass of
            :class:`aif360.metrics.mdss.ScoringFunctions.ScoringFunction`.
        privileged (bool): Flag for which direction to scan: privileged
            (``True``) implies negative (observed worse than predicted outcomes)
            while unprivileged (``False``) implies positive (observed better
            than predicted outcomes).
        penalty (scalar): Penalty coefficient. Should be positive. The higher
            the penalty, the less complex (number of features and feature
            values) the highest scoring subset that gets returned is.
        **kwargs: Additional kwargs to be passed to `scoring` (not including
            `direction`).

    Returns:
        float: Bias score for the given group.

    See also:
        :func:`mdss_bias_scan`
    """

    if X is None:
        X = pd.DataFrame({'index': range(len(y_true))})
    else:
        X = X.reset_index(drop=True)  # match all indices

    expected = pd.Series(probas_pred).reset_index(drop=True)
    outcomes = pd.Series(y_true == pos_label, dtype=int).reset_index(drop=True)

    direction = 'negative' if privileged else 'positive'
    kwargs['direction'] = direction

    if scoring == 'Bernoulli':
        scoring_function = Bernoulli(**kwargs)
    elif scoring == 'BerkJones':
        scoring_function = BerkJones(**kwargs)
    else:
        scoring_function = scoring(**kwargs)
    scanner = MDSS(scoring_function)

    return scanner.score_current_subset(X, expected, outcomes, subset or {}, penalty)

@deprecated('Change to new interface - aif360.sklearn.detectors.mdss_detector.bias_scan by version 0.5.0.')
def mdss_bias_scan(y_true, probas_pred, X=None, *, pos_label=1,
                   scoring='Bernoulli', privileged=True, n_iter=10,
                   penalty=1e-17, **kwargs):
    """Scan to find the highest scoring subset of records.

    Bias scan is a technique to identify bias in predictive models using subset
    scanning [#zhang16]_.

    Args:
        y_true (array-like): Ground truth (correct) target values.
        probas_pred (array-like): Probability estimates of the positive class.
        X (dataframe, optional): The dataset (containing the features) that was
            used to predict `probas_pred`. If not specified, the subset is
            returned as indices.
        pos_label (scalar): Label of the positive class.
        scoring (str or class): One of 'Bernoulli' or 'BerkJones' or
            subclass of
            :class:`aif360.metrics.mdss.ScoringFunctions.ScoringFunction`.
        privileged (bool): Flag for which direction to scan: privileged
            (``True``) implies negative (observed worse than predicted outcomes)
            while unprivileged (``False``) implies positive (observed better
            than predicted outcomes).
        n_iter (scalar): Number of iterations (random restarts).
        penalty (scalar): Penalty coefficient. Should be positive. The higher
            the penalty, the less complex (number of features and feature
            values) the highest scoring subset that gets returned is.
        **kwargs: Additional kwargs to be passed to `scoring` (not including
            `direction`).

    Returns:
        tuple:
            Highest scoring subset and its bias score

            * **subset** (dict) -- Mapping of features to values defining the
              highest scoring subset.
            * **score** (float) -- Bias score for that group.

    See also:
        :func:`mdss_bias_score`

    References:
        .. [#zhang16] `Zhang, Z. and Neill, D. B., "Identifying significant
           predictive bias in classifiers," arXiv preprint, 2016.
           <https://arxiv.org/abs/1611.08292>`_
    """
    if X is None:
        X = pd.DataFrame({'index': range(len(y_true))})
    else:
        X = X.reset_index(drop=True)  # match all indices

    expected = pd.Series(probas_pred).reset_index(drop=True)
    outcomes = pd.Series(y_true == pos_label, dtype=int).reset_index(drop=True)

    direction = 'negative' if privileged else 'positive'
    kwargs['direction'] = direction
    if scoring == 'Bernoulli':
        scoring_function = Bernoulli(**kwargs)
    elif scoring == 'BerkJones':
        scoring_function = BerkJones(**kwargs)
    else:
        scoring_function = scoring(**kwargs)
    scanner = MDSS(scoring_function)

    return scanner.scan(X, expected, outcomes, penalty, n_iter)


# ========================== INDIVIDUAL FAIRNESS ===============================
def generalized_entropy_index(b, alpha=2):
    r"""Generalized entropy index measures inequality over a population.

    .. math::

        \mathcal{E}(\alpha) = \begin{cases}
            \frac{1}{n \alpha (\alpha-1)}\sum_{i=1}^n\left[\left(\frac{b_i}{\mu}\right)^\alpha - 1\right],& \alpha \ne 0, 1,\\
            \frac{1}{n}\sum_{i=1}^n\frac{b_{i}}{\mu}\ln\frac{b_{i}}{\mu},& \alpha=1,\\
            -\frac{1}{n}\sum_{i=1}^n\ln\frac{b_{i}}{\mu},& \alpha=0.
        \end{cases}

    Args:
        b (array-like): Parameter over which to calculate the entropy index.
        alpha (scalar): Parameter that regulates the weight given to distances
            between values at different parts of the distribution. A value of 0
            is equivalent to the mean log deviation, 1 is the Theil index, and 2
            is half the squared coefficient of variation.
    """
    if alpha == 0:
        return -(np.log(b / b.mean()) / b.mean()).mean()
    elif alpha == 1:
        # moving the b inside the log allows for 0 values
        return (np.log((b / b.mean())**b) / b.mean()).mean()
    else:
        return ((b / b.mean())**alpha - 1).mean() / (alpha * (alpha - 1))

def generalized_entropy_error(y_true, y_pred, alpha=2, pos_label=1):
    #                           sample_weight=None):
    r"""Compute the generalized entropy.

    Generalized entropy index is proposed as a unified individual and
    group fairness measure in [#speicher18]_.

    Uses :math:`b_i = \hat{y}_i - y_i + 1`. See
    :func:`generalized_entropy_index` for details.

    Args:
        y_true (array-like): Ground truth (correct) target values.
        y_pred (array-like): Estimated targets as returned by a classifier.
        alpha (scalar, optional): Parameter that regulates the weight given to
            distances between values at different parts of the distribution. A
            value of 0 is equivalent to the mean log deviation, 1 is the Theil
            index, and 2 is half the squared coefficient of variation.
        pos_label (scalar, optional): The label of the positive class.

    See also:
        :func:`generalized_entropy_index`

    References:
        .. [#speicher18] `T. Speicher, H. Heidari, N. Grgic-Hlaca,
           K. P. Gummadi, A. Singla, A. Weller, and M. B. Zafar, "A Unified
           Approach to Quantifying Algorithmic Unfairness: Measuring Individual
           and Group Unfairness via Inequality Indices," ACM SIGKDD
           International Conference on Knowledge Discovery and Data Mining,
           2018. <https://dl.acm.org/citation.cfm?id=3220046>`_
    """
    b = 1 + (y_pred == pos_label) - (y_true == pos_label)
    return generalized_entropy_index(b, alpha=alpha)

def between_group_generalized_entropy_error(y_true, y_pred, prot_attr=None,
        priv_group=None, alpha=2, pos_label=1):
    r"""Compute the between-group generalized entropy.

    Between-group generalized entropy index is proposed as a group
    fairness measure in [#speicher18]_ and is one of two terms that the
    generalized entropy index decomposes to.

    Args:
        y_true (pandas.Series): Ground truth (correct) target values.
        y_pred (array-like): Estimated targets as returned by a classifier.
        prot_attr (array-like, optional): Protected attribute(s). If ``None``,
            all protected attributes in y_true are used.
        priv_group (scalar, optional): The label of the privileged group. If
            provided, the index will be computed between only the privileged and
            unprivileged groups. Otherwise, the index will be computed between
            all groups defined by the prot_attr.
        alpha (scalar, optional): Parameter that regulates the weight given to
            distances between values at different parts of the distribution. A
            value of 0 is equivalent to the mean log deviation, 1 is the Theil
            index, and 2 is half the squared coefficient of variation.
        pos_label (scalar, optional): The label of the positive class.

    See also:
        :func:`generalized_entropy_index`

    References:
        .. [#speicher18] `T. Speicher, H. Heidari, N. Grgic-Hlaca,
           K. P. Gummadi, A. Singla, A. Weller, and M. B. Zafar, "A Unified
           Approach to Quantifying Algorithmic Unfairness: Measuring Individual
           and Group Unfairness via Inequality Indices," ACM SIGKDD
           International Conference on Knowledge Discovery and Data Mining,
           2018. <https://dl.acm.org/citation.cfm?id=3220046>`_
    """
    groups, _ = check_groups(y_true, prot_attr)
    b = np.empty_like(y_true, dtype='float')
    if priv_group is not None:
        groups = [1 if g == priv_group else 0 for g in groups]
    for g in np.unique(groups):
        b[groups == g] = (1 + (y_pred[groups == g] == pos_label)
                            - (y_true[groups == g] == pos_label)).mean()
    return generalized_entropy_index(b, alpha=alpha)

def theil_index(b):
    r"""The Theil index is the :func:`generalized_entropy_index` with
    :math:`\alpha = 1`.

    Args:
        b (array-like): Parameter over which to calculate the entropy index.

    See also:
        :func:`generalized_entropy_index`
    """
    return generalized_entropy_index(b, alpha=1)

def coefficient_of_variation(b):
    r"""The coefficient of variation is the square root of two times the
    :func:`generalized_entropy_index` with :math:`\alpha = 2`.

    Args:
        b (array-like): Parameter over which to calculate the entropy index.

    See also:
        :func:`generalized_entropy_index`
    """
    return np.sqrt(2 * generalized_entropy_index(b, alpha=2))


# TODO: use sample_weight?
def consistency_score(X, y, n_neighbors=5):
    r"""Compute the consistency score.

    Individual fairness metric from [#zemel13]_ that measures how similar the
    labels are for similar instances.

    .. math::
        1 - \frac{1}{n}\sum_{i=1}^n |\hat{y}_i -
        \frac{1}{\text{n_neighbors}} \sum_{j\in\mathcal{N}_{\text{n_neighbors}}(x_i)} \hat{y}_j|

    Args:
        X (array-like): Sample features.
        y (array-like): Sample targets.
        n_neighbors (int, optional): Number of neighbors for the knn
            computation.

    References:
        .. [#zemel13] `R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork,
           "Learning Fair Representations," International Conference on Machine
           Learning, 2013. <http://proceedings.mlr.press/v28/zemel13.html>`_
    """
    # cast as ndarrays
    X, y = check_X_y(X, y)
    # learn a KNN on the features
    nbrs = NearestNeighbors(n_neighbors=n_neighbors, algorithm='ball_tree')
    nbrs.fit(X)
    indices = nbrs.kneighbors(X, return_distance=False)

    # compute consistency score
    return 1 - abs(y - y[indices].mean(axis=1)).mean()


# ================================ ALIASES =====================================
def sensitivity_score(y_true, y_pred, pos_label=1, sample_weight=None):
    """Alias of :func:`sklearn.metrics.recall_score` for binary classes only."""
    return recall_score(y_true, y_pred, pos_label=pos_label,
                        sample_weight=sample_weight)

def false_negative_rate_error(y_true, y_pred, pos_label=1, sample_weight=None):
    return 1 - recall_score(y_true, y_pred, pos_label=pos_label,
                            sample_weight=sample_weight)

def false_positive_rate_error(y_true, y_pred, pos_label=1, sample_weight=None):
    return 1 - specificity_score(y_true, y_pred, pos_label=pos_label,
                                 sample_weight=sample_weight)

def mean_difference(y_true, y_pred=None, *, prot_attr=None, priv_group=1,
                    pos_label=1, sample_weight=None):
    """Alias of :func:`statistical_parity_difference`."""
    return statistical_parity_difference(y_true, y_pred, prot_attr=prot_attr,
            priv_group=priv_group, pos_label=pos_label,
            sample_weight=sample_weight)