File size: 9,700 Bytes
d2a8669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
"""
Post-processing algorithms modify predictions to be more fair (predictions in,
predictions out).
"""
from logging import warning

import pandas as pd
from sklearn.base import BaseEstimator, MetaEstimatorMixin, clone
from sklearn.model_selection import train_test_split
from sklearn.utils.metaestimators import if_delegate_has_method

from aif360.sklearn.postprocessing.calibrated_equalized_odds import CalibratedEqualizedOdds
from aif360.sklearn.postprocessing.reject_option_classification import RejectOptionClassifier, RejectOptionClassifierCV


class PostProcessingMeta(BaseEstimator, MetaEstimatorMixin):
    """A meta-estimator which wraps a given estimator with a post-processing
    step.

    The post-processor trains on a separate training set from the estimator to
    prevent leakage.

    Note:
        Because of the dataset splitting, if a Pipeline is necessary it should
        be used as the input to this meta-estimator not the other way around.

    Attributes:
        estimator_: Fitted estimator.
        postprocessor_: Fitted postprocessor.
        classes_ (array, shape (n_classes,)): Class labels from `estimator_`.
    """

    def __init__(self, estimator, postprocessor, *, prefit=False, val_size=0.25,
                 **options):
        """
        Args:
            estimator (sklearn.BaseEstimator): Original estimator.
            postprocessor: Post-processing algorithm.
            prefit (bool): If ``True``, it is assumed that estimator has been
                fitted already and all data is used to train postprocessor.
            val_size (int or float): Size of validation set used to fit the
                postprocessor. The estimator fits on the remainder of the
                training set.
                See :func:`~sklearn.model_selection.train_test_split` for
                details.
            **options: Keyword options passed through to
                :func:`~sklearn.model_selection.train_test_split`.
                Note: 'train_size' and 'test_size' will be ignored in favor of
                'val_size'.
        """
        self.estimator = estimator
        self.postprocessor = postprocessor
        self.prefit = prefit
        self.val_size = val_size
        self.options = options

    @property
    def _estimator_type(self):
        return self.postprocessor._estimator_type

    @property
    def classes_(self):
        """Class labels from the base estimator."""
        return self.estimator_.classes_

    def fit(self, X, y, sample_weight=None, **fit_params):
        """Splits the training samples with
        :func:`~sklearn.model_selection.train_test_split` and uses the resultant
        'train' portion to train the estimator. Then the estimator predicts on
        the 'test' portion of the split data and the post-processor is trained
        with those prediction-ground-truth target pairs.

        Args:
            X (array-like): Training samples.
            y (pandas.Series): Training labels.
            sample_weight (array-like, optional): Sample weights.
            **fit_params: Parameters passed to the post-processor ``fit()``
                method. Note: these do not need to be prefixed with ``__``
                notation.

        Returns:
            self
        """
        self.postprocessor_ = clone(self.postprocessor)
        self.estimator_ = self.estimator if self.prefit else clone(self.estimator)

        try:
            use_proba = self.postprocessor._get_tags()['requires_proba']
        except KeyError:
            raise TypeError("`postprocessor` (type: {}) does not have a "
                            "'requires_proba' tag.".format(type(self.estimator)))
        if use_proba and not hasattr(self.estimator, 'predict_proba'):
            raise TypeError("`estimator` (type: {}) does not implement method "
                            "`predict_proba()`.".format(type(self.estimator)))

        if self.prefit:
            if len(self.options):
                warning("Splitting options were passed but prefit is True so "
                        "these are ignored.")
            y_score = (self.estimator_.predict_proba(X) if use_proba else
                       self.estimator_.predict(X))
            y_score = pd.DataFrame(y_score, index=X.index).squeeze('columns')
            fit_params = fit_params.copy()
            fit_params.update(labels=self.estimator_.classes_)
            self.postprocessor_.fit(y_score, y, sample_weight=sample_weight,
                                    **fit_params)
            return self

        if 'train_size' in self.options or 'test_size' in self.options:
            warning("'train_size' and 'test_size' are ignored in favor of "
                    "'val_size'")
        options_ = self.options.copy()
        options_['test_size'] = self.val_size
        if 'train_size' in options_:
            del options_['train_size']

        if sample_weight is not None:
            X_est, X_post, y_est, y_post, sw_est, sw_post = train_test_split(
                    X, y, sample_weight, **options_)
            self.estimator_.fit(X_est, y_est, sample_weight=sw_est)
        else:
            X_est, X_post, y_est, y_post = train_test_split(X, y, **options_)
            self.estimator_.fit(X_est, y_est)

        y_score = (self.estimator_.predict_proba(X_post) if use_proba else
                   self.estimator_.predict(X_post))
        y_score = pd.DataFrame(y_score, index=X_post.index).squeeze('columns')
        fit_params = fit_params.copy()
        fit_params.update(labels=self.estimator_.classes_)
        self.postprocessor_.fit(y_score, y_post, sample_weight=sw_post
                                if sample_weight is not None else None,
                                **fit_params)
        return self

    @if_delegate_has_method('postprocessor_')
    def predict(self, X):
        """Predict class labels for the given samples.

        First, runs ``self.estimator_.predict()`` (or ``predict_proba()`` if
        required) then returns the post-processed output from those predictions.

        Args:
            X (pandas.DataFrame): Test samples.

        Returns:
            numpy.ndarray: Predicted class label per sample.
        """
        use_proba = self.postprocessor_._get_tags()['requires_proba']
        y_score = (self.estimator_.predict_proba(X) if use_proba else
                   self.estimator_.predict(X))
        y_score = pd.DataFrame(y_score, index=X.index).squeeze('columns')
        return self.postprocessor_.predict(y_score)

    @if_delegate_has_method('postprocessor_')
    def predict_proba(self, X):
        """Probability estimates.

        First, runs ``self.estimator_.predict()`` (or ``predict_proba()`` if
        required) then returns the post-processed output from those predictions.

        The returned estimates for all classes are ordered by the label of
        classes.

        Args:
            X (pandas.DataFrame): Test samples.

        Returns:
            numpy.ndarray: Returns the probability of the sample for each class
            in the model, where classes are ordered as they are in
            ``self.classes_``.
        """
        use_proba = self.postprocessor_._get_tags()['requires_proba']
        y_score = (self.estimator_.predict_proba(X) if use_proba else
                   self.estimator_.predict(X))
        y_score = pd.DataFrame(y_score, index=X.index).squeeze('columns')
        return self.postprocessor_.predict_proba(y_score)

    @if_delegate_has_method('postprocessor_')
    def predict_log_proba(self, X):
        """Log of probability estimates.

        First, runs ``self.estimator_.predict()`` (or ``predict_proba()`` if
        required) then returns the post-processed output from those predictions.

        The returned estimates for all classes are ordered by the label of
        classes.

        Args:
            X (pandas.DataFrame): Test samples.

        Returns:
            array: Returns the log-probability of the sample for each class in
            the model, where classes are ordered as they are in
            ``self.classes_``.
        """
        use_proba = self.postprocessor_._get_tags()['requires_proba']
        y_score = (self.estimator_.predict_proba(X) if use_proba else
                   self.estimator_.predict(X))
        y_score = pd.DataFrame(y_score, index=X.index).squeeze('columns')
        return self.postprocessor_.predict_log_proba(y_score)

    @if_delegate_has_method('postprocessor_')
    def score(self, X, y, sample_weight=None):
        """Returns the output of the post-processor's score function on the
        given test data and labels.

        First, runs ``self.estimator_.predict()`` (or ``predict_proba()`` if
        required) then gets the post-processed output from those predictions and
        scores it.

        Args:
            X (pandas.DataFrame): Test samples.
            y (array-like): True labels for X.
            sample_weight (array-like, optional): Sample weights.

        Returns:
            float: Score value.
        """
        use_proba = self.postprocessor_._get_tags()['requires_proba']
        y_score = (self.estimator_.predict_proba(X) if use_proba else
                   self.estimator_.predict(X))
        y_score = pd.DataFrame(y_score, index=X.index).squeeze('columns')
        if sample_weight is None:
            return self.postprocessor_.score(y_score, y)
        return self.postprocessor_.score(y_score, y,
                                         sample_weight=sample_weight)


__all__ = [
    'CalibratedEqualizedOdds', 'PostProcessingMeta', 'RejectOptionClassifier',
    'RejectOptionClassifierCV'
]