Spaces:
Runtime error
Runtime error
File size: 16,679 Bytes
d2a8669 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
import warnings
import numpy as np
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.model_selection import GridSearchCV
from sklearn.utils.validation import check_is_fitted
from aif360.sklearn.metrics import statistical_parity_difference
from aif360.sklearn.metrics import average_odds_error
from aif360.sklearn.metrics import equal_opportunity_difference
from aif360.sklearn.metrics import disparate_impact_ratio
from aif360.sklearn.metrics import make_scorer
from aif360.sklearn.utils import check_groups
class RejectOptionClassifier(BaseEstimator, ClassifierMixin):
"""Reject option based classification (ROC) post-processor.
Reject option classification is a post-processing technique that gives
favorable outcomes to unprivileged groups and unfavorable outcomes to
privileged groups in a confidence band around the decision boundary with the
highest uncertainty [#kamiran12]_.
Note:
A :class:`~sklearn.pipeline.Pipeline` expects a single estimation step
but this class requires an estimator's predictions as input. See
:class:`PostProcessingMeta` for a workaround.
See also:
:class:`PostProcessingMeta`, :class:`RejectOptionClassifierCV`
References:
.. [#kamiran12] `F. Kamiran, A. Karim, and X. Zhang, "Decision Theory
for Discrimination-Aware Classification," IEEE International
Conference on Data Mining, 2012.
<https://ieeexplore.ieee.org/abstract/document/6413831>`_
Attributes:
prot_attr_ (str or list(str)): Protected attribute(s) used for post-
processing.
groups_ (array, shape (2,)): A list of group labels known to the
classifier. Note: this algorithm require a binary division of the
data.
classes_ (array, shape (num_classes,)): A list of class labels known to
the classifier. Note: this algorithm treats all non-positive
outcomes as negative (binary classification only).
pos_label_ (scalar): The label of the positive class.
priv_group_ (scalar): The label of the privileged group.
Examples:
RejectOptionClassifier can be easily paired with GridSearchCV to
find the best threshold and margin with respect to a fairness measure:
>>> from sklearn.model_selection import GridSearchCV
>>> roc = RejectOptionClassifier()
>>> param = [{'threshold': [t],
'margin': np.arange(0.05, min(t, 1-t)+0.025, 0.05)}
... for t in np.arange(0.05, 1., 0.05)]
>>> stat_par = make_scorer(statistical_parity_difference)
>>> scoring = {'bal_acc': 'balanced_accuracy', 'stat_par': stat_par}
>>> def refit(cv_res):
... return np.ma.array(cv_res['mean_test_bal_acc'],
... mask=cv_res['mean_test_stat_par'] < -0.1).argmax()
...
>>> grid = GridSearchCV(roc, param, scoring=scoring, refit=refit)
Or, alternatively, this can be done in one step with
RejectOptionClassifierCV:
>>> grid = RejectOptionClassifierCV(scoring='statistical_parity')
"""
def __init__(self, prot_attr=None, threshold=0.5, margin=0.1):
"""
Args:
prot_attr (single label or list-like, optional): Protected
attribute(s) to use in the post-processing. If more than one
attribute, all combinations of values (intersections) are
considered. Default is ``None`` meaning all protected attributes
from the dataset are used. Note: This algorithm requires there
be exactly 2 groups (privileged and unprivileged).
threshold (scalar): Classification threshold. Probability estimates
greater than this value are considered positive. Must be between
0 and 1.
margin (scalar): Half width of the critical region. Estimates within
the critical region are "rejected" and assigned according to
their group. Must be between 0 and min(threshold, 1-threshold).
metric ('statistical_parity', 'average_odds', 'equal_opportunity',
or callable):
"""
self.prot_attr = prot_attr
self.threshold = threshold
self.margin = margin
def _more_tags(self):
return {'requires_proba': True}
def fit(self, X, y, labels=None, pos_label=1, priv_group=1,
sample_weight=None):
"""This is essentially a no-op; it simply validates the inputs and
stores them for predict.
Args:
X (array-like): Ignored.
y (array-like): Ground-truth (correct) target values. Note: one of X
or y must contain protected attribute information.
labels (list, optional): The ordered set of labels values. Must
match the order of columns in X if provided. By default,
all labels in y are used in sorted order.
pos_label (scalar, optional): The label of the positive class.
priv_group (scalar, optional): The label of the privileged group.
sample_weight (array-like, optional): Ignored.
Returns:
self
"""
try:
groups, self.prot_attr_ = check_groups(X, self.prot_attr,
ensure_binary=True)
except TypeError:
groups, self.prot_attr_ = check_groups(y, self.prot_attr,
ensure_binary=True)
self.classes_ = np.array(labels) if labels is not None else np.unique(y)
self.groups_ = np.unique(groups)
self.pos_label_ = pos_label
self.priv_group_ = priv_group
if len(self.classes_) != 2:
raise ValueError('Only binary classification is supported.')
if pos_label not in self.classes_:
raise ValueError('pos_label={} is not in the set of labels. The '
'valid values are:\n{}'.format(pos_label, self.classes_))
if priv_group not in self.groups_:
raise ValueError('priv_group={} is not in the set of groups. The '
'valid values are:\n{}'.format(priv_group, self.groups_))
if not 0.0 <= self.threshold <= 1.0:
raise ValueError('threshold must be between 0.0 and 1.0, '
'threshold={}'.format(self.threshold))
if not 0.0 <= self.margin <= min(self.threshold, 1 - self.threshold):
raise ValueError('margin must be between 0.0 and {}, margin={}'
''.format(min(self.threshold, 1 - self.threshold),
self.margin))
return self
def predict_proba(self, X):
"""Probability estimates.
The returned estimates for all classes are ordered by the label of
classes.
Args:
X (pandas.DataFrame): Probability estimates of the targets as
returned by a ``predict_proba()`` call or equivalent. Note: must
include protected attributes in the index.
Returns:
numpy.ndarray: Returns the probability of the sample for each class
in the model, where classes are ordered as they are in
``self.classes_``.
"""
check_is_fitted(self, 'pos_label_')
groups, _ = check_groups(X, self.prot_attr_)
if len(self.classes_) != X.shape[1]:
raise ValueError('X should contain one column per class. Got: {} '
'columns.'.format(X.shape[1]))
pos_idx = np.nonzero(self.classes_ == self.pos_label_)[0][0]
yt = X.iloc[:, pos_idx].to_numpy().copy()
# indices of critical region around the classification boundary
crit_above = (self.margin > yt-self.threshold) & (yt > self.threshold)
crit_below = (-self.margin < yt-self.threshold) & (yt < self.threshold)
# flip labels: priv + above -> below, unpriv + below -> above
priv = (groups == self.priv_group_)
flip = (priv & crit_above) | (~priv & crit_below)
yt[flip] = 2*self.threshold - yt[flip]
return np.c_[1 - yt, yt] if pos_idx == 1 else np.c_[yt, 1 - yt]
def predict(self, X):
"""Predict class labels for the given scores.
Args:
X (pandas.DataFrame): Probability estimates of the targets as
returned by a ``predict_proba()`` call or equivalent. Note: must
include protected attributes in the index.
Returns:
numpy.ndarray: Predicted class label per sample.
"""
scores = self.predict_proba(X)
pos_idx = np.nonzero(self.classes_ == self.pos_label_)[0][0]
y_pred = (scores[:, pos_idx] > self.threshold).astype(int)
return self.classes_[y_pred if pos_idx == 1 else 1 - y_pred]
def fit_predict(self, X, y=None, **fit_params):
"""Predict class labels for the given scores.
In general, it is not necessary to fit and predict separately so this
method may be used instead. For subsequent predicts, it may be easier
to use the `predict` method, though.
Args:
X (pandas.DataFrame): Probability estimates of the targets as
returned by a ``predict_proba()`` call or equivalent. Note: must
include protected attributes in the index.
y (array-like, optional): Ground-truth (correct) target values.
Note: if not provided, `labels` must be provided in
`**fit_params`. See `fit` for details.
**fit_params: See `fit` for details.
Returns:
numpy.ndarray: Predicted class label per sample.
"""
return self.fit(X, y, **fit_params).predict(X)
class RejectOptionClassifierCV(GridSearchCV):
"""Wrapper for running a grid search over threshold, margin combinations for
a RejectOptionClassifier.
Note:
:class:`~sklearn.model_selection.GridSearchCV` does not currently
support sample weights in scoring. This will work but throw a warning if
`sample_weight` is provided.
See also:
:class:`RejectOptionClassifier`
Examples:
>>> import matplotlib.pyplot as plt
>>> import pandas as pd
>>> from sklearn.linear_model import LogisticRegression
>>> from aif360.sklearn.datasets import fetch_german
>>> from aif360.sklearn.postprocessing import RejectOptionClassifierCV
>>> X, y = fetch_german(numeric_only=True)
>>> lr = LogisticRegression(solver='lbfgs').fit(X, y)
>>> roc = RejectOptionClassifierCV('sex', scoring='disparate_impact')
>>> roc.fit(pd.DataFrame(lr.predict_proba(X), index=X.index), y)
We can also achieve this more simply using a PostProcessingMeta
estimator:
>>> from aif360.sklearn.postprocessing import PostProcessingMeta
>>> pp = PostProcessingMeta(lr, roc).fit(X, y)
"""
def __init__(self, prot_attr=None, *, scoring, step=0.05, refit=True, **kwargs):
"""
Args:
prot_attr (single label or list-like, optional): Protected
attribute(s) to use in the post-processing. If more than one
attribute, all combinations of values (intersections) are
considered. Default is ``None`` meaning all protected attributes
from the dataset are used. Note: This algorithm requires there
be exactly 2 groups (privileged and unprivileged).
scoring ('statistical_parity', 'average_odds', 'equal_opportunity',
'disparate_impact', or callable/dict): Fairness scorer to use to
evaluate the predictions. If type is a `str`, constructs the
corresponding scorer for that metric in addition to the default
balanced accuracy. If type is callable (i.e., a scorer object),
that will be used along with balanced accuracy. Finally, if an
explicit dictionary is passed, this will be used as is.
step (float): Step size for grid search. Will search every valid
combination of threshold and margin that are multiples of this
step size. See `param_grid` after fitting for the exact search
space.
refit (bool or callable, optional): Refit the estimator using the
best parameters found. If `True` and not using a custom scoring
function, this chooses the highest balanced accuracy given
fairness score > -0.1 (or > 0.8 for disparate impact only).
Alternatively, a custom refitting function may be passed. See
:class:`~sklearn.model_selection.GridSearchCV` for details.
**kwargs: See :class:`~sklearn.model_selection.GridSearchCV` for
additional kwargs.
"""
self.scoring = scoring
self.refit = refit
self.step = step
self.prot_attr = prot_attr
super().__init__(RejectOptionClassifier(), {}, scoring=scoring,
refit=refit, **kwargs)
def _more_tags(self):
return {'requires_proba': True}
def fit(self, X, y, **fit_params):
"""Run fit with all sets of parameters.
Args:
X (pandas.DataFrame): Probability estimates of the targets as
returned by a ``predict_proba()`` call or equivalent. Note: must
include protected attributes in the index.
y (pandas.Series): Ground-truth (correct) target values.
**fit_params: Parameters passed to the ``fit()`` method.
Returns:
self
"""
self.param_grid = []
thresholds = np.arange(self.step, 1, self.step)
# arange has numerical instabilities. this way guarantees margin <= threshold
for i, t in enumerate(thresholds):
n = min(i+1, len(thresholds)-i)
margins = np.linspace(min(self.step, min(t, 1-t)), min(t, 1-t), n)
self.param_grid.append({'prot_attr': [self.prot_attr],
'threshold': [t], 'margin': margins})
if fit_params.get('sample_weight', None) is not None:
warnings.warn('sample_weight will be ignored when scoring.',
RuntimeWarning)
if not isinstance(self.scoring, dict):
# TODO: sample_weight scoring workaround
self.scorer_name_ = self.scoring
if self.scoring == 'statistical_parity':
self.scorer_ = make_scorer(statistical_parity_difference,
prot_attr=self.prot_attr)
elif self.scoring == 'average_odds':
self.scorer_ = make_scorer(average_odds_error,
prot_attr=self.prot_attr)
elif self.scoring == 'equal_opportunity':
self.scorer_ = make_scorer(equal_opportunity_difference,
prot_attr=self.prot_attr)
elif self.scoring == 'disparate_impact':
self.scorer_ = make_scorer(disparate_impact_ratio, is_ratio=True,
prot_attr=self.prot_attr, zero_division=0)
elif not callable(self.scoring):
raise ValueError("scorer must be one of: 'statistical_parity', "
"'average_odds', 'equal_opportunity', 'disparate_impact' "
"or a callable function. Got:\n{}".format(self.scoring))
else:
self.scorer_name_ = 'fairness_metric'
self.scorer_ = self.scoring
self.scoring = {'bal_acc': 'balanced_accuracy',
self.scorer_name_: self.scorer_}
if self.refit is True and self.scorer_name_ != 'fairness_metric':
if self.scorer_name_ == 'disparate_impact':
self.refit = lambda res: np.ma.array(res['mean_test_bal_acc'],
mask=res['mean_test_disparate_impact'] < 0.8).argmax()
else:
self.refit = lambda res: np.ma.array(res['mean_test_bal_acc'],
mask=res['mean_test_'+self.scorer_name_] < -0.1).argmax()
class NoSplit:
def split(self, X, y=None, groups=None):
yield np.arange(len(X)), np.arange(len(X))
def get_n_splits(self, X=None, y=None, groups=None):
return 1
self.cv = NoSplit()
return super().fit(X, y, **fit_params)
|