File size: 11,701 Bytes
d2a8669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
import numpy as np
import pandas as pd
import scipy.sparse as sp
import time
import os
from fainress_component import disparate_impact_remover, reweighting, sample

def ali_CatGCN_pre_processing(df, label, uid_pid, pid_cid, sens_attr, label_pred, special_case, debaising_approach=None):
    #print(df.columns.tolist())
    print('')
    if debaising_approach != None:
        if special_case == True:
            label.rename(columns={'userid':'uid', 'final_gender_code':'gender','age_level':'age', 'pvalue_level':'buy', 'occupation':'student', 'new_user_class_level ':'city'}, inplace=True)
            label.dropna(inplace=True)
            label['gender'] = label['gender'].replace(1, 0)
            label['gender'] = label['gender'].replace(2, 1)
            label = apply_bin_age(label)
            label = apply_bin_buy(label)
            if debaising_approach == 'disparate_impact_remover':
                label = disparate_impact_remover(label, sens_attr, label_pred)
            elif debaising_approach == 'reweighting':
                label = reweighting(label, sens_attr, label_pred)
            elif debaising_approach == 'sample':
                label = sample(label, sens_attr, label_pred)

            if debaising_approach == 'sample':
                label = label.reset_index()
                label = label.drop(['index'], axis=1)
                label = label.drop_duplicates()

        else:
            df.rename(columns={'final_gender_code': 'gender', 'age_level':'age'}, inplace=True)
            df = apply_bin_age(df)
            df['gender'] = df['gender'].replace(1, 0)
            df['gender'] = df['gender'].replace(2, 1)
            if debaising_approach == 'disparate_impact_remover':
                df = disparate_impact_remover(df, sens_attr, label_pred)
            elif debaising_approach == 'reweighting':
                df = reweighting(df, sens_attr, label_pred)
            elif debaising_approach == 'sample':
                df = sample(df, sens_attr, label_pred)

            if debaising_approach == 'sample':
                df = df.reset_index()
                df = df.drop(['index'], axis=1)
                df = df.drop_duplicates()


            label, pid_cid, uid_pid = divide_data_2(df)
            label.rename(columns={'userid':'uid', 'pvalue_level':'buy', 'occupation':'student', 'new_user_class_level':'city'}, inplace=True)
            label.dropna(inplace=True)
            label = apply_bin_buy(label)

    else:

        # load ana clean data
        if special_case == False:
            label, pid_cid, uid_pid = divide_data(df)
        label.rename(columns={'userid':'uid', 'final_gender_code':'gender','age_level':'age', 'pvalue_level':'buy', 'occupation':'student', 'new_user_class_level ':'city'}, inplace=True)
        label.dropna(inplace=True)
        label = apply_bin_age(label)
        label = apply_bin_buy(label)

    #pid_cid
    pid_cid.rename(columns={'adgroup_id':'pid','cate_id':'cid'}, inplace=True)

    #uid_pid
    if special_case == True:
        uid_pid.rename(columns={'user':'uid','adgroup_id':'pid'}, inplace=True)
    else:
        uid_pid.rename(columns={'userid':'uid','adgroup_id':'pid'}, inplace=True)
    uid_pid = uid_pid[uid_pid['clk']>0]

    uid_pid.drop('clk', axis=1, inplace=True)

    uid_pid = uid_pid[uid_pid['uid'].isin(label['uid'])]
    uid_pid = uid_pid[uid_pid['pid'].isin(pid_cid['pid'])]

    uid_pid.drop_duplicates(inplace=True)

    # Filter and process

    # Filter uid_pid (item_interactions >= 2)
    uid_pid, uid_activity, pid_popularity = filter_triplets(uid_pid, 'uid', 'pid', min_uc=0, min_sc=2) # min_sc>=2

    sparsity = 1. * uid_pid.shape[0] / (uid_activity.shape[0] * pid_popularity.shape[0])

    print("After filtering, there are %d interacton events from %d users and %d items (sparsity: %.4f%%)" % 
        (uid_pid.shape[0], uid_activity.shape[0], pid_popularity.shape[0], sparsity * 100))

   # create uid_cid
    uid_pid_cid = pd.merge(uid_pid, pid_cid, how='inner', on='pid')
    raw_uid_cid = uid_pid_cid.drop('pid', axis=1, inplace=False)
    raw_uid_cid.drop_duplicates(inplace=True)

    # Filter uid_cid (cid_interactions >= 2 is optional)
    uid_cid, uid_activity, cid_popularity = filter_triplets(raw_uid_cid, 'uid', 'cid', min_uc=0, min_sc=2) # min_sc>=2

    sparsity = 1. * uid_cid.shape[0] / (uid_activity.shape[0] * cid_popularity.shape[0])

    print("After filtering, there are %d interacton events from %d users and %d items (sparsity: %.4f%%)" % 
        (uid_cid.shape[0], uid_activity.shape[0], cid_popularity.shape[0], sparsity * 100))

    # create uid_uid
    uid_pid = uid_pid[uid_pid['uid'].isin(uid_cid['uid'])]

    uid_pid_1 = uid_pid[['uid','pid']].copy()
    uid_pid_1.rename(columns={'uid':'uid1'}, inplace=True)

    uid_pid_2 = uid_pid[['uid','pid']].copy()
    uid_pid_2.rename(columns={'uid':'uid2'}, inplace=True)

    uid_pid_uid = pd.merge(uid_pid_1, uid_pid_2, how='inner', on='pid')
    uid_uid = uid_pid_uid.drop('pid', axis=1, inplace=False)
    uid_uid.drop_duplicates(inplace=True)

    del uid_pid_1, uid_pid_2, uid_pid_uid
    # Map
    user_label = label[label['uid'].isin(uid_cid['uid'])]
    uid2id = {num: i for i, num in enumerate(user_label['uid'])}
    cid2id = {num: i for i, num in enumerate(pd.unique(uid_cid['cid']))}

    user_label = col_map(user_label, 'uid', uid2id)
    user_label = label_map(user_label, user_label.columns[1:])

    # create user_edge (uid - uid)
    user_edge = uid_uid[uid_uid['uid1'].isin(uid_cid['uid'])]
    user_edge = user_edge[user_edge['uid2'].isin(uid_cid['uid'])]

    user_edge = col_map(user_edge, 'uid1', uid2id)
    user_edge = col_map(user_edge, 'uid2', uid2id)

    # create user_field (uid - cid)
    user_field = col_map(uid_cid, 'uid', uid2id)
    user_field = col_map(user_field, 'cid', cid2id)

    if debaising_approach == 'disparate_impact_remover':
        user_field = user_field.reset_index()
        user_field = user_field.drop(['uid'], axis=1)

        user_field = user_field.rename(columns={"index": "uid"})
        user_field['uid'] = user_field['uid'].astype(str).astype(int)

    
# save ?
    save_path = './'
    user_edge.to_csv(os.path.join(save_path, 'user_edge.csv'), index=False)
    user_field.to_csv(os.path.join(save_path, 'user_field.csv'), index=False)
    user_label.to_csv(os.path.join(save_path, 'user_labels.csv'), index=False)

    print('user_label columns', user_label.columns.tolist())

    user_label[['uid','buy']].to_csv(os.path.join(save_path, 'user_buy.csv'), index=False)
    # create the user_buy variable for the return of the function 
    user_buy = user_label[['uid','buy']]
    user_label[['uid','city']].to_csv(os.path.join(save_path, 'user_city.csv'), index=False)
    user_label[['uid','bin_age']].to_csv(os.path.join(save_path, 'user_age.csv'), index=False)
    user_label[['uid','gender']].to_csv(os.path.join(save_path, 'user_gender.csv'), index=False)
    user_gender = user_label[['uid', 'gender']]
    user_label[['uid','student']].to_csv(os.path.join(save_path, 'user_student.csv'), index=False)
    user_label[['uid','bin_age']].to_csv(os.path.join(save_path, 'user_bin_age.csv'), index=False)
    user_label[['uid','bin_buy']].to_csv(os.path.join(save_path, 'user_bin_buy.csv'), index=False)
    # re_process
    NUM_FIELD = 10
    #np.random_seed(42)

    # load user_field.csv
    user_field = field_reader(os.path.join(save_path, 'user_field.csv'))
    print("Shapes of user with field:", user_field.shape)
    print("Number of user with field:", np.count_nonzero(np.sum(user_field, axis=1)))

    neighs = get_neighs(user_field)

    if debaising_approach == 'disparate_impact_remover':
        neighs = [x for x in neighs if x.size != 0]

    sample_neighs = []
    for i in range(len(neighs)):
        sample_neighs.append(list(sample_neigh(neighs[i], NUM_FIELD)))
    sample_neighs = np.array(sample_neighs)

    np.save(os.path.join(save_path, 'user_field.npy'), sample_neighs)

    user_field_new = sample_neighs

    user_edge_path = './user_edge.csv'
    user_field_new_path = './user_field.npy'
    user_gender_path = './user_gender.csv'
    user_label_path = './user_labels.csv'
    
    return user_edge_path, user_field_new_path, user_gender_path, user_label_path


def divide_data(df):
    # divide data into 3 
    label = df[['userid', 'final_gender_code', 'age_level', 'pvalue_level', 'occupation', 'new_user_class_level']].copy()
    pid_cid = df[['adgroup_id', 'cate_id']].copy()
    uid_pid = df[['userid', 'adgroup_id', 'clk']].copy()

    return label, pid_cid, uid_pid

def divide_data_2(df):
    df_user = df[{'userid', 'gender', 'bin_age', 'pvalue_level', 'occupation', 'new_user_class_level'}].copy()
    df_item = df[['adgroup_id', 'cate_id', 'campaign_id', 'brand']].copy() 
    df_click = df[['userid', 'adgroup_id', 'clk']].copy()

    return df_user, df_item, df_click

def apply_bin_age(label):
    label['bin_age'] = label['age']
    label['bin_age'] = label['bin_age'].replace(1,0)
    label['bin_age'] = label['bin_age'].replace(2,0)
    label['bin_age'] = label['bin_age'].replace(3,1)
    label['bin_age'] = label['bin_age'].replace(4,0)
    label['bin_age'] = label['bin_age'].replace(5,0)
    label['bin_age'] = label['bin_age'].replace(6,0)

    return label

def apply_bin_buy(label):
    label['bin_buy'] = label['buy']
    label['bin_buy'] = label['bin_buy'].replace(3.0,2.0)

    return label

def get_count(tp, id):
    playcount_groupbyid = tp[[id]].groupby(id, as_index=True)
    count = playcount_groupbyid.size()
    return count

def filter_triplets(tp, user, item, min_uc=0, min_sc=0):
    # Only keep the triplets for users who clicked on at least min_uc items
    if min_uc > 0:
        usercount = get_count(tp, user)
        tp = tp[tp[user].isin(usercount.index[usercount >= min_uc])]
    
    # Only keep the triplets for items which were clicked on by at least min_sc users. 
    if min_sc > 0:
        itemcount = get_count(tp, item)
        tp = tp[tp[item].isin(itemcount.index[itemcount >= min_sc])]
    
    # Update both usercount and itemcount after filtering
    usercount, itemcount = get_count(tp, user), get_count(tp, item) 
    return tp, usercount, itemcount

def col_map(df, col, num2id):
    df[[col]] = df[[col]].applymap(lambda x: num2id[x])
    return df

def label_map(label_df, label_list):
    for label in label_list:
        label2id = {num: i for i, num in enumerate(pd.unique(label_df[label]))}
        label_df = col_map(label_df, label, label2id)
    return label_df

def field_reader(path):
    """
    Reading the sparse field matrix stored as csv from the disk.
    :param path: Path to the csv file.
    :return field: csr matrix of field.
    """
    user_field = pd.read_csv(path)
    user_index = user_field["uid"].values.tolist()
    field_index = user_field["cid"].values.tolist()
    user_count = max(user_index)+1
    field_count = max(field_index)+1
    field_index = sp.csr_matrix((np.ones_like(user_index), (user_index, field_index)), shape=(user_count, field_count))
    return field_index

def get_neighs(csr):
    neighs = []
#     t = time.time()
    idx = np.arange(csr.shape[1])
    for i in range(csr.shape[0]):
        x = csr[i, :].toarray()[0] > 0
        if idx[x].size > 0:
            neighs.append(idx[x])
    #         if i % (10*1000) == 0:
    #             print('sec/10k:', time.time()-t)
    return neighs

def sample_neigh(neigh, num_sample):
    if len(neigh) >= num_sample:
        sample_neigh = np.random.choice(neigh, num_sample, replace=False)
    elif len(neigh) < num_sample:
        sample_neigh = np.random.choice(neigh, num_sample, replace=True)
    return sample_neigh