File size: 11,934 Bytes
d2a8669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
import numpy as np
import pandas as pd
import torch
import dgl
from fainress_component import disparate_impact_remover, reweighting, sample
import fastText

def ali_RHGN_pre_process(df, df_user, df_click, df_item, sens_attr, label, special_case, debaising_approach=None):
    # load and clean data   
    if debaising_approach != None:
        # special case == csv data 
        if special_case == True:
            df_user.rename(columns={'userid':'uid', 'final_gender_code':'gender','age_level':'age', 'pvalue_level':'buy', 'occupation':'student', 'new_user_class_level ':'city'}, inplace=True)
            df_user.dropna(inplace=True)
            df_user = apply_bin_age(df_user)
            df_user = apply_bin_buy(df_user)
            df_user = apply_bin_gender(df_user)
            if debaising_approach == 'disparate_impact_remover':
                df_user = disparate_impact_remover(df_user, sens_attr, label)
            elif debaising_approach == 'reweighting':
                df_user = reweighting(df_user, sens_attr, label)
            elif debaising_approach == 'sample':
                df_user = sample(df_user, sens_attr, label)
        else:
            df.rename(columns={'final_gender_code': 'gender', 'age_level':'age'}, inplace=True)
            df = apply_bin_age(df)
            df['gender'] = df['gender'].replace(1,0)
            df['gender'] = df['gender'].replace(2,1)
            if debaising_approach == 'disparate_impact_remover':
                df = disparate_impact_remover(df, sens_attr, label)
            elif debaising_approach == 'reweighting':
                df = reweighting(df, sens_attr, label)
            elif debaising_approach == 'sample':
                df = sample(df, sens_attr, label)

            df_user, df_item, df_click = divide_data_2(df)
            df_user.rename(columns={'userid':'uid', 'pvalue_level':'buy', 'occupation':'student', 'new_user_class_level':'city'}, inplace=True)
            df_user.dropna(inplace=True)
            df_user = apply_bin_buy(df_user)
    else:
        # df_user =  label
        if special_case == False:
            df_user, df_item, df_click = divide_data(df)
        df_user.rename(columns={'userid':'uid', 'final_gender_code':'gender','age_level':'age', 'pvalue_level':'buy', 'occupation':'student', 'new_user_class_level ':'city'}, inplace=True)
        df_user.dropna(inplace=True)
        df_user = apply_bin_age(df_user)
        df_user = apply_bin_buy(df_user)

    # df_item = pid_cid
    if special_case == False:
        df_item.dropna(axis=0, subset=['cate_id', 'campaign_id', 'brand'], inplace=True)
    df_item.rename(columns={'adgroup_id':'pid', 'cate_id':'cid'}, inplace=True)

    df_click.rename(columns={'user':'uid', 'adgroup_id':'pid'}, inplace=True)
    df_click = df_click[df_click['clk']>0]

    df_click.drop('clk', axis=1, inplace=True)

    df_click = df_click[df_click["uid"].isin(df_user["uid"])]
    df_click = df_click[df_click["pid"].isin(df_item["pid"])]

    df_click.drop_duplicates(inplace=True)

    # Filter and Process

    # Before filtering
    users = set(df_click.uid.tolist())
    items = set(df_click.pid.tolist())
    print('User before filtering {} and items before filtering {}'.format(len(users), len(items)))

    df_click, uid_activity, pid_popularity = filter_triplets(df_click, 'uid', 'pid', min_uc=0, min_sc=2) # min_sc>=2

    #sparsity = 1. * df_click.shape[0] / (uid_activity.shape[0] * pid_popularity.shape[0])

    #print("After filtering, there are %d interacton events from %d users and %d items (sparsity: %.4f%%)" % 
    #    (df_click.shape[0], uid_activity.shape[0], pid_popularity.shape[0], sparsity * 100))
    # After filtering
    users = set(df_click.uid.tolist())
    items = set(df_click.pid.tolist())
    print('Users after filtering {} and items after filtering {}'.format(len(users), len(items)))

    df_user = df_user[df_user['uid'].isin(users)]
    df_item = df_item[df_item['pid'].isin(items)]
    df_user.reset_index(drop=True, inplace=True)
    df_item.reset_index(drop=True, inplace=True)

    # save??

    # Re-process
    df_user = df_user.astype({'uid': 'str'}, copy=False)
    df_item = df_item.astype({'pid': 'str', 'cid': 'str', 'campaign_id': 'str', 'brand': 'str'}, copy=False)
    df_click = df_click.astype({'uid': 'str', 'pid': 'str'}, copy=False)

    # Build a dictionary and remove duplicate items
    if special_case == True and debaising_approach == 'reweighting' or debaising_approach == 'disparate_impact_remover':
        df_user['uid'] = df_user['uid'].astype(float).astype(int).astype(str)

    user_dic = {k: v for v, k in enumerate(df_user.uid)}
    cate_dic = {k: v for v, k in enumerate(df_item.cid.drop_duplicates())}
    campaign_dic = {k: v for v, k in enumerate(df_item.campaign_id.drop_duplicates())}
    brand_dic = {k: v for v, k in enumerate(df_item.brand.drop_duplicates())}

    item_dic = {}
    c1, c2, c3=[],[],[]
    for i in range(len(df_item)):
        k=df_item.at[i,'pid']
        v=i
        item_dic[k]=v
        c1.append(cate_dic[df_item.at[i,'cid']])
        c2.append(campaign_dic[df_item.at[i,'campaign_id']])
        c3.append(brand_dic[df_item.at[i,'brand']])

    print(min(c1), min(c2), min(c3))
    print(len(cate_dic), len(campaign_dic), len(brand_dic))

    df_click=df_click[df_click['pid'].isin(item_dic)]
    df_click=df_click[df_click['uid'].isin(user_dic)]
    df_click.reset_index(drop=True, inplace=True)


    # Generate graph
    G, cid1_feature, cid2_feature, cid3_feature, user_label = generate_graph(df_user, df_item, df_click, user_dic, item_dic, cate_dic, campaign_dic, brand_dic, c1, c2, c3)

    '''
    sens_attr = 'age'
    predict_attr = 'gender'
    label_number = 100
    seed = 42
    sens_number = 512

    labels = user_label[predict_attr].values

    import random
    random.seed(seed)
    label_idx = np.where(labels>=0)[0]
    random.shuffle(label_idx)

    idx_train = label_idx[:min(int(0.5 * len(label_idx)),label_number)]

    idx_test = label_idx[label_number:]
    idx_val = idx_test

    sens = user_label[sens_attr].values
    sens_idx = set(np.where(sens >= 0)[0])
    idx_test = np.asarray(list(sens_idx & set(idx_test)))

    sens = torch.FloatTensor(sens)
    idx_sens_train = list(sens_idx - set(idx_val) - set(idx_test))


    random.seed(seed)
    random.shuffle(idx_sens_train)
    idx_sens_train = torch.LongTensor(idx_sens_train[:sens_number])

    idx_train = torch.LongTensor(idx_train)
    idx_val = torch.LongTensor(idx_val)
    idx_test = torch.LongTensor(idx_test)
    '''
    return G, cid1_feature, cid2_feature, cid3_feature # use this graph for the input of the model (see RHGN repo for details)
    #return G, cid1_feature, cid2_feature, cid3_feature, idx_sens_train, idx_train, sens


def divide_data(df):
    # divide data into 3 (df_user, df_item, df_click)
    df_user = df[['userid', 'final_gender_code', 'age_level', 'pvalue_level', 'occupation', 'new_user_class_level']].copy()
    df_item = df[['adgroup_id', 'cate_id', 'campaign_id', 'brand']].copy() 
    df_click = df[['userid', 'adgroup_id', 'clk']].copy()

    return df_user, df_item, df_click

def divide_data_2(df):
    df_user = df[{'userid', 'gender', 'bin_age', 'pvalue_level', 'occupation', 'new_user_class_level'}].copy()
    df_item = df[['adgroup_id', 'cate_id', 'campaign_id', 'brand']].copy() 
    df_click = df[['userid', 'adgroup_id', 'clk']].copy()

    return df_user, df_item, df_click

def get_count(tp, id):
    playcount_groupbyid = tp[[id]].groupby(id, as_index=True)
    count = playcount_groupbyid.size()
    return count

def filter_triplets(tp, user, item, min_uc=0, min_sc=0):
    # Only keep the triplets for users who clicked on at least min_uc items
    if min_uc > 0:
        usercount = get_count(tp, user)
        tp = tp[tp[user].isin(usercount.index[usercount >= min_uc])]
    
    # Only keep the triplets for items which were clicked on by at least min_sc users. 
    if min_sc > 0:
        itemcount = get_count(tp, item)
        tp = tp[tp[item].isin(itemcount.index[itemcount >= min_sc])]
    
    # Update both usercount and itemcount after filtering
    usercount, itemcount = get_count(tp, user), get_count(tp, item) 
    return tp, usercount, itemcount

def apply_bin_age(df_user):
    df_user['bin_age'] = df_user['age']
    df_user['bin_age'] = df_user['bin_age'].replace(1,0)
    df_user['bin_age'] = df_user['bin_age'].replace(2,0)
    df_user['bin_age'] = df_user['bin_age'].replace(3,0)
    df_user['bin_age'] = df_user['bin_age'].replace(4,1)
    df_user['bin_age'] = df_user['bin_age'].replace(5,1)
    df_user['bin_age'] = df_user['bin_age'].replace(6,1)

    return df_user 

def apply_bin_buy(df_user):
    df_user['bin_buy'] = df_user['buy']
    df_user['bin_buy'] = df_user['bin_buy'].replace(3.0,2.0)
    df_user['bin_buy'] = df_user['bin_buy'].astype('int64')

    return df_user

def apply_bin_gender(df_user):
    df_user['bin_gender'] = df_user['gender']
    df_user['bin_gender'] = df_user['bin_gender'].replace(2,0)
    
    return df_user


def col_map(df, col, num2id):
    df[[col]] = df[[col]].applymap(lambda x: num2id[x])
    return df

def label_map(label_df, label_list):
    for label in label_list:
        label2id = {num: i for i, num in enumerate(pd.unique(label_df[label]))}
        label_df = col_map(label_df, label, label2id)
    return label_df

def generate_graph(df_user, df_item, df_click, user_dic, item_dic, cate_dic, campaign_dic, brand_dic, c1, c2, c3):

    click_user = [user_dic[user] for user in df_click.uid]
    click_item = [item_dic[item] for item in df_click.pid]

    data_dict = {
        ("user", "click", "item"): (torch.tensor(click_user), torch.tensor(click_item)),
        ("item", "click_by", "user"): (torch.tensor(click_item), torch.tensor(click_user))
    }


    G = dgl.heterograph(data_dict)

    # process with fastext model
    # Todo install fasttext in the repo
    # Todo test this in Jupyter (not tested)
    #model = fasttext.load_model('../fastText/cc.zh.200.bin')
    model = fasttext.load_model('../cc.zh.200.bin')

    temp1 = {k: model.get_sentence_vector(v) for v,k in cate_dic.items()}
    cid1_feature = torch.tensor([temp1[k] for _, k in cate_dic.items()])

    temp2 = {k: model.get_sentence_vector(v) for v, k in campaign_dic.items()}
    cid2_feature = torch.tensor([temp2[k] for _, k in campaign_dic.items()])

    temp3 = {k: model.get_sentence_vector(v) for v, k in brand_dic.items()}
    cid3_feature = torch.tensor([temp3[k] for _, k in brand_dic.items()])

    uid2id = {num: i for i, num in enumerate(df_user['uid'])}

    df_user = col_map(df_user, 'uid', uid2id)
    user_label = label_map(df_user, df_user.columns[1:])
    
    # Pass the label into "label"
    label_gender = user_label.gender
    label_age = user_label.bin_age
    label_buy = user_label.buy
    label_student = user_label.student
    label_city = user_label.city
    label_bin_buy = user_label.bin_buy

    G.nodes['user'].data['bin_gender'] = torch.tensor(label_gender[:G.number_of_nodes('user')])
    G.nodes['user'].data['bin_age'] = torch.tensor(label_age[:G.number_of_nodes('user')])
    G.nodes['user'].data['buy'] = torch.tensor(label_buy[:G.number_of_nodes('user')])
    G.nodes['user'].data['student'] = torch.tensor(label_student[:G.number_of_nodes('user')])
    G.nodes['user'].data['city'] = torch.tensor(label_city[:G.number_of_nodes('user')])
    G.nodes['user'].data['bin_buy'] = torch.tensor(label_bin_buy[:G.number_of_nodes('user')])

    G.nodes['item'].data['cid1'] = torch.tensor(c1[:G.number_of_nodes('item')])
    G.nodes['item'].data['cid2'] = torch.tensor(c2[:G.number_of_nodes('item')])
    G.nodes['item'].data['cid3'] = torch.tensor(c3[:G.number_of_nodes('item')])

    print(G)
    print(cid1_feature.shape,)
    print(cid2_feature.shape,)
    print(cid3_feature.shape,)

    return G, cid1_feature, cid2_feature, cid3_feature, user_label