Spaces:
Runtime error
Runtime error
File size: 17,465 Bytes
d2a8669 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import torch
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F
from torch.nn.parameter import Parameter
import numpy as np
import networkx as nx
from torch_geometric.nn import GCNConv, GATConv, SGConv, APPNP
#from gnn_layers import BatchAGC, BatchFiGNN, BatchGAT
from CatGCN.gnn_layers import BatchAGC, BatchFiGNN, BatchGAT
#from pna_layer import PNAConv
from CatGCN.pna_layer import PNAConv
#from gcnii_layer import GCNIIConv
from CatGCN.gcnii_layer import GCNIIConv
class StackedGNN(nn.Module):
"""
Multi-layer GNN model.
"""
def __init__(self, args, field_count, field_size, output_channels):
"""
:param args: Arguments object.
:param field_count: Number of fields.
:param field_size: Number of sampled fields for each user.
:param output_channels: Number of target classes.
"""
super(StackedGNN, self).__init__()
self.args = args
if self.args.grn_units != 'none':
self.grn_units = [args.field_dim] + [int(x) for x in args.grn_units.strip().split(",")] + [output_channels]
else:
self.grn_units = [args.field_dim] + [output_channels]
if self.args.nfm_units != 'none':
self.nfm_units = [args.field_dim] + [int(x) for x in args.nfm_units.strip().split(",")] + [output_channels]
else:
self.nfm_units = [args.field_dim] + [output_channels]
self.input_channels = args.field_dim
self.output_channels = output_channels
# For Baseline
if self.args.gnn_units != 'none':
self.gnn_units = [self.input_channels] + [int(x) for x in args.gnn_units.strip().split(",")] + [self.output_channels]
else:
self.gnn_units = [self.input_channels] + [self.output_channels]
self.field_count = field_count
self.field_size = field_size
self.field_embedding = nn.Embedding(field_count, args.field_dim)
self.field_embedding.weight.requires_grad = True
self._setup_layers()
def _setup_layers(self):
"""
Creating the layers based on the args.
"""
# Categorical feature interaction modeling
''' Global interaction modeling '''
if self.args.graph_refining == 'agc':
self.grn = BatchAGC(self.args.field_dim, self.args.field_dim)
self.num_grn_layer = len(self.grn_units) - 1
self.grn_layer_stack = nn.ModuleList()
for i in range(self.num_grn_layer):
self.grn_layer_stack.append(
nn.Linear(self.grn_units[i], self.grn_units[i + 1], bias=True))
elif self.args.graph_refining == 'gat':
n_heads = [int(x) for x in self.args.multi_heads.strip().split(",")]
attn_dropout = 0.
# attn_dropout = self.args.dropout
self.gat_units = [int(x) for x in self.args.gat_units.strip().split(",")]
self.num_gat_layer = len(self.gat_units) - 1
self.gat_layer_stack = nn.ModuleList()
for i in range(self.num_gat_layer):
f_in = self.gat_units[i] * n_heads[i - 1] if i else self.gat_units[i]
self.gat_layer_stack.append(
BatchGAT(
n_heads[i], f_in=f_in,
f_out=self.gat_units[i + 1], attn_dropout=attn_dropout))
self.num_grn_layer = len(self.grn_units) - 1
self.grn_layer_stack = nn.ModuleList()
for i in range(self.num_grn_layer):
self.grn_layer_stack.append(
nn.Linear(self.grn_units[i], self.grn_units[i + 1], bias=True))
elif self.args.graph_refining == 'cosimi':
self.num_grn_layer = len(self.grn_units) - 1
self.grn_layer_stack = nn.ModuleList()
for i in range(self.num_grn_layer):
self.grn_layer_stack.append(
nn.Linear(self.grn_units[i], self.grn_units[i + 1], bias=True))
''' Local interaction modeling '''
if self.args.bi_interaction == 'nfm':
self.num_nfm_layer = len(self.nfm_units) - 1
self.nfm_layer_stack = nn.ModuleList()
for i in range(self.num_nfm_layer):
self.nfm_layer_stack.append(
nn.Linear(self.nfm_units[i], self.nfm_units[i + 1], bias=True))
# GNN Layer
if self.args.graph_layer == 'gcn':
self.gnn_layers = nn.ModuleList()
for i, _ in enumerate(self.gnn_units[:-1]):
self.gnn_layers.append(GCNConv(self.gnn_units[i], self.gnn_units[i+1]))
elif self.args.graph_layer == 'gat_1':
self.gnn_layers = GATConv(self.input_channels, self.output_channels, heads=1, concat=True, negative_slope=0.2, dropout=self.args.dropout, bias=True)
elif self.args.graph_layer == 'gat_2':
n_heads = 8
self.gnn_layers_1 = GATConv(self.input_channels, self.gnn_units[1], heads=n_heads, concat=True, negative_slope=0.2, dropout=0, bias=True)
self.gnn_layers_2 = GATConv(self.gnn_units[1]*n_heads, self.output_channels, heads=1, concat=True, negative_slope=0.2, dropout=0, bias=True)
elif self.args.graph_layer == 'sgc':
self.gnn_layers = SGConv(self.input_channels, self.output_channels, K=self.args.gnn_hops, cached=False)
elif self.args.graph_layer == 'appnp':
self.num_mlp_layer = len(self.gnn_units) - 1
self.mlp_layer_stack = nn.ModuleList()
for i in range(self.num_mlp_layer):
self.mlp_layer_stack.append(
nn.Linear(self.gnn_units[i], self.gnn_units[i + 1], bias=True))
self.gnn_layers = APPNP(K=10, alpha=0.1, bias=True)
elif self.args.graph_layer == 'cat-appnp':
self.gnn_layers = APPNP(K=10, alpha=0.1, bias=True)
elif self.args.graph_layer == 'gcnii_F':
self.num_gnn_layer = self.args.gnn_hops
self.lin_layer_1 = nn.Linear(self.input_channels, self.gnn_units[1], bias=True)
self.gnn_layers = nn.ModuleList()
for layer in range(self.num_gnn_layer):
self.gnn_layers.append(GCNIIConv(self.gnn_units[1], alpha=self.args.alpha, theta=self.args.theta, layer=layer+1, shared_weights=False))
self.lin_layer_2 = nn.Linear(self.gnn_units[1], self.output_channels, bias=True)
elif self.args.graph_layer == 'gcnii_T':
self.num_gnn_layer = self.args.gnn_hops
self.lin_layer_1 = nn.Linear(self.input_channels, self.gnn_units[1], bias=True)
self.gnn_layers = nn.ModuleList()
for layer in range(self.num_gnn_layer):
self.gnn_layers.append(GCNIIConv(self.gnn_units[1], alpha=self.args.alpha, theta=self.args.theta, layer=layer+1, shared_weights=True))
self.lin_layer_2 = nn.Linear(self.gnn_units[1], self.output_channels, bias=True)
elif self.args.graph_layer == 'cross_1':
self.mlp_layers_1 = nn.Linear(self.input_channels, self.output_channels, bias=False)
self.mlp_layers_2 = nn.Linear(self.input_channels, self.output_channels, bias=False)
self.gnn_layers = PNAConv(K=1, cached=False)
elif self.args.graph_layer == 'cross_2':
self.mlp_layers_11 = nn.Linear(self.input_channels, self.gnn_units[1], bias=False)
self.mlp_layers_12 = nn.Linear(self.input_channels, self.gnn_units[1], bias=False)
self.gnn_layers_1 = PNAConv(K=1, cached=False)
self.mlp_layers_21 = nn.Linear(self.gnn_units[1], self.output_channels, bias=False)
self.mlp_layers_22 = nn.Linear(self.gnn_units[1], self.output_channels, bias=False)
self.gnn_layers_2 = PNAConv(K=1, cached=False)
elif self.args.graph_layer == 'fignn':
self.fi_layers = BatchFiGNN(self.input_channels, self.gnn_units[1], self.output_channels)
self.gnn_layers = PNAConv(K=self.args.gnn_hops, cached=False)
elif self.args.graph_layer == 'pna':
self.gnn_layers = PNAConv(K=self.args.gnn_hops, cached=False)
def forward(self, edges, field_index, field_adjs):
"""
Making a forward pass.
:param edges: Edge list LongTensor.
:parm field_index: User-field index matrix.
:parm field_adjs: Normalized adjacency matrix with probe coefficient.
:return predictions: Prediction matrix output FLoatTensor.
"""
raw_field_feature = self.field_embedding(field_index)
# Categorical feature interaction modeling
''' Global interaction modeling '''
field_feature = raw_field_feature
if self.args.graph_refining == 'agc':
field_feature = self.grn(field_feature, field_adjs.float())
field_feature = F.relu(field_feature)
field_feature = F.dropout(field_feature, self.args.dropout, training=self.training)
if self.args.aggr_pooling == 'mean':
user_feature = torch.mean(field_feature, dim=-2)
for i, grn_layer in enumerate(self.grn_layer_stack):
user_feature = grn_layer(user_feature)
if i + 1 < self.num_grn_layer:
user_feature = F.relu(user_feature)
user_feature = F.dropout(user_feature, self.args.dropout, training=self.training)
user_gnn_feature = user_feature
elif self.args.graph_refining == 'gat':
bs, n = field_adjs.size()[:2]
for i, gat_layer in enumerate(self.gat_layer_stack):
field_feature = gat_layer(field_feature, field_adjs.byte())
if i + 1 == self.num_gat_layer:
field_feature = field_feature.mean(dim=1)
else:
field_feature = F.elu(field_feature.transpose(1, 2).contiguous().view(bs, n, -1))
field_feature = F.dropout(field_feature, self.args.dropout, training=self.training)
if self.args.aggr_pooling == 'mean':
user_feature = torch.mean(field_feature, dim=-2)
for i, grn_layer in enumerate(self.grn_layer_stack):
user_feature = grn_layer(user_feature)
if i + 1 < self.num_grn_layer:
user_feature = F.relu(user_feature)
user_feature = F.dropout(user_feature, self.args.dropout, training=self.training)
user_gnn_feature = user_feature
elif self.args.graph_refining == 'cosimi':
similarity_mat = torch.bmm(field_feature, field_feature.permute(0, 2, 1))
feature_norm = torch.sqrt(torch.sum(torch.mul(field_feature, field_feature), dim=-1)).unsqueeze(2)
cosine_distance = torch.div(similarity_mat, torch.mul(feature_norm, feature_norm.permute(0, 2, 1)))
field_feature = torch.bmm(cosine_distance, field_feature)
if self.args.aggr_pooling == 'mean':
user_feature = torch.mean(field_feature, dim=-2)
for i, grn_layer in enumerate(self.grn_layer_stack):
user_feature = grn_layer(user_feature)
if i + 1 < self.num_grn_layer:
user_feature = F.relu(user_feature)
user_feature = F.dropout(user_feature, self.args.dropout, training=self.training)
user_gnn_feature = user_feature
''' Local interaction modeling '''
field_feature = raw_field_feature
if self.args.bi_interaction == 'nfm':
# sum-square-part
summed_field_feature = torch.sum(field_feature, 1)
square_summed_field_feature = summed_field_feature ** 2
# squre-sum-part
squared_field_feature = field_feature ** 2
sum_squared_field_feature = torch.sum(squared_field_feature, 1)
# second order
user_feature = 0.5 * (square_summed_field_feature - sum_squared_field_feature)
# deep part
for i, nfm_layer in enumerate(self.nfm_layer_stack):
user_feature = nfm_layer(user_feature)
if i + 1 < self.num_nfm_layer:
user_feature = F.relu(user_feature)
user_feature = F.dropout(user_feature, self.args.dropout, training=self.training)
user_nfm_feature = user_feature
# Aggregation
if self.args.aggr_style == 'sum':
user_feature = self.args.balance_ratio*user_gnn_feature + \
(1-self.args.balance_ratio)*user_nfm_feature
if self.args.graph_refining == 'none' and self.args.bi_interaction == 'none':
user_feature = torch.mean(raw_field_feature, dim=-2)
# GNN Layer
if self.args.graph_layer == 'gcn':
for i, _ in enumerate(self.gnn_units[:-2]):
user_feature = F.relu(self.gnn_layers[i](user_feature, edges))
if i > 1:
user_feature = F.dropout(user_feature, p=self.args.dropout, training=self.training)
user_feature = self.gnn_layers[i+1](user_feature, edges)
predictions = F.log_softmax(user_feature, dim=1)
elif self.args.graph_layer == 'gat_1':
user_feature = self.gnn_layers(user_feature, edges)
predictions = F.log_softmax(user_feature, dim=1)
elif self.args.graph_layer == 'gat_2':
user_feature = F.elu(self.gnn_layers_1(user_feature, edges))
user_feature = F.dropout(user_feature, p=self.args.dropout, training=self.training)
user_feature = self.gnn_layers_2(user_feature, edges)
predictions = F.log_softmax(user_feature, dim=1)
elif self.args.graph_layer == 'sgc':
user_feature = self.gnn_layers(user_feature, edges)
predictions = F.log_softmax(user_feature, dim=1)
elif self.args.graph_layer == 'appnp':
for i, mlp_layer in enumerate(self.mlp_layer_stack):
user_feature = mlp_layer(user_feature)
if i + 1 < self.num_mlp_layer:
user_feature = F.relu(user_feature)
user_feature = F.dropout(user_feature, self.args.dropout, training=self.training)
user_feature = self.gnn_layers(user_feature, edges)
predictions = F.log_softmax(user_feature, dim=1)
elif self.args.graph_layer == 'cat-appnp':
user_feature = self.gnn_layers(user_feature, edges)
predictions = F.log_softmax(user_feature, dim=1)
elif self.args.graph_layer == 'gcnii_F' or self.args.graph_layer == 'gcnii_T':
user_feature = self.lin_layer_1(user_feature)
user_feature = F.relu(user_feature)
user_feature = user_feature_0 = F.dropout(user_feature, self.args.dropout, training=self.training)
for i, gnn_layer in enumerate(self.gnn_layers):
user_feature = gnn_layer(user_feature, user_feature_0, edges)
if i + 1 < self.num_gnn_layer:
user_feature = F.relu(user_feature)
user_feature = F.dropout(user_feature, self.args.dropout, training=self.training)
user_feature = self.lin_layer_2(user_feature)
predictions = F.log_softmax(user_feature, dim=1)
elif self.args.graph_layer == 'cross_1':
alpha = 1
user_feature = F.dropout(user_feature, self.args.dropout, training=self.training)
x_1 = self.mlp_layers_1(user_feature)
x_2 = self.mlp_layers_1(user_feature)
x_sec_ord = torch.mul(x_1, x_2) * alpha
user_feature = x_1 + x_2 + x_sec_ord
user_feature = self.gnn_layers(user_feature, edges)
predictions = F.log_softmax(user_feature, dim=1)
elif self.args.graph_layer == 'cross_2':
alpha = 1
user_feature = F.dropout(user_feature, self.args.dropout, training=self.training)
x_11 = self.mlp_layers_11(user_feature)
x_12 = self.mlp_layers_12(user_feature)
x_sec_ord_1 = torch.mul(x_11, x_12) * alpha
user_feature = x_11 + x_12 + x_sec_ord_1
user_feature = self.gnn_layers_1(user_feature, edges)
user_feature = F.dropout(user_feature, self.args.dropout, training=self.training)
x_21 = self.mlp_layers_21(user_feature)
x_22 = self.mlp_layers_22(user_feature)
x_sec_ord_2 = torch.mul(x_21, x_22) * alpha
user_feature = x_21 + x_22 + x_sec_ord_2
user_feature = self.gnn_layers_2(user_feature, edges)
predictions = F.log_softmax(user_feature, dim=1)
elif self.args.graph_layer == 'fignn':
user_feature = self.fi_layers(raw_field_feature, field_adjs.float(), self.args.num_steps)
user_feature = self.gnn_layers(user_feature, edges)
predictions = F.log_softmax(user_feature, dim=1)
elif self.args.graph_layer == 'pna':
user_feature = self.gnn_layers(user_feature, edges)
#print('user_feature pna in forward pass:', user_feature)
predictions = F.log_softmax(user_feature, dim=1)
elif self.args.graph_layer == 'none':
predictions = F.log_softmax(user_feature, dim=1)
return predictions
|