File size: 7,952 Bytes
d2a8669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import argparse

def parameter_parser():
    """
    A method to parse up command line parameters.
    """
    parser = argparse.ArgumentParser(description = "Run CatGCN.")

    parser.add_argument("--gpu",
                        type = int,
                        default = 0,
                        help = "GPU device")

    parser.add_argument("--edge-path",
                        nargs = "?",
                        default = "./input/user_edge.csv",
	                    help = "Edge list csv.")

    parser.add_argument("--field-path",
                        nargs = "?",
                        default = "./input/user_field.npy",
	                    help = "Field npy.")

    parser.add_argument("--target-path",
                        nargs = "?",
                        default = "./input/user_age.csv",
	                    help = "Target classes csv.")

    parser.add_argument("--clustering-method",
                        nargs = "?",
                        default = "none",
	                    help = "Clustering method for graph decomposition, use 'metis', 'random', or 'none'.")

    parser.add_argument('--graph-refining', 
                        nargs = "?",
                        default='agc', 
                        help="Optimize the field feature, use 'agc', 'fignn', or 'none'.")

    parser.add_argument('--aggr-pooling', 
                        nargs = "?", 
                        default='mean',
                        help="Aggregate the field feature. Default is 'mean'.")

    parser.add_argument('--bi-interaction', 
                        nargs = "?",
                        default='nfm', 
                        help="Compute the user feature with nfm, use 'nfm' or 'none'.")

    parser.add_argument('--aggr-style', 
                        nargs = "?",
                        default='sum',
                        help="Aggregate the user feature, use 'sum' or 'none'.")

    parser.add_argument('--graph-layer', 
                        nargs = "?",
                        default='sgc', 
                        help="Optimize the user feature, use 'pna', 'sgc', 'appnp', etc.")

    parser.add_argument('--weight-balanced', 
                        nargs = "?", 
                        default='True', 
                        help="Adjust weights inversely proportional to class frequencies.")

    parser.add_argument("--epochs",
                        type = int,
                        default = 9999,
	                    help = "Number of training epochs. Default is 9999.")

    parser.add_argument("--patience",
                        type = int,
                        default = 10,
	                    help = "Number of training patience. Default is 10.")

    parser.add_argument("--seed",
                        type = int,
                        default = 42,
	                    help = "Random seed for train-test split. Default is 42.")

    parser.add_argument("--train-ratio",
                        type = float,
                        default = 0.8,
	                    help = "Train data ratio. Default is 0.8.")
    
    parser.add_argument("--balance-ratio",
                        type = float,
                        default = 0.5,
	                    help = "Balance ratio parameter when aggr_style is 'sum'. Default is 0.5.")

    parser.add_argument("--dropout",
                        type = float,
                        default = 0.5,
	                    help = "Dropout parameter. Default is 0.5.")

    parser.add_argument("--learning-rate",
                        type = float,
                        default = 0.1,
	                    help = "Learning rate. Default is 0.1.")

    parser.add_argument('--weight-decay', 
                        type=float, 
                        default=1e-5, 
                        help='Weight decay (L2 loss on parameters).')
    
    parser.add_argument("--diag-probe",
                        type = float,
                        default = 1.,
	                    help = "Diag probe coefficient. Default is 1.0.")

    parser.add_argument("--cluster-number",
                        type = int,
                        default = 100,
                        help = "Number of clusters extracted. Default is 100.")

    parser.add_argument("--field-dim",
                        type = int,
                        default = 64,
	                    help = "Number of field dims. Default is 64.")
    
    parser.add_argument("--nfm-units",
                        type=str, 
                        default="64", 
                        help="Hidden units for local interaction modeling, splitted with comma, maybe none.")

    parser.add_argument("--grn-units",
                        type=str, 
                        default="64", 
                        help="Hidden units for global interaction modeling, splitted with comma, maybe none.")

    parser.add_argument("--gnn-units",
                        type=str, 
                        default="64",
                        help="Hidden units for baseline models, splitted with comma, maybe none.")

    parser.add_argument("--gnn-hops",
                        type = int,
                        default = 1,
                        help = "Hops number of pure neighborhood aggregation. Default is 1.")

    parser.add_argument("--num-steps",
                        type = int,
                        default = 2,
                        help = "GRU steps for FiGNN. Default is 2.")
    
    parser.add_argument("--multi-heads",
                        type=str,
                        default="8,1", 
                        help="Multi heads in each gat layer, splitted with comma.")
    
    parser.add_argument("--alpha",
                        type = float,
                        default = 0.5,
	                    help = "Alpha coefficient for GCNII. Default is 0.5.")

    parser.add_argument("--theta",
                        type = float,
                        default = 0.5,
	                    help = "Theta coefficient for GCNII. Default is 0.5.")

    parser.add_argument("--gat-units",
                        type=str, 
                        default="64",
                        help="Hidden units for global gat part, splitted with comma, maybe none.")

    # Args for computing fairness
    parser.add_argument("--labels-path",
                        nargs="?",
                        default="./input/user_labels.csv",
                        help="Labels csv path.")

    parser.add_argument("--sens-attr",
                        type=str,
                        default="gender",
                        help="Sensitive attribute for fairness computation.")

    parser.add_argument("--label",
                        type=str,
                        default="",
                        help="Classification label.")

    parser.add_argument("--log-tags",
                        type=str,
                        default="",
                        help="Tags for Neptune logs.")

    # Args for tracking data in Neptune.ai
    parser.add_argument("--neptune-project",
                        type=str,
                        default="",
                        help="Name of the Neptune.ai project to store the experiment info.")

    parser.add_argument("--neptune-token",
                        type=str,
                        default="",
                        help="API-token of Neptune.ai project.")

    # Args for multiclass fairness analysis
    parser.add_argument("--multiclass-pred",
                        type=bool,
                        default=False,
                        help="Classifier type (multiclass or binary).")

    parser.add_argument("--multiclass-sens",
                        type=bool,
                        default=False,
                        help="Sensitive attribute type (multiclass or binary).")

    return parser.parse_args()