File size: 12,974 Bytes
d2a8669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
from matplotlib.image import imread
import scipy.io
import dgl
import math
import torch
import numpy as np
#from model import *
from RHGN.model import *
import argparse
from sklearn import metrics
import time
from sklearn.metrics import f1_score
import neptune.new as neptune

from RHGN.fairness import Fairness
'''
parser = argparse.ArgumentParser(description='for Alibaba Dataset')
parser.add_argument('--n_epoch', type=int, default=50)
parser.add_argument('--batch_size', type=int, default=512)
parser.add_argument('--seed', type=int, default=7)
parser.add_argument('--n_hid',   type=int, default=32)
parser.add_argument('--n_inp',   type=int, default=200)
parser.add_argument('--clip',    type=int, default=1.0)
parser.add_argument('--max_lr',  type=float, default=1e-2)
parser.add_argument('--label',  type=str, default='gender')
parser.add_argument('--gpu',  type=int, default=0, choices=[0,1,2,3,4,5,6,7])
parser.add_argument('--graph',  type=str, default='G_ori')
parser.add_argument('--model',  type=str, default='RHGN', choices=['RHGN','RGCN'])
parser.add_argument('--data_dir',  type=str, default='../data/sample')
parser.add_argument('--patience', type=int, default=10)
parser.add_argument('--sens_attr', type=str, default='gender')
parser.add_argument('--log_tags', type=str, default='')
parser.add_argument('--neptune-project', type=str, default='')
parser.add_argument('--neptune-token', type=str, default='')
parser.add_argument('--multiclass-pred', type=bool, default=False)
parser.add_argument('--multiclass-sens', type=bool, default=False)
args = parser.parse_args()
'''


'''
# Instantiate Neptune client and log arguments
neptune_run = neptune.init(
    project=neptune_project,
    api_token=neptune_token,
)
neptune_run["sys/tags"].add(args.log_tags.split(","))
neptune_run["seed"] = args.seed
neptune_run["dataset"] = "Alibaba-small"
neptune_run["model"] = args.model
neptune_run["label"] = args.label
neptune_run["num_epochs"] = args.n_epoch
neptune_run["n_hid"] = args.n_hid
neptune_run["lr"] = args.max_lr
neptune_run["clip"] = args.clip
'''

def get_n_params(model):
    pp=0
    for p in list(model.parameters()):
        nn=1
        for s in list(p.size()):
            nn = nn*s
        pp += nn
    return pp


def Batch_train(model, optimizer, scheduler, train_dataloader, val_dataloader, test_dataloader, epochs, label, clip, neptune_run):
    tic = time.perf_counter() # start counting time

    best_val_acc = 0
    best_test_acc = 0
    train_step = 0
    Minloss_val = 10000.0
    for epoch in np.arange(epochs) + 1:
        model.train()
        '''---------------------------train------------------------'''
        total_loss = 0
        total_acc = 0
        count = 0
        for input_nodes, output_nodes, blocks in train_dataloader:
            Batch_logits,Batch_labels = model(input_nodes,output_nodes,blocks, out_key='user',label_key=label, is_train=True)

            # The loss is computed only for labeled nodes.
            loss = F.cross_entropy(Batch_logits, Batch_labels)
            optimizer.zero_grad()
            loss.backward()
            torch.nn.utils.clip_grad_norm_(model.parameters(), clip)
            optimizer.step()
            train_step += 1
            scheduler.step(train_step)

            acc = torch.sum(Batch_logits.argmax(1) == Batch_labels).item()
            total_loss += loss.item() * len(output_nodes['user'].cpu())
            total_acc += acc
            count += len(output_nodes['user'].cpu())

        train_loss, train_acc = total_loss / count, total_acc / count

        if epoch % 1 == 0:
            model.eval()
            '''-------------------------val-----------------------'''
            with torch.no_grad():
                total_loss = 0
                total_acc = 0
                count = 0
                preds=[]
                labels=[]
                for input_nodes, output_nodes, blocks in val_dataloader:
                    Batch_logits,Batch_labels = model(input_nodes, output_nodes,blocks, out_key='user',label_key=label, is_train=False)
                    loss = F.cross_entropy(Batch_logits, Batch_labels)
                    acc   = torch.sum(Batch_logits.argmax(1)==Batch_labels).item()
                    preds.extend(Batch_logits.argmax(1).tolist())
                    labels.extend(Batch_labels.tolist())
                    total_loss += loss.item() * len(output_nodes['user'].cpu())
                    total_acc +=acc
                    count += len(output_nodes['user'].cpu())

                val_f1 = metrics.f1_score(preds, labels, average='macro')
                val_loss,val_acc   = total_loss / count, total_acc / count
                '''------------------------test----------------------'''
                total_loss = 0
                total_acc = 0
                count = 0
                preds = []
                labels = []

                for input_nodes, output_nodes, blocks in test_dataloader:
                    Batch_logits, Batch_labels = model(input_nodes, output_nodes, blocks, out_key='user', label_key=label, is_train=False)
                    loss = F.cross_entropy(Batch_logits, Batch_labels)
                    acc   = torch.sum(Batch_logits.argmax(1)==Batch_labels).item()
                    preds.extend(Batch_logits.argmax(1).tolist())
                    labels.extend(Batch_labels.tolist())
                    total_loss += loss.item() * len(output_nodes['user'].cpu())
                    total_acc +=acc
                    count += len(output_nodes['user'].cpu())
                   

                test_f1 = metrics.f1_score(preds,labels, average='macro')
                test_loss,test_acc   = total_loss / count, total_acc / count
                if  val_acc   > best_val_acc:
                    Minloss_val = val_loss
                    best_val_acc = val_acc
                    best_test_acc = test_acc
                print('Epoch: %d LR: %.5f Loss %.4f, val loss %.4f, Val Acc %.4f (Best %.4f), Test Acc %.4f (Best %.4f)' % (
                    epoch,
                    optimizer.param_groups[0]['lr'],
                    train_loss,
                    val_loss,
                    val_acc,
                    best_val_acc,
                    test_acc,
                    best_test_acc,
                ))
                print('\t\tval_f1 %.4f test_f1 \033[1;33m %.4f \033[0m' % (val_f1, test_f1))
            torch.cuda.empty_cache()

    classification_report = metrics.classification_report(labels, preds, digits=4)
    print(classification_report+'end')
    # Classification reports
    confusion_matrix = metrics.confusion_matrix(labels, preds)
    print(confusion_matrix)
    f1 = metrics.f1_score(labels, preds, average='macro')
    print('F1 score:', f1)
    # fpr, tpr, _ = metrics.roc_curve(labels, preds)
    # auc = metrics.auc(fpr, tpr)
    # print("AUC:", auc)

    toc = time.perf_counter() # stop counting time
    elapsed_time = (toc-tic)/60
    #print("\nElapsed time: {:.4f} minutes".format(elapsed_time))

    
    # Log result on Neptune
    neptune_run["test/accuracy"] = best_test_acc
    neptune_run["test/f1_score"] = test_f1
    # neptune_run["test/auc"] = auc
    # neptune_run["test/tpr"] = tpr
    # neptune_run["test/fpr"] = fpr
    neptune_run["conf_matrix"] = confusion_matrix
    neptune_run["elaps_time"] = elapsed_time   

    #fair_obj = Fairness(G, test_idx, targets, predictions, sens_attr, neptune_run, multiclass_pred, multiclass_sens) 
    
    return labels, preds


######################################################################
def ali_training_main(G, cid1_feature, cid2_feature, cid3_feature, model_type, seed, gpu, label, n_inp, batch_size, num_hidden, epochs, lr, sens_attr, multiclass_pred, multiclass_sens, clip, neptune_project, neptune_token):

# Instantiate Neptune client and log arguments
    neptune_run = neptune.init(
        project=neptune_project,
        api_token=neptune_token,
    )
    #neptune_run["sys/tags"].add(args.log_tags.split(","))
    neptune_run["seed"] = seed
    neptune_run["dataset"] = "Alibaba-small"
    #neptune_run["model"] = model
    neptune_run["label"] = label
    neptune_run["num_epochs"] = epochs
    neptune_run["n_hid"] = num_hidden
    neptune_run["lr"] = lr
    neptune_run["clip"] = clip


    '''Fixed random seeds'''
    np.random.seed(seed)
    torch.manual_seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)
        torch.cuda.manual_seed_all(seed)

    device = torch.device("cuda:{}".format(gpu) if torch.cuda.is_available() else 'cpu')
    print('device:', device)

    '''Loading charts and labels'''
    #G=torch.load('{}/{}.pkl'.format(args.data_dir,args.graph))
    print(G)
    labels=G.nodes['user'].data[label]
    print(labels.max().item()+1)

    # generate train/val/test split
    pid = np.arange(len(labels))
    shuffle = np.random.permutation(pid)
    train_idx = torch.tensor(shuffle[0:int(len(labels)*0.75)]).long()
    val_idx = torch.tensor(shuffle[int(len(labels)*0.75):int(len(labels)*0.875)]).long()
    test_idx = torch.tensor(shuffle[int(len(labels)*0.875):]).long()

    print("train_idx:", train_idx.shape)
    print("val_idx:", val_idx.shape)
    print("test_idx:", test_idx.shape, type(test_idx), test_idx)

    node_dict = {}
    edge_dict = {}
    for ntype in G.ntypes:
        node_dict[ntype] = len(node_dict)
    for etype in G.etypes:
        edge_dict[etype] = len(edge_dict)
        G.edges[etype].data['id'] = torch.ones(G.number_of_edges(etype), dtype=torch.long) * edge_dict[etype]

    # Initialize input feature
    # import fasttext
    # model = fasttext.load_model('../jd_data/fasttext/fastText/cc.zh.200.bin')
    # sentence_dic=torch.load('../jd_data/sentence_dic.pkl')
    # sentence_vec = [model.get_sentence_vector(sentence_dic[k]) for k, v in enumerate(G.nodes('item').tolist())]
    # for ntype in G.ntypes:
    #     if ntype=='item':
    #         emb=nn.Parameter(torch.Tensor(sentence_vec), requires_grad = False)
    #     else:
    #         emb = nn.Parameter(torch.Tensor(G.number_of_nodes(ntype), 200), requires_grad = False)
    #         nn.init.xavier_uniform_(emb)
    #     G.nodes[ntype].data['inp'] = emb

    for ntype in G.ntypes:
        emb = nn.Parameter(torch.Tensor(G.number_of_nodes(ntype), n_inp), requires_grad = False)
        nn.init.xavier_uniform_(emb)
        G.nodes[ntype].data['inp'] = emb


    G = G.to(device)
    train_idx_item=torch.tensor(shuffle[0:int(G.number_of_nodes('item') * 0.75)]).long()
    val_idx_item = torch.tensor(shuffle[int(G.number_of_nodes('item')*0.75):int(G.number_of_nodes('item')*0.875)]).long()
    test_idx_item = torch.tensor(shuffle[int(G.number_of_nodes('item')*0.875):]).long()
    '''Sampling'''
    sampler = dgl.dataloading.MultiLayerFullNeighborSampler(2)

    train_dataloader = dgl.dataloading.NodeDataLoader(
        G, {'user':train_idx.to(device)}, sampler,
        batch_size=batch_size,
        shuffle=False,
        drop_last=False,
        device=device)

    val_dataloader = dgl.dataloading.NodeDataLoader(
        G, {'user':val_idx.to(device)}, sampler,
        batch_size=batch_size,
        shuffle=False,
        drop_last=False,
        device=device)

    test_dataloader = dgl.dataloading.NodeDataLoader(
        G, {'user':test_idx.to(device)}, sampler,
        batch_size=batch_size,
        shuffle=False,
        drop_last=False,
        device=device)


    if model_type=='RHGN':
        #cid1_feature = torch.load('{}/cid1_feature.npy'.format(args.data_dir))
        #cid2_feature = torch.load('{}/cid2_feature.npy'.format(args.data_dir))
        #cid3_feature = torch.load('{}/cid3_feature.npy'.format(args.data_dir))

        model = ali_RHGN(G,
                    node_dict, edge_dict,
                    n_inp=n_inp,
                    n_hid=num_hidden,
                    n_out=labels.max().item()+1,
                    n_layers=2,
                    n_heads=4,
                    cid1_feature=cid1_feature,
                    cid2_feature=cid2_feature,
                    cid3_feature=cid3_feature,
                
                    use_norm = True).to(device)
        optimizer = torch.optim.AdamW(model.parameters())

        scheduler = torch.optim.lr_scheduler.OneCycleLR(optimizer, epochs=epochs,
                                                        steps_per_epoch=int(train_idx.shape[0]/batch_size)+1,max_lr = lr)
        print('Training RHGN with #param: %d' % (get_n_params(model)))
        targets, predictions = Batch_train(model, optimizer, scheduler, train_dataloader, val_dataloader, test_dataloader, epochs, label, clip, neptune_run)

        # Compute fairness
        fair_obj = Fairness(G, test_idx, targets, predictions, sens_attr, neptune_run, multiclass_pred, multiclass_sens)
        fair_obj.statistical_parity()
        fair_obj.equal_opportunity()
        fair_obj.overall_accuracy_equality()
        fair_obj.treatment_equality()