File size: 14,584 Bytes
d2a8669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import numpy as np
import pandas as pd

class Fairness(object):
    """
    Compute fairness metrics
    """
    def __init__(self, G, test_nodes_idx, targets, predictions, sens_attr, neptune_run,
            multiclass_pred=False, multiclass_sens=False):

        self.multiclass_pred = multiclass_pred
        self.multiclass_sens = multiclass_sens
        self.sens_attr = sens_attr        
        self.neptune_run = neptune_run
        self.neptune_run["sens_attr"] = self.sens_attr
        self.G = G
        self.test_nodes_idx = test_nodes_idx.cpu().detach().numpy()
        self.true_y = np.asarray(targets) # target variables
        self.pred_y = np.asarray(predictions) # prediction of the classifier
        self.sens_attr_array = self.G.nodes["user"].data[self.sens_attr].cpu().detach().numpy() # sensitive attribute values
        self.sens_attr_values = self.sens_attr_array[self.test_nodes_idx]

        if self.multiclass_pred and self.multiclass_sens: # Classifier: multiclass - Sens.attr: multiclass
            self.class_range = list(set(self.true_y))
            self.y_hat = []
            self.yneq_hat = []
            for y_hat_idx in self.class_range:
                self.y_hat.append(self.pred_y == y_hat_idx)
                self.yneq_hat.append(self.pred_y != y_hat_idx)
                
            self.sens_attr_range = list(set(self.sens_attr_values))
            self.s = []
            for s_idx in self.sens_attr_range:
                self.s.append(self.sens_attr_values == s_idx)

            self.y_s = []
            self.yneq_s = []
            for y_idx in self.class_range:
                self.y_s.append([])
                self.yneq_s.append([])
                for s_idx in self.sens_attr_range:
                    self.y_s[y_idx].append(np.bitwise_and(self.true_y == y_idx, self.s[s_idx]))
                    self.yneq_s[y_idx].append(np.bitwise_and(self.true_y != y_idx, self.s[s_idx]))
            self.y_s = np.array(self.y_s)
            self.yneq_s = np.array(self.yneq_s)

        elif self.multiclass_sens: # Classifier: binary - Sens.attr: multiclass
            self.sens_attr_range = list(set(self.sens_attr_values))
            self.s = []
            self.y1_s = []
            self.y0_s = []
            for s_idx in self.sens_attr_range:
                self.s.append(self.sens_attr_values == s_idx)
                self.y1_s.append(np.bitwise_and(self.true_y == 1, self.s[s_idx]))
                self.y0_s.append(np.bitwise_and(self.true_y == 0, self.s[s_idx]))
        
        else: # Classifier: binary - Sens.attr: binary
            self.s0 = self.sens_attr_values == 0
            self.s1 = self.sens_attr_values == 1
            self.y1_s0 = np.bitwise_and(self.true_y == 1, self.s0)
            self.y1_s1 = np.bitwise_and(self.true_y == 1, self.s1)
            self.y0_s0 = np.bitwise_and(self.true_y == 0, self.s0)
            self.y0_s1 = np.bitwise_and(self.true_y == 0, self.s1)

    
    def statistical_parity(self):
        if self.multiclass_pred and self.multiclass_sens: # Classifier: multiclass - Sens.attr: multiclass
            """
            P(y^=0|s=0) = P(y^=0|s=1) = ... = P(y^=0|s=N)
            [...]
            P(y^=M|s=0) = P(y^=M|s=1) = ... = P(y^=M|s=N)
            """
            stat_parity = []
            for y_hat_idx in self.class_range:
                stat_parity.append([])
                for s_idx in self.sens_attr_range:
                    stat_parity[y_hat_idx].append(
                        sum(np.bitwise_and(self.y_hat[y_hat_idx], self.s[s_idx])) /
                        sum(self.s[s_idx])
                    )
                    self.neptune_run["fairness/SP_y^" + str(y_hat_idx) + "_s" + str(s_idx)] = stat_parity[y_hat_idx][s_idx]
        elif self.multiclass_sens: # Classifier: binary - Sens.attr: multiclass
            ''' P(y^=1|s=0) = P(y^=1|s=1) = ... = P(y^=1|s=N) '''
            stat_parity_s = []
            for s_idx in self.sens_attr_range:
                stat_parity_s.append(sum(self.pred_y[self.s[s_idx]]) / sum(self.s[s_idx]))
                self.neptune_run["fairness/SP_s" + str(s_idx)] = stat_parity_s[s_idx]
        else: # Classifier: binary - Sens.attr: binary
            ''' P(y^=1|s=0) = P(y^=1|s=1) '''
            # stat_parity = abs(sum(self.pred_y[self.s0]) / sum(self.s0) - sum(self.pred_y[self.s1]) / sum(self.s1))
            stat_parity_s0 = sum(self.pred_y[self.s0]) / sum(self.s0)
            stat_parity_s1 = sum(self.pred_y[self.s1]) / sum(self.s1)
            stat_parity_diff = stat_parity_s0 - stat_parity_s1
            self.neptune_run["fairness/SP_s0"] = stat_parity_s0
            self.neptune_run["fairness/SP_s1"] = stat_parity_s1
            
            print("Statistical Parity Difference (SPD): {:.4f}".format(np.abs(stat_parity_diff)))
            self.neptune_run["fairness/SPD"] = stat_parity_diff

    
    def equal_opportunity(self):
        if self.multiclass_pred and self.multiclass_sens: # Classifier: multiclass - Sens.attr: multiclass
            """
            P(y^=0|y=0,s=0) = P(y^=0|y=0,s=1) = ... = P(y^=0|y=0,s=N)
            [...]
            P(y^=M|y=M,s=0) = P(y^=M|y=M,s=1) = ... = P(y^=M|y=M,s=N)
            """
            equal_opp = []
            for y_hat_idx in self.class_range:
                equal_opp.append([])
                for s_idx in self.sens_attr_range:
                    try:
                        equal_opp[y_hat_idx].append(
                            sum(np.bitwise_and(self.y_hat[y_hat_idx], self.y_s[y_hat_idx][s_idx])) /
                            sum(self.y_s[y_hat_idx][s_idx])
                        )
                    except ZeroDivisionError:
                        equal_opp[y_hat_idx].append(0)
                    self.neptune_run["fairness/EO_y" + str(y_hat_idx) + "_s" + str(s_idx)] = equal_opp[y_hat_idx][s_idx]
        elif self.multiclass_sens: # Classifier: binary - Sens.attr: multiclass
            ''' P(y^=1|y=1,s=0) = P(y^=1|y=1,s=1) = ... = P(y^=1|y=1,s=N) '''
            equal_opp_s = []
            for s_idx in self.sens_attr_range:
                equal_opp_s.append(sum(self.pred_y[self.y1_s[s_idx]]) / sum(self.y1_s[s_idx]))
                self.neptune_run["fairness/EO_s" + str(s_idx)] = equal_opp_s[s_idx]
        else: # Classifier: binary - Sens.attr: binary
            ''' P(y^=1|y=1,s=0) = P(y^=1|y=1,s=1) '''
            # equal_opp = abs(sum(self.pred_y[self.y1_s0]) / sum(self.y1_s0) - sum(self.pred_y[self.y1_s1]) / sum(self.y1_s1))
            equal_opp_s0 = sum(self.pred_y[self.y1_s0]) / sum(self.y1_s0)
            equal_opp_s1 = sum(self.pred_y[self.y1_s1]) / sum(self.y1_s1)
            equal_opp_diff = equal_opp_s0 - equal_opp_s1
            self.neptune_run["fairness/EO_s0"] = equal_opp_s0
            self.neptune_run["fairness/EO_s1"] = equal_opp_s1
            
            print("Equal Opportunity Difference (EOD): {:.4f}".format(np.abs(equal_opp_diff)))
            self.neptune_run["fairness/EOD"] = equal_opp_diff


    def overall_accuracy_equality(self):
        if self.multiclass_pred and self.multiclass_sens: # Classifier: multiclass - Sens.attr: multiclass
            ''' P(y^=0|y=0,s=0) + ... + P(y^=M|y=M,s=0) = ... = P(y^=0|y=0,s=N) + ... + P(y^=M|y=M,s=N) '''
            oae_s = []
            for s_idx in self.sens_attr_range:
                oae_temp = 0.0
                for y_hat_idx in self.class_range:
                    try:
                        oae_temp += (
                            sum(np.bitwise_and(self.y_hat[y_hat_idx], self.y_s[y_hat_idx][s_idx])) /
                            sum(self.y_s[y_hat_idx][s_idx])
                        )
                    except ZeroDivisionError:
                        oae_temp += 0.0
                oae_s.append(oae_temp)
                self.neptune_run["fairness/OAE_s" + str(s_idx)] = oae_s[s_idx]
        elif self.multiclass_sens: # Classifier: binary - Sens.attr: multiclass
            ''' P(y^=0|y=0,s=0) + P(y^=1|y=1,s=0) = ... = P(y^=0|y=0,s=N) + P(y^=1|y=1,s=N)'''
            oae_s = []
            for s_idx in self.sens_attr_range:
                oae_s.append(
                    np.count_nonzero(self.pred_y[self.y0_s[s_idx]]==0) / sum(self.y0_s[s_idx]) +
                    sum(self.pred_y[self.y1_s[s_idx]]) / sum(self.y1_s[s_idx])
                )
                self.neptune_run["fairness/OAE_s" + str(s_idx)] = oae_s[s_idx]
        else: # Classifier: binary - Sens.attr: binary
            ''' P(y^=0|y=0,s=0) + P(y^=1|y=1,s=0) = P(y^=0|y=0,s=1) + P(y^=1|y=1,s=1) '''
            oae_s0 = np.count_nonzero(self.pred_y[self.y0_s0]==0) / sum(self.y0_s0) + sum(self.pred_y[self.y1_s0]) / sum(self.y1_s0)
            oae_s1 = np.count_nonzero(self.pred_y[self.y0_s1]==0) / sum(self.y0_s1) + sum(self.pred_y[self.y1_s1]) / sum(self.y1_s1)
            # oae_diff = abs(oae_s0 - oae_s1)
            oae_diff = oae_s0 - oae_s1
            self.neptune_run["fairness/OAE_s0"] = oae_s0
            self.neptune_run["fairness/OAE_s1"] = oae_s1
            
            print("Overall Accuracy Equality Difference (OAED): {:.4f}".format(np.abs(oae_diff)))
            self.neptune_run["fairness/OAED"] = oae_diff


    def treatment_equality(self):
        if self.multiclass_pred and self.multiclass_sens: # Classifier: multiclass - Sens.attr: multiclass
            """
            P(y^=0|y/=0,s=0) / P(y^/=0|y=0,s=0) = ... = P(y^=0|y/=0,s=N) / P(y^/=0|y=0,s=N)
            [...]
            P(y^=M|y/=M,s=0) / P(y^/=M|y=M,s=0) = ... = P(y^=M|y/=M,s=N) / P(y^/M|y=M,s=N)
            """
            te_fp_fn = []
            te_fn_fp = []
            te = []
            for y_hat_idx in self.class_range:
                te_fp_fn.append([])
                te_fn_fp.append([])
                abs_te_fp_fn = 0.0
                abs_te_fn_fp = 0.0
                te.append([])
                for s_idx in self.sens_attr_range:
                    try:
                        te_fp_fn[y_hat_idx].append(
                            (sum(np.bitwise_and(self.y_hat[y_hat_idx], self.yneq_s[y_hat_idx][s_idx])) / sum(self.yneq_s[y_hat_idx][s_idx])) /
                            (sum(np.bitwise_and(self.yneq_hat[y_hat_idx], self.y_s[y_hat_idx][s_idx])) / sum(self.y_s[y_hat_idx][s_idx]))
                        )
                    except ZeroDivisionError:
                        te_fp_fn[y_hat_idx].append(0)
                    
                    try:
                        te_fn_fp[y_hat_idx].append(
                            (sum(np.bitwise_and(self.yneq_hat[y_hat_idx], self.y_s[y_hat_idx][s_idx])) / sum(self.y_s[y_hat_idx][s_idx])) /
                            (sum(np.bitwise_and(self.y_hat[y_hat_idx], self.yneq_s[y_hat_idx][s_idx])) / sum(self.yneq_s[y_hat_idx][s_idx]))
                        )
                    except ZeroDivisionError:
                        te_fn_fp[y_hat_idx].append(0)

                    abs_te_fp_fn += abs(te_fp_fn[y_hat_idx][s_idx])
                    abs_te_fn_fp += abs(te_fn_fp[y_hat_idx][s_idx])
            
                    if abs_te_fp_fn < abs_te_fn_fp:
                        te[y_hat_idx].append(te_fp_fn[y_hat_idx][s_idx])
                    else:
                        te[y_hat_idx].append(te_fn_fp[y_hat_idx][s_idx])

            for y_idx in self.class_range:
                for s_idx in self.sens_attr_range:
                    self.neptune_run["fairness/TE_y" + str(y_idx) + "_s" + str(s_idx)] = te[y_idx][s_idx]

        elif self.multiclass_sens: # Classifier: binary - Sens.attr: multiclass
            ''' P(y^=1|y=0,s=0) / P(y^=0|y=1,s=0) = ... = P(y^=1|y=0,s=N) / P(y^=0|y=1,s=N) '''
            te1_s = []
            te0_s = []
            abs_te1 = []
            abs_te0 = []
            for s_idx in self.sens_attr_range:
                te1_s.append(
                    (sum(self.pred_y[self.y0_s[s_idx]]) / sum(self.y0_s[s_idx])) /
                    (np.count_nonzero(self.pred_y[self.y1_s[s_idx]]==0) / sum(self.y1_s[s_idx]))
                )
                te0_s.append(
                    (np.count_nonzero(self.pred_y[self.y1_s[s_idx]]==0) / sum(self.y1_s[s_idx])) /
                    (sum(self.pred_y[self.y0_s[s_idx]]) / sum(self.y0_s[s_idx]))
                )
                abs_te1.append(abs(te1_s[s_idx]))
                abs_te0.append(abs(te0_s[s_idx]))
            
            if sum(abs_te1) < sum(abs_te0):
                te_s = te1_s
            else:
                te_s = te0_s

            #for i in self.sens_attr_range:
                self.neptune_run["fairness/TE_s" + str(i)] = te_s[i]            

        else: # Classifier: binary - Sens.attr: binary
            ''' P(y^=1|y=0,s=0) / P(y^=0|y=1,s=0) = P(y^=1|y=0,s=1) / P(y^=0|y=1,s=1) '''
            te1_s0 = (sum(self.pred_y[self.y0_s0]) / sum(self.y0_s0)) / (np.count_nonzero(self.pred_y[self.y1_s0]==0) / sum(self.y1_s0))
            te1_s1 = (sum(self.pred_y[self.y0_s1]) / sum(self.y0_s1)) / (np.count_nonzero(self.pred_y[self.y1_s1]==0) / sum(self.y1_s1))
            te_diff_1 = te1_s0 - te1_s1
            abs_ted_1 = abs(te_diff_1)
            ''' P(y^=0|y=1,s=0) / P(y^=1|y=0,s=0) = P(y^=0|y=1,s=1) / P(y^=1|y=0,s=1) '''
            te0_s0 = (np.count_nonzero(self.pred_y[self.y1_s0]==0) / sum(self.y1_s0)) / (sum(self.pred_y[self.y0_s0]) / sum(self.y0_s0))
            te0_s1 = (np.count_nonzero(self.pred_y[self.y1_s1]==0) / sum(self.y1_s1)) / (sum(self.pred_y[self.y0_s1]) / sum(self.y0_s1))
            te_diff_0 = te0_s0 - te0_s1
            abs_ted_0 = abs(te_diff_0)

            # te_diff = min(te_diff_1, te_diff_0)
            if abs_ted_0 < abs_ted_1:
                te_s0 = te0_s0
                te_s1 = te0_s1
                te_diff = te_diff_0
            else:
                te_s0 = te1_s0
                te_s1 = te1_s1
                te_diff = te_diff_1

            self.neptune_run["fairness/TE_s0"] = te_s0
            self.neptune_run["fairness/TE_s1"] = te_s1
            
            print("Treatment Equality Difference (TED): {:.4f}".format(np.abs(te_diff)))
            self.neptune_run["fairness/TED"] = te_diff


    def disparate_impact(self):
        #num_of_priv = sum(self.s0)
        #num_of_unpriv = sum(self.s1)

        #unpriv_ratio = sum(self.pred_y[self.]/num_of_unpriv 

        #stat_parity_s0 = sum(self.pred_y[self.s0]) / sum(self.s0)
        #stat_parity_s1 = sum(self.pred_y[self.s1]) / sum(self.s1)
        #stat_parity_diff = stat_parity_s0 - stat_parity_s1

        print('true_y:', self.true_y)
        print('pred_y:', self.pred_y)