File size: 8,121 Bytes
d2a8669
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import numpy as np
import pandas as pd
import os
import scipy.sparse as sp

from fainress_component import disparate_impact_remover, reweighting, sample


def nba_CatGCN_pre_process(df, df_edge_list, sens_attr, label, special_case, onehot_bin_columns, onehot_cat_columns, debaising_approach=None):
    if onehot_bin_columns != None:
        df = apply_bin_columns(df, onehot_bin_columns)
    
    if onehot_cat_columns != None:
        df = apply_cat_columns(df, onehot_cat_columns)

    #nba case
    if -1 in df[label].unique():
        df[label] = df[label].replace(-1, 0)

    if debaising_approach != None:
        if debaising_approach == 'disparate_impact_remover':
            df = disparate_impact_remover(df, sens_attr, label)
        elif debaising_approach == 'reweighting':
            df = reweighting(df, sens_attr, label)
        elif debaising_approach == 'sample':
            df = sample(df, sens_attr, label)

    #if debaising_approach == 'sample':
    #        df = df.reset_index()
    #        df = df.drop(['index'], axis=1)
    #        df = df.drop_duplicates()


    if debaising_approach == 'disparate_impact_remover' or debaising_approach == 'reweighting':
        df.AGE = df.AGE.astype(int)
        df.country = df.country.astype(int)
        df.SALARY = df.SALARY.astype(int)

        df['user_id'] = pd.to_numeric(df['user_id'])
        df = df.astype({'user_id': int})

        df.AGE = df.AGE.astype(str)
        df.MP = df.MP.astype(str)
        df.FG = df.FG.astype(str)

        df['AGE'] = df['AGE'].astype(str).astype(int)
            
    #for the nba dataset we choose age as the m apping option to the userid
    uid_age = df[['user_id', 'AGE']].copy()
    uid_age.dropna(inplace=True)
    uid_age2 = df[['user_id', 'AGE']].copy()

    #create uid2id
    uid2id = {num: i for i, num in enumerate(df['user_id'])}
    #create age2id
    age2id = {num: i for i, num in enumerate(pd.unique(uid_age['AGE']))}

    #create user_field
    user_field = col_map(uid_age, 'user_id', uid2id)
    user_field = col_map(user_field, 'AGE', age2id)

    ## new part for disparate remover
    if debaising_approach == 'disparate_impact_remover':
        user_field = user_field.reset_index()
        user_field = user_field.drop(['user_id'], axis=1)

        user_field = user_field.rename(columns={"index": "user_id"})
        user_field['user_id'] = user_field['user_id'].astype(str).astype(int)

    #create user_label
    user_label = df[df['user_id'].isin(uid_age2['user_id'])]
    user_label = col_map(user_label, 'user_id', uid2id)
    user_label = label_map(user_label, user_label.columns[1:])
    print('User label size', user_label.size)

    # save_path = "./input_ali_data"
    save_path = "./"

    # process edge list
    if df_edge_list['source'].dtype != 'int64':
        df_edge_list['source'] = df_edge_list['source'].astype(str).astype(np.int64)
        df_edge_list['target'] = df_edge_list['target'].astype(str).astype(np.int64)

    source = []
    target = []
    for i in range(df_edge_list.shape[0]):
        if any(df.user_id == df_edge_list.source[i]) == True and any(df.user_id == df_edge_list.target[i]) == True:
            index = df.user_id[df.user_id == df_edge_list.source[i]].index.tolist()[0]
            source.append(index)
            index2 = df.user_id[df.user_id == df_edge_list.target[i]].index.tolist()[0]
            target.append(index2)

    user_edge_new = pd.DataFrame({'uid': source, 'uid2': target})

    user_edge_new.to_csv(os.path.join(save_path, 'user_edge.csv'), index=False)
    user_field.to_csv(os.path.join(save_path, 'user_field.csv'), index=False)
    user_label.to_csv(os.path.join(save_path, 'user_labels.csv'), index=False)

    user_label[['user_id','SALARY']].to_csv(os.path.join(save_path, 'user_salary.csv'), index=False)
    user_salary = user_label[['user_id', 'SALARY']]
    print('User salary size', user_salary.size)
    user_label[['user_id','AGE']].to_csv(os.path.join(save_path, 'user_age.csv'), index=False)
    user_label[['user_id','MP']].to_csv(os.path.join(save_path, 'user_mp.csv'), index=False)
    user_label[['user_id','FG']].to_csv(os.path.join(save_path, 'user_fg.csv'), index=False)
    user_label[['user_id','country']].to_csv(os.path.join(save_path, 'user_country.csv'), index=False)
    user_label[['user_id','player_height']].to_csv(os.path.join(save_path, 'user_player_height.csv'), index=False)
    user_label[['user_id','player_weight']].to_csv(os.path.join(save_path, 'user_player_weight.csv'), index=False)

    NUM_FIELD = 10
    #np.random_seed(42)

     # load user_field.csv
    user_field = field_reader(os.path.join(save_path, 'user_field.csv'))
    print("Shapes of user with field:", user_field.shape)
    print("Number of user with field:", np.count_nonzero(np.sum(user_field, axis=1)))

    neighs = get_neighs(user_field)

    sample_neighs = []
    for i in range(len(neighs)):
        sample_neighs.append(list(sample_neigh(neighs[i], NUM_FIELD)))
    sample_neighs = np.array(sample_neighs)

    np.save(os.path.join(save_path, 'user_field.npy'), sample_neighs)

    user_field_new = sample_neighs

    user_edge_path = './user_edge.csv'
    user_field_new_path = './user_field.npy'
    user_salary_path = './user_salary.csv'
    user_label_path = './user_labels.csv'

    return user_edge_path, user_field_new_path, user_salary_path, user_label_path

def get_count(tp, id):
    playcount_groupbyid = tp[[id]].groupby(id, as_index=True)
    count = playcount_groupbyid.size()
    return count

def filter_triplets(tp, user, item, min_uc=0, min_sc=0):
    # Only keep the triplets for users who clicked on at least min_uc items
    if min_uc > 0:
        usercount = get_count(tp, user)
        tp = tp[tp[user].isin(usercount.index[usercount >= min_uc])]
    
    # Only keep the triplets for items which were clicked on by at least min_sc users. 
    if min_sc > 0:
        itemcount = get_count(tp, item)
        tp = tp[tp[item].isin(itemcount.index[itemcount >= min_sc])]
    
    # Update both usercount and itemcount after filtering
    usercount, itemcount = get_count(tp, user), get_count(tp, item) 
    return tp, usercount, itemcount

def col_map(df, col, num2id):
    df[[col]] = df[[col]].applymap(lambda x: num2id[x])
    return df

def label_map(label_df, label_list):
    for label in label_list:
        label2id = {num: i for i, num in enumerate(pd.unique(label_df[label]))}
        label_df = col_map(label_df, label, label2id)
    return label_df

def field_reader(path):
    """
    Reading the sparse field matrix stored as csv from the disk.
    :param path: Path to the csv file.
    :return field: csr matrix of field.
    """
    user_field = pd.read_csv(path)
    user_index = user_field["user_id"].values.tolist()
    field_index = user_field["AGE"].values.tolist()
    user_count = max(user_index)+1
    field_count = max(field_index)+1
    field_index = sp.csr_matrix((np.ones_like(user_index), (user_index, field_index)), shape=(user_count, field_count))
    return field_index

#user_field = field_reader(os.path.join(save_path, 'user_field.csv'))

#print("Shapes of user with field:", user_field.shape)
#print("Number of user with field:", np.count_nonzero(np.sum(user_field, axis=1)))

def get_neighs(csr):
    neighs = []
#     t = time.time()
    idx = np.arange(csr.shape[1])
    for i in range(csr.shape[0]):
        x = csr[i, :].toarray()[0] > 0
        neighs.append(idx[x])
#         if i % (10*1000) == 0:
#             print('sec/10k:', time.time()-t)
    return neighs

def sample_neigh(neigh, num_sample):
    if len(neigh) >= num_sample:
        sample_neigh = np.random.choice(neigh, num_sample, replace=False)
    elif len(neigh) < num_sample:
        sample_neigh = np.random.choice(neigh, num_sample, replace=True)
    return sample_neigh


def apply_bin_columns(df, onehot_bin_columns):
    for column in df:
        if column in onehot_bin_columns:
            df[column] = df[column].astype(int)

    return df

def apply_cat_columns(df, onehot_cat_columns):
    df = pd.get_dummies(df, columns=onehot_cat_columns)

    return df