Spaces:
Runtime error
Runtime error
% Generated by roxygen2: do not edit by hand | |
% Please edit documentation in R/inprocessing_adversarial_debiasing.R | |
\name{adversarial_debiasing} | |
\alias{adversarial_debiasing} | |
\title{Adversarial Debiasing} | |
\usage{ | |
adversarial_debiasing( | |
unprivileged_groups, | |
privileged_groups, | |
scope_name = "current", | |
sess = tf$compat$v1$Session(), | |
seed = NULL, | |
adversary_loss_weight = 0.1, | |
num_epochs = 50L, | |
batch_size = 128L, | |
classifier_num_hidden_units = 200L, | |
debias = TRUE | |
) | |
} | |
\arguments{ | |
\item{unprivileged_groups}{A list with two values: the column of the protected class and the value indicating representation for unprivileged group.} | |
\item{privileged_groups}{A list with two values: the column of the protected class and the value indicating representation for privileged group.} | |
\item{scope_name}{Scope name for the tensorflow variables.} | |
\item{sess}{tensorflow session} | |
\item{seed}{Seed to make \code{predict} repeatable. If not, \code{NULL}, must be an integer.} | |
\item{adversary_loss_weight}{Hyperparameter that chooses the strength of the adversarial loss.} | |
\item{num_epochs}{Number of training epochs. Must be an integer.} | |
\item{batch_size}{Batch size. Must be an integer.} | |
\item{classifier_num_hidden_units}{Number of hidden units in the classifier model. Must be an integer.} | |
\item{debias}{Learn a classifier with or without debiasing.} | |
} | |
\description{ | |
Adversarial debiasing is an in-processing technique that learns a classifier to maximize prediction accuracy | |
and simultaneously reduce an adversary's ability to determine the protected attribute from the predictions | |
} | |
\examples{ | |
\dontrun{ | |
load_aif360_lib() | |
ad <- adult_dataset() | |
p <- list("race", 1) | |
u <- list("race", 0) | |
sess <- tf$compat$v1$Session() | |
plain_model <- adversarial_debiasing(privileged_groups = p, | |
unprivileged_groups = u, | |
scope_name = "debiased_classifier", | |
debias = TRUE, | |
sess = sess) | |
plain_model$fit(ad) | |
ad_nodebiasing <- plain_model$predict(ad) | |
} | |
} | |