Spaces:
Runtime error
Runtime error
import numpy as np | |
import scipy.optimize as optim | |
from aif360.algorithms import Transformer | |
from aif360.algorithms.preprocessing.lfr_helpers import helpers as lfr_helpers | |
class LFR(Transformer): | |
"""Learning fair representations is a pre-processing technique that finds a | |
latent representation which encodes the data well but obfuscates information | |
about protected attributes [2]_. | |
References: | |
.. [2] R. Zemel, Y. Wu, K. Swersky, T. Pitassi, and C. Dwork, "Learning | |
Fair Representations." International Conference on Machine Learning, | |
2013. | |
Based on code from https://github.com/zjelveh/learning-fair-representations | |
""" | |
def __init__(self, | |
unprivileged_groups, | |
privileged_groups, | |
k=5, | |
Ax=0.01, | |
Ay=1.0, | |
Az=50.0, | |
print_interval=250, | |
verbose=0, | |
seed=None): | |
""" | |
Args: | |
unprivileged_groups (tuple): Representation for unprivileged group. | |
privileged_groups (tuple): Representation for privileged group. | |
k (int, optional): Number of prototypes. | |
Ax (float, optional): Input recontruction quality term weight. | |
Az (float, optional): Fairness constraint term weight. | |
Ay (float, optional): Output prediction error. | |
print_interval (int, optional): Print optimization objective value | |
every print_interval iterations. | |
verbose (int, optional): If zero, then no output. | |
seed (int, optional): Seed to make `predict` repeatable. | |
""" | |
super(LFR, self).__init__( | |
unprivileged_groups=unprivileged_groups, | |
privileged_groups=privileged_groups) | |
self.seed = seed | |
self.unprivileged_groups = unprivileged_groups | |
self.privileged_groups = privileged_groups | |
if len(self.unprivileged_groups) > 1 or len(self.privileged_groups) > 1: | |
raise ValueError("Only one unprivileged_group or privileged_group supported.") | |
self.protected_attribute_name = list(self.unprivileged_groups[0].keys())[0] | |
self.unprivileged_group_protected_attribute_value = self.unprivileged_groups[0][self.protected_attribute_name] | |
self.privileged_group_protected_attribute_value = self.privileged_groups[0][self.protected_attribute_name] | |
self.k = k | |
self.Ax = Ax | |
self.Ay = Ay | |
self.Az = Az | |
self.print_interval = print_interval | |
self.verbose = verbose | |
self.w = None | |
self.prototypes = None | |
self.learned_model = None | |
def fit(self, dataset, maxiter=5000, maxfun=5000): | |
"""Compute the transformation parameters that leads to fair representations. | |
Args: | |
dataset (BinaryLabelDataset): Dataset containing true labels. | |
maxiter (int): Maximum number of iterations. | |
maxfun (int): Maxinum number of function evaluations. | |
Returns: | |
LFR: Returns self. | |
""" | |
if self.seed is not None: | |
np.random.seed(self.seed) | |
num_train_samples, self.features_dim = np.shape(dataset.features) | |
protected_attributes = np.reshape( | |
dataset.protected_attributes[:, dataset.protected_attribute_names.index(self.protected_attribute_name)], | |
[-1, 1]) | |
unprivileged_sample_ids = np.array(np.where(protected_attributes == self.unprivileged_group_protected_attribute_value))[0].flatten() | |
privileged_sample_ids = np.array(np.where(protected_attributes == self.privileged_group_protected_attribute_value))[0].flatten() | |
features_unprivileged = dataset.features[unprivileged_sample_ids] | |
features_privileged = dataset.features[privileged_sample_ids] | |
labels_unprivileged = dataset.labels[unprivileged_sample_ids] | |
labels_privileged = dataset.labels[privileged_sample_ids] | |
# Initialize the LFR optim objective parameters | |
parameters_initialization = np.random.uniform(size=self.k + self.features_dim * self.k) | |
bnd = [(0, 1)]*self.k + [(None, None)]*self.features_dim*self.k | |
lfr_helpers.LFR_optim_objective.steps = 0 | |
self.learned_model = optim.fmin_l_bfgs_b(lfr_helpers.LFR_optim_objective, x0=parameters_initialization, epsilon=1e-5, | |
args=(features_unprivileged, features_privileged, | |
labels_unprivileged[:, 0], labels_privileged[:, 0], self.k, self.Ax, | |
self.Ay, self.Az, self.print_interval, self.verbose), | |
bounds=bnd, approx_grad=True, maxfun=maxfun, | |
maxiter=maxiter, disp=self.verbose)[0] | |
self.w = self.learned_model[:self.k] | |
self.prototypes = self.learned_model[self.k:].reshape((self.k, self.features_dim)) | |
return self | |
def transform(self, dataset, threshold=0.5): | |
"""Transform the dataset using learned model parameters. | |
Args: | |
dataset (BinaryLabelDataset): Dataset containing labels that needs to be transformed. | |
threshold(float, optional): threshold parameter used for binary label prediction. | |
Returns: | |
dataset (BinaryLabelDataset): Transformed Dataset. | |
""" | |
if self.seed is not None: | |
np.random.seed(self.seed) | |
protected_attributes = np.reshape( | |
dataset.protected_attributes[:, dataset.protected_attribute_names.index(self.protected_attribute_name)], | |
[-1, 1]) | |
unprivileged_sample_ids = \ | |
np.array(np.where(protected_attributes == self.unprivileged_group_protected_attribute_value))[0].flatten() | |
privileged_sample_ids = \ | |
np.array(np.where(protected_attributes == self.privileged_group_protected_attribute_value))[0].flatten() | |
features_unprivileged = dataset.features[unprivileged_sample_ids] | |
features_privileged = dataset.features[privileged_sample_ids] | |
_, features_hat_unprivileged, labels_hat_unprivileged = lfr_helpers.get_xhat_y_hat(self.prototypes, self.w, features_unprivileged) | |
_, features_hat_privileged, labels_hat_privileged = lfr_helpers.get_xhat_y_hat(self.prototypes, self.w, features_privileged) | |
transformed_features = np.zeros(shape=np.shape(dataset.features)) | |
transformed_labels = np.zeros(shape=np.shape(dataset.labels)) | |
transformed_features[unprivileged_sample_ids] = features_hat_unprivileged | |
transformed_features[privileged_sample_ids] = features_hat_privileged | |
transformed_labels[unprivileged_sample_ids] = np.reshape(labels_hat_unprivileged, [-1, 1]) | |
transformed_labels[privileged_sample_ids] = np.reshape(labels_hat_privileged,[-1, 1]) | |
transformed_bin_labels = (np.array(transformed_labels) > threshold).astype(np.float64) | |
# Mutated, fairer dataset with new labels | |
dataset_new = dataset.copy(deepcopy=True) | |
dataset_new.features = transformed_features | |
dataset_new.labels = transformed_bin_labels | |
dataset_new.scores = np.array(transformed_labels) | |
return dataset_new | |
def fit_transform(self, dataset, maxiter=5000, maxfun=5000, threshold=0.5): | |
"""Fit and transform methods sequentially. | |
Args: | |
dataset (BinaryLabelDataset): Dataset containing labels that needs to be transformed. | |
maxiter (int): Maximum number of iterations. | |
maxfun (int): Maxinum number of function evaluations. | |
threshold(float, optional): threshold parameter used for binary label prediction. | |
Returns: | |
dataset (BinaryLabelDataset): Transformed Dataset. | |
""" | |
return self.fit(dataset, maxiter=maxiter, maxfun=maxfun).transform(dataset, threshold=threshold) | |