Spaces:
Runtime error
Runtime error
import numpy as np | |
from aif360.datasets import StructuredDataset | |
class BinaryLabelDataset(StructuredDataset): | |
"""Base class for all structured datasets with binary labels.""" | |
def __init__(self, favorable_label=1., unfavorable_label=0., **kwargs): | |
""" | |
Args: | |
favorable_label (float): Label value which is considered favorable | |
(i.e. "positive"). | |
unfavorable_label (float): Label value which is considered | |
unfavorable (i.e. "negative"). | |
**kwargs: StructuredDataset arguments. | |
""" | |
self.favorable_label = float(favorable_label) | |
self.unfavorable_label = float(unfavorable_label) | |
super(BinaryLabelDataset, self).__init__(**kwargs) | |
def validate_dataset(self): | |
"""Error checking and type validation. | |
Raises: | |
ValueError: `labels` must be shape [n, 1]. | |
ValueError: `favorable_label` and `unfavorable_label` must be the | |
only values present in `labels`. | |
""" | |
# fix scores before validating | |
if np.all(self.scores == self.labels): | |
self.scores = (self.scores == self.favorable_label).astype(np.float64) | |
super(BinaryLabelDataset, self).validate_dataset() | |
# =========================== SHAPE CHECKING =========================== | |
# Verify if the labels are only 1 column | |
if self.labels.shape[1] != 1: | |
raise ValueError("BinaryLabelDataset only supports single-column " | |
"labels:\n\tlabels.shape = {}".format(self.labels.shape)) | |
# =========================== VALUE CHECKING =========================== | |
# Check if the favorable and unfavorable labels match those in the dataset | |
if (not set(self.labels.ravel()) <= | |
set([self.favorable_label, self.unfavorable_label])): | |
raise ValueError("The favorable and unfavorable labels provided do " | |
"not match the labels in the dataset.") | |