Spaces:
Runtime error
Runtime error
import math | |
import torch | |
from torch import Tensor | |
from torch.nn import Parameter | |
from torch_geometric.nn.conv import MessagePassing, GCNConv | |
class GCNIIConv(MessagePassing): | |
""" | |
The graph convolutional operator with initial residual connections and | |
identity mapping (GCNII) from the `"Simple and Deep Graph Convolutional | |
Networks" <https://arxiv.org/abs/2007.02133>`_ paper | |
""" | |
def __init__(self, channels, alpha, theta=None, layer=None, | |
shared_weights=True, cached=False, **kwargs): | |
super(GCNIIConv, self).__init__(aggr='add', **kwargs) | |
self.channels = channels | |
self.alpha = alpha | |
self.beta = 1. | |
if theta is not None or layer is not None: | |
assert theta is not None and layer is not None | |
self.beta = math.log(theta / layer + 1) | |
# self.cached = cached | |
self.weight1 = Parameter(torch.Tensor(channels, channels)) | |
if shared_weights: | |
self.register_parameter('weight2', None) | |
else: | |
self.weight2 = Parameter(torch.Tensor(channels, channels)) | |
self.reset_parameters() | |
def reset_parameters(self): | |
self.glorot(self.weight1) | |
self.glorot(self.weight2) | |
def glorot(self, tensor): | |
if tensor is not None: | |
stdv = math.sqrt(6.0 / (tensor.size(-2) + tensor.size(-1))) | |
tensor.data.uniform_(-stdv, stdv) | |
def forward(self, x, x_0, edge_index, edge_weight=None): | |
edge_index, norm = GCNConv.norm(edge_index, x.size(0), edge_weight, | |
dtype=x.dtype) | |
x = self.propagate(edge_index, x=x, norm=norm) | |
if self.weight2 is None: | |
out = (1 - self.alpha) * x + self.alpha * x_0 | |
out = (1 - self.beta) * out + self.beta * (out @ self.weight1) | |
else: | |
out1 = (1 - self.alpha) * x | |
out1 = (1 - self.beta) * out1 + self.beta * (out1 @ self.weight1) | |
out2 = self.alpha * x_0 | |
out2 = (1 - self.beta) * out2 + self.beta * (out2 @ self.weight2) | |
out = out1 + out2 | |
return out | |
def message(self, x_j, norm): | |
return norm.view(-1, 1) * x_j | |
def __repr__(self): | |
return '{}({}, alpha={}, beta={})'.format(self.__class__.__name__, | |
self.channels, self.alpha, | |
self.beta) |