FairUP / src /models /CatGCN /pna_layer.py
erasmopurif's picture
First commit
d2a8669
from torch.nn import Linear
from torch_geometric.nn.conv import MessagePassing, GCNConv
# from torch_geometric.nn.conv.gcn_conv import gcn_norm
# implementation of 'GCNConv.norm' method of Pytorch Geometric v1.3.2 (not present in the latest version)
import torch
from torch_scatter import scatter_add
from torch_geometric.utils import add_remaining_self_loops
def gcn_norm_old(edge_index, num_nodes, edge_weight=None, improved=False, dtype=None):
if edge_weight is None:
edge_weight = torch.ones((edge_index.size(1), ), dtype=dtype, device=edge_index.device)
fill_value = 1 if not improved else 2
edge_index, edge_weight = add_remaining_self_loops(edge_index, edge_weight, fill_value, num_nodes)
row, col = edge_index
deg = scatter_add(edge_weight, row, dim=0, dim_size=num_nodes)
deg_inv_sqrt = deg.pow(-0.5)
deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0
return edge_index, deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col]
class PNAConv(MessagePassing):
"""
Pure neighborhood aggregation layer.
"""
def __init__(self, K=1, cached=False, bias=True, **kwargs):
super(PNAConv, self).__init__(aggr='add', **kwargs)
self.K = K
def forward(self, x, edge_index, edge_weight=None):
# edge_index, norm = GCNConv.norm(edge_index, x.size(0), edge_weight, dtype=x.dtype)
edge_index, norm = gcn_norm_old(edge_index, x.size(0), edge_weight, dtype=x.dtype)
for k in range(self.K):
x = self.propagate(edge_index, x=x, norm=norm)
return x
def message(self, x_j, norm):
return norm.view(-1, 1) * x_j
def __repr__(self):
return '{}(K={})'.format(self.__class__.__name__, self.K)