Spaces:
Runtime error
Runtime error
from torch.nn import Linear | |
from torch_geometric.nn.conv import MessagePassing, GCNConv | |
# from torch_geometric.nn.conv.gcn_conv import gcn_norm | |
# implementation of 'GCNConv.norm' method of Pytorch Geometric v1.3.2 (not present in the latest version) | |
import torch | |
from torch_scatter import scatter_add | |
from torch_geometric.utils import add_remaining_self_loops | |
def gcn_norm_old(edge_index, num_nodes, edge_weight=None, improved=False, dtype=None): | |
if edge_weight is None: | |
edge_weight = torch.ones((edge_index.size(1), ), dtype=dtype, device=edge_index.device) | |
fill_value = 1 if not improved else 2 | |
edge_index, edge_weight = add_remaining_self_loops(edge_index, edge_weight, fill_value, num_nodes) | |
row, col = edge_index | |
deg = scatter_add(edge_weight, row, dim=0, dim_size=num_nodes) | |
deg_inv_sqrt = deg.pow(-0.5) | |
deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0 | |
return edge_index, deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col] | |
class PNAConv(MessagePassing): | |
""" | |
Pure neighborhood aggregation layer. | |
""" | |
def __init__(self, K=1, cached=False, bias=True, **kwargs): | |
super(PNAConv, self).__init__(aggr='add', **kwargs) | |
self.K = K | |
def forward(self, x, edge_index, edge_weight=None): | |
# edge_index, norm = GCNConv.norm(edge_index, x.size(0), edge_weight, dtype=x.dtype) | |
edge_index, norm = gcn_norm_old(edge_index, x.size(0), edge_weight, dtype=x.dtype) | |
for k in range(self.K): | |
x = self.propagate(edge_index, x=x, norm=norm) | |
return x | |
def message(self, x_j, norm): | |
return norm.view(-1, 1) * x_j | |
def __repr__(self): | |
return '{}(K={})'.format(self.__class__.__name__, self.K) | |