#' Disparate Impact Remover #' @description Disparate impact remover is a preprocessing technique that edits feature values increase group fairness while preserving rank-ordering within groups #' @param repair_level Repair amount. 0.0 is no repair while 1.0 is full repair. #' @param sensitive_attribute Single protected attribute with which to do repair. #' @usage disparate_impact_remover(repair_level = 1.0, sensitive_attribute = '') #' @examples #' \dontrun{ #' # An example using the Adult Dataset #' load_aif360_lib() #' ad <- adult_dataset() #' p <- list("race", 1) #' u <- list("race", 0) #' #' di <- disparate_impact_remover(repair_level = 1.0, sensitive_attribute = "race") #' rp <- di$fit_transform(ad) #' #' di_2 <- disparate_impact_remover(repair_level = 0.8, sensitive_attribute = "race") #' rp_2 <- di_2$fit_transform(ad) #' } #' @export #' disparate_impact_remover <- function(repair_level=1.0, sensitive_attribute='') { dr <- pre_algo$DisparateImpactRemover(repair_level, sensitive_attribute) return (dr) }