% Generated by roxygen2: do not edit by hand % Please edit documentation in R/dataset.R \name{binary_label_dataset} \alias{binary_label_dataset} \title{AIF360 dataset} \usage{ binary_label_dataset(data_path, favor_label, unfavor_label, unprivileged_protected_attribute, privileged_protected_attribute, target_column, protected_attribute) } \arguments{ \item{data_path}{Path to the input CSV file or a R dataframe.} \item{favor_label}{Label value which is considered favorable (i.e. “positive”).} \item{unfavor_label}{Label value which is considered unfavorable (i.e. “negative”).} \item{unprivileged_protected_attribute}{A unprotected attribute value which is considered privileged from a fairness perspective.} \item{privileged_protected_attribute}{A protected attribute value which is considered privileged from a fairness perspective.} \item{target_column}{Name describing the label.} \item{protected_attribute}{A feature for which fairness is desired.} } \description{ Function to create AIF compatible dataset. } \examples{ \dontrun{ load_aif360_lib() # Input dataset data <- data.frame("feat" = c(0,0,1,1,1,1,0,1,1,0), "label" = c(1,0,0,1,0,0,1,0,1,1)) # Create aif compatible input dataset act <- aif360::binary_label_dataset(data_path = data, favor_label=0, unfavor_label=1, unprivileged_protected_attribute=0, privileged_protected_attribute=1, target_column="label", protected_attribute="feat") } } \seealso{ \href{https://aif360.readthedocs.io/en/latest/modules/datasets.html#binary-label-dataset}{More about AIF binary dataset.} }