% Generated by roxygen2: do not edit by hand % Please edit documentation in R/classification_metric.R \name{classification_metric} \alias{classification_metric} \title{Classification Metric} \usage{ classification_metric(dataset, classified_dataset, unprivileged_groups, privileged_groups) } \arguments{ \item{dataset}{(BinaryLabelDataset) Dataset containing ground-truth labels} \item{classified_dataset}{(BinaryLabelDataset) Dataset containing predictions} \item{unprivileged_groups}{Unprivileged groups. List containing unprivileged protected attribute name and value of the unprivileged protected attribute.} \item{privileged_groups}{Privileged groups. List containing privileged protected attribute name and value of the privileged protected attribute.} } \description{ Class for computing metrics based on two BinaryLabelDatasets. The first dataset is the original one and the second is the output of the classification transformer (or similar) } \examples{ \dontrun{ load_aif360_lib() # Input dataset data <- data.frame("feat" = c(0,0,1,1,1,1,0,1,1,0), "label" = c(1,0,0,1,0,0,1,0,1,1)) # Create aif compatible input dataset act <- aif360::binary_label_dataset(data_path = data, favor_label=0, unfavor_label=1, unprivileged_protected_attribute=0, privileged_protected_attribute=1, target_column="label", protected_attribute="feat") # Classified dataset pred_data <- data.frame("feat" = c(0,0,1,1,1,1,0,1,1,0), "label" = c(1,0,1,1,1,0,1,0,0,1)) # Create aif compatible classified dataset pred <- aif360::binary_label_dataset(data_path = pred_data, favor_label=0, unfavor_label=1, unprivileged_protected_attribute=0, privileged_protected_attribute=1, target_column="label", protected_attribute="feat") # Create an instance of classification metric cm <- classification_metric(act, pred, list('feat', 1), list('feat', 0)) # Access metric functions cm$accuracy() } } \seealso{ \href{https://aif360.readthedocs.io/en/latest/modules/metrics.html#classification-metric}{Explore available classification metrics explanations here} Available metrics: \itemize{ \item accuracy \item average_abs_odds_difference \item average_odds_difference \item between_all_groups_coefficient_of_variation \item between_all_groups_generalized_entropy_index \item between_all_groups_theil_index \item between_group_coefficient_of_variation \item between_group_generalized_entropy_index \item between_group_theil_index \item binary_confusion_matrix \item coefficient_of_variation \item disparate_impact \item equal_opportunity_difference \item error_rate \item error_rate_difference \item error_rate_ratio \item false_discovery_rate \item false_discovery_rate_difference \item false_discovery_rate_ratio \item false_negative_rate \item false_negative_rate_difference \item false_negative_rate_ratio \item false_omission_rate \item false_omission_rate_difference \item false_omission_rate_ratio \item false_positive_rate \item false_positive_rate_difference \item false_positive_rate_ratio \item generalized_binary_confusion_matrix \item generalized_entropy_index \item generalized_false_negative_rate \item generalized_false_positive_rate \item generalized_true_negative_rate \item generalized_true_positive_rate \item negative_predictive_value \item num_false_negatives \item num_false_positives \item num_generalized_false_negatives \item num_generalized_false_positives \item num_generalized_true_negatives \item num_generalized_true_positives \item num_pred_negatives \item num_pred_positives \item num_true_negatives \item num_true_positives \item performance_measures \item positive_predictive_value \item power \item precision \item recall \item selection_rate \item sensitivity \item specificity \item statistical_parity_difference \item theil_index \item true_negative_rate \item true_positive_rate \item true_positive_rate_difference } }