# Copyright 2019 Seth V. Neel, Michael J. Kearns, Aaron L. Roth, Zhiwei Steven Wu # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. """Function generating 3-d heatmap visualizing gamma-disparity. The main function in this module, heat_map(), generates and saves a 3-d heatmap visualizing the gamma-disparity for groups defined by linear thresholds over 2 sensitive attributes. This serves as a (heuristic) method to help visualize convergence of the algorithm via brute force checking in low dimensions, rather than relying on the Auditor. See [KRNW18] for details. """ import matplotlib import pandas as pd import matplotlib.pyplot as plt from matplotlib import cm from mpl_toolkits.mplot3d import Axes3D from aif360.algorithms.inprocessing.gerryfair.reg_oracle_class import * def calc_disp(predictions, X, group_labels, X_prime, group): """Return the fp disparity in a group g - helper function for heat_map. Args: :param predictions: dataframe of predictions of the classifier :param X: dataframe of covariates :param group_labels: dataframe of group labels :param X_prime: sensitive covariates :param group: object of class Group(), see auditor.py Returns: :return: weighted disparity on the group g """ X_0 = pd.DataFrame( [X_prime.iloc[u, :] for u, s in enumerate(group_labels) if s == 0]) group_0 = group.predict(X_0) n = len(group_labels) g_size_0 = np.sum(group_0) * 1.0 / n FP = [predictions[i] for i, c in enumerate(group_labels) if c == 0] FP = np.mean(FP) group_members = group.predict(X_prime) fp_g = [ predictions[i] for i, c in enumerate(group_labels) if group_members[i] == 1 and c == 0 ] if len(fp_g) == 0: return 0 fp_g = np.mean(fp_g) return (FP - fp_g) * g_size_0 def heat_map(X, X_prime, y, predictions, eta, plot_path, vmin=None, vmax=None): """Generate 3-d heatmap and save it at plot_path. Args: :param eta: discretization parameter of coefficients defining subgroups :param plot_path: the path to save the heatmap at :param vmin: Min value to map: see plot_surface documentation in matplotlib :param vmax: Max value to map Returns: :return: the min and max gamma disparities on groups in the plot """ fig = plt.figure() ax = fig.add_subplot(1, 1, 1, projection='3d') columns = [str(c) for c in X_prime.columns] attribute_1 = np.zeros(int(1 / eta)) attribute_2 = np.zeros(int(1 / eta)) disparity = np.zeros((int(1 / eta), int(1 / eta))) for i in range(int(1 / eta)): for j in range(int(1 / eta)): beta = [-1 + 2 * eta * i, -1 + 2 * eta * j] group = LinearThresh(beta) attribute_1[i] = beta[0] attribute_2[j] = beta[1] disparity[i, j] = calc_disp(predictions, X, y, X_prime, group) X_plot, Y_plot = np.meshgrid(attribute_1, attribute_2) ax.set_xlabel(columns[0] + ' coefficient') ax.set_ylabel(columns[1] + ' coefficient') ax.set_zlabel('gamma disparity') ax.set_zlim3d([np.min(disparity), np.max(disparity)]) surface = ax.plot_surface(X_plot, Y_plot, disparity, cmap=cm.coolwarm, linewidth=0, antialiased=False, vmin=vmin, vmax=vmax) if plot_path != '.': fig.savefig('{}.png'.format(plot_path)) plt.close() return [np.min(disparity), np.max(disparity)]