# Copyright 2019 Seth V. Neel, Michael J. Kearns, Aaron L. Roth, Zhiwei Steven Wu # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy of # the License at http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software distributed # under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR # CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. import numpy as np import copy from aif360.algorithms.inprocessing.gerryfair.reg_oracle_class import RegOracle class Learner: """Class implementing the Learner in the FairFictPlay algorithm for rich subgroup fairness in [KRNW18]. """ def __init__(self, X, y, predictor): """Constructor the class :param X: pandas dataframe of attributes :param y: tuple of predictions :param predictor: regressor with sklearn api (e.g. fit(), predict() methods). ex: LinearRegression() """ self.X = X self.y = y self.predictor = predictor def best_response(self, costs_0, costs_1): """Return a RegOracle solving a CSC problem. Args: :param costs_0: costs for labeling points 0 in the CSC problem of the learner :param costs_1: costs for labeling points 1 in the CSC problem of the learner Returns: :return: object of class RegOracle solving the CSC problem """ reg0 = copy.deepcopy(self.predictor) reg0.fit(self.X, costs_0) reg1 = copy.deepcopy(self.predictor) reg1.fit(self.X, costs_1) func = RegOracle(reg0, reg1) return func def generate_predictions(self, q, predictions, iteration): """Return the classifications of the average classifier at time iter. Args: :param q: the most recent classifier found :param predictions: the previous set of decisions (probabilities) up to time iter - 1 :param iteration: the number of the current iteration Returns: :return error: the error of the average classifier found thus far (incorporating q) """ new_predictions = np.multiply(1.0 / iteration, q.predict(self.X)) ds = np.multiply((iteration - 1.0)/iteration, predictions) ds += new_predictions error = np.mean( [np.abs(ds[k] - self.y[k]) for k in range(len(self.y))]) ds = tuple(ds) return error, ds