# Based on code from https://github.com/zjelveh/learning-fair-representations import numpy as np from scipy.spatial.distance import cdist from scipy.special import softmax def LFR_optim_objective(parameters, x_unprivileged, x_privileged, y_unprivileged, y_privileged, k=10, A_x=0.01, A_y=0.1, A_z=0.5, print_interval=250, verbose=1): num_unprivileged, features_dim = x_unprivileged.shape num_privileged, _ = x_privileged.shape w = parameters[:k] prototypes = parameters[k:].reshape((k, features_dim)) M_unprivileged, x_hat_unprivileged, y_hat_unprivileged = get_xhat_y_hat(prototypes, w, x_unprivileged) M_privileged, x_hat_privileged, y_hat_privileged = get_xhat_y_hat(prototypes, w, x_privileged) y_hat = np.concatenate([y_hat_unprivileged, y_hat_privileged], axis=0) y = np.concatenate([y_unprivileged.reshape((-1, 1)), y_privileged.reshape((-1, 1))], axis=0) L_x = np.mean((x_hat_unprivileged - x_unprivileged) ** 2) + np.mean((x_hat_privileged - x_privileged) ** 2) L_z = np.mean(abs(np.mean(M_unprivileged, axis=0) - np.mean(M_privileged, axis=0))) L_y = - np.mean(y * np.log(y_hat) + (1. - y) * np.log(1. - y_hat)) total_loss = A_x * L_x + A_y * L_y + A_z * L_z if verbose and LFR_optim_objective.steps % print_interval == 0: print("step: {}, loss: {}, L_x: {}, L_y: {}, L_z: {}".format( LFR_optim_objective.steps, total_loss, L_x, L_y, L_z)) LFR_optim_objective.steps += 1 return total_loss def get_xhat_y_hat(prototypes, w, x): M = softmax(-cdist(x, prototypes), axis=1) x_hat = np.matmul(M, prototypes) y_hat = np.clip( np.matmul(M, w.reshape((-1, 1))), np.finfo(float).eps, 1.0 - np.finfo(float).eps ) return M, x_hat, y_hat