import numpy as np import pandas as pd import torch import dgl from fainress_component import disparate_impact_remover, reweighting, sample import fastText def ali_RHGN_pre_process(df, df_user, df_click, df_item, sens_attr, label, special_case, debaising_approach=None): # load and clean data if debaising_approach != None: # special case == csv data if special_case == True: df_user.rename(columns={'userid':'uid', 'final_gender_code':'gender','age_level':'age', 'pvalue_level':'buy', 'occupation':'student', 'new_user_class_level ':'city'}, inplace=True) df_user.dropna(inplace=True) df_user = apply_bin_age(df_user) df_user = apply_bin_buy(df_user) df_user = apply_bin_gender(df_user) if debaising_approach == 'disparate_impact_remover': df_user = disparate_impact_remover(df_user, sens_attr, label) elif debaising_approach == 'reweighting': df_user = reweighting(df_user, sens_attr, label) elif debaising_approach == 'sample': df_user = sample(df_user, sens_attr, label) else: df.rename(columns={'final_gender_code': 'gender', 'age_level':'age'}, inplace=True) df = apply_bin_age(df) df['gender'] = df['gender'].replace(1,0) df['gender'] = df['gender'].replace(2,1) if debaising_approach == 'disparate_impact_remover': df = disparate_impact_remover(df, sens_attr, label) elif debaising_approach == 'reweighting': df = reweighting(df, sens_attr, label) elif debaising_approach == 'sample': df = sample(df, sens_attr, label) df_user, df_item, df_click = divide_data_2(df) df_user.rename(columns={'userid':'uid', 'pvalue_level':'buy', 'occupation':'student', 'new_user_class_level':'city'}, inplace=True) df_user.dropna(inplace=True) df_user = apply_bin_buy(df_user) else: # df_user = label if special_case == False: df_user, df_item, df_click = divide_data(df) df_user.rename(columns={'userid':'uid', 'final_gender_code':'gender','age_level':'age', 'pvalue_level':'buy', 'occupation':'student', 'new_user_class_level ':'city'}, inplace=True) df_user.dropna(inplace=True) df_user = apply_bin_age(df_user) df_user = apply_bin_buy(df_user) # df_item = pid_cid if special_case == False: df_item.dropna(axis=0, subset=['cate_id', 'campaign_id', 'brand'], inplace=True) df_item.rename(columns={'adgroup_id':'pid', 'cate_id':'cid'}, inplace=True) df_click.rename(columns={'user':'uid', 'adgroup_id':'pid'}, inplace=True) df_click = df_click[df_click['clk']>0] df_click.drop('clk', axis=1, inplace=True) df_click = df_click[df_click["uid"].isin(df_user["uid"])] df_click = df_click[df_click["pid"].isin(df_item["pid"])] df_click.drop_duplicates(inplace=True) # Filter and Process # Before filtering users = set(df_click.uid.tolist()) items = set(df_click.pid.tolist()) print('User before filtering {} and items before filtering {}'.format(len(users), len(items))) df_click, uid_activity, pid_popularity = filter_triplets(df_click, 'uid', 'pid', min_uc=0, min_sc=2) # min_sc>=2 #sparsity = 1. * df_click.shape[0] / (uid_activity.shape[0] * pid_popularity.shape[0]) #print("After filtering, there are %d interacton events from %d users and %d items (sparsity: %.4f%%)" % # (df_click.shape[0], uid_activity.shape[0], pid_popularity.shape[0], sparsity * 100)) # After filtering users = set(df_click.uid.tolist()) items = set(df_click.pid.tolist()) print('Users after filtering {} and items after filtering {}'.format(len(users), len(items))) df_user = df_user[df_user['uid'].isin(users)] df_item = df_item[df_item['pid'].isin(items)] df_user.reset_index(drop=True, inplace=True) df_item.reset_index(drop=True, inplace=True) # save?? # Re-process df_user = df_user.astype({'uid': 'str'}, copy=False) df_item = df_item.astype({'pid': 'str', 'cid': 'str', 'campaign_id': 'str', 'brand': 'str'}, copy=False) df_click = df_click.astype({'uid': 'str', 'pid': 'str'}, copy=False) # Build a dictionary and remove duplicate items if special_case == True and debaising_approach == 'reweighting' or debaising_approach == 'disparate_impact_remover': df_user['uid'] = df_user['uid'].astype(float).astype(int).astype(str) user_dic = {k: v for v, k in enumerate(df_user.uid)} cate_dic = {k: v for v, k in enumerate(df_item.cid.drop_duplicates())} campaign_dic = {k: v for v, k in enumerate(df_item.campaign_id.drop_duplicates())} brand_dic = {k: v for v, k in enumerate(df_item.brand.drop_duplicates())} item_dic = {} c1, c2, c3=[],[],[] for i in range(len(df_item)): k=df_item.at[i,'pid'] v=i item_dic[k]=v c1.append(cate_dic[df_item.at[i,'cid']]) c2.append(campaign_dic[df_item.at[i,'campaign_id']]) c3.append(brand_dic[df_item.at[i,'brand']]) print(min(c1), min(c2), min(c3)) print(len(cate_dic), len(campaign_dic), len(brand_dic)) df_click=df_click[df_click['pid'].isin(item_dic)] df_click=df_click[df_click['uid'].isin(user_dic)] df_click.reset_index(drop=True, inplace=True) # Generate graph G, cid1_feature, cid2_feature, cid3_feature, user_label = generate_graph(df_user, df_item, df_click, user_dic, item_dic, cate_dic, campaign_dic, brand_dic, c1, c2, c3) ''' sens_attr = 'age' predict_attr = 'gender' label_number = 100 seed = 42 sens_number = 512 labels = user_label[predict_attr].values import random random.seed(seed) label_idx = np.where(labels>=0)[0] random.shuffle(label_idx) idx_train = label_idx[:min(int(0.5 * len(label_idx)),label_number)] idx_test = label_idx[label_number:] idx_val = idx_test sens = user_label[sens_attr].values sens_idx = set(np.where(sens >= 0)[0]) idx_test = np.asarray(list(sens_idx & set(idx_test))) sens = torch.FloatTensor(sens) idx_sens_train = list(sens_idx - set(idx_val) - set(idx_test)) random.seed(seed) random.shuffle(idx_sens_train) idx_sens_train = torch.LongTensor(idx_sens_train[:sens_number]) idx_train = torch.LongTensor(idx_train) idx_val = torch.LongTensor(idx_val) idx_test = torch.LongTensor(idx_test) ''' return G, cid1_feature, cid2_feature, cid3_feature # use this graph for the input of the model (see RHGN repo for details) #return G, cid1_feature, cid2_feature, cid3_feature, idx_sens_train, idx_train, sens def divide_data(df): # divide data into 3 (df_user, df_item, df_click) df_user = df[['userid', 'final_gender_code', 'age_level', 'pvalue_level', 'occupation', 'new_user_class_level']].copy() df_item = df[['adgroup_id', 'cate_id', 'campaign_id', 'brand']].copy() df_click = df[['userid', 'adgroup_id', 'clk']].copy() return df_user, df_item, df_click def divide_data_2(df): df_user = df[{'userid', 'gender', 'bin_age', 'pvalue_level', 'occupation', 'new_user_class_level'}].copy() df_item = df[['adgroup_id', 'cate_id', 'campaign_id', 'brand']].copy() df_click = df[['userid', 'adgroup_id', 'clk']].copy() return df_user, df_item, df_click def get_count(tp, id): playcount_groupbyid = tp[[id]].groupby(id, as_index=True) count = playcount_groupbyid.size() return count def filter_triplets(tp, user, item, min_uc=0, min_sc=0): # Only keep the triplets for users who clicked on at least min_uc items if min_uc > 0: usercount = get_count(tp, user) tp = tp[tp[user].isin(usercount.index[usercount >= min_uc])] # Only keep the triplets for items which were clicked on by at least min_sc users. if min_sc > 0: itemcount = get_count(tp, item) tp = tp[tp[item].isin(itemcount.index[itemcount >= min_sc])] # Update both usercount and itemcount after filtering usercount, itemcount = get_count(tp, user), get_count(tp, item) return tp, usercount, itemcount def apply_bin_age(df_user): df_user['bin_age'] = df_user['age'] df_user['bin_age'] = df_user['bin_age'].replace(1,0) df_user['bin_age'] = df_user['bin_age'].replace(2,0) df_user['bin_age'] = df_user['bin_age'].replace(3,0) df_user['bin_age'] = df_user['bin_age'].replace(4,1) df_user['bin_age'] = df_user['bin_age'].replace(5,1) df_user['bin_age'] = df_user['bin_age'].replace(6,1) return df_user def apply_bin_buy(df_user): df_user['bin_buy'] = df_user['buy'] df_user['bin_buy'] = df_user['bin_buy'].replace(3.0,2.0) df_user['bin_buy'] = df_user['bin_buy'].astype('int64') return df_user def apply_bin_gender(df_user): df_user['bin_gender'] = df_user['gender'] df_user['bin_gender'] = df_user['bin_gender'].replace(2,0) return df_user def col_map(df, col, num2id): df[[col]] = df[[col]].applymap(lambda x: num2id[x]) return df def label_map(label_df, label_list): for label in label_list: label2id = {num: i for i, num in enumerate(pd.unique(label_df[label]))} label_df = col_map(label_df, label, label2id) return label_df def generate_graph(df_user, df_item, df_click, user_dic, item_dic, cate_dic, campaign_dic, brand_dic, c1, c2, c3): click_user = [user_dic[user] for user in df_click.uid] click_item = [item_dic[item] for item in df_click.pid] data_dict = { ("user", "click", "item"): (torch.tensor(click_user), torch.tensor(click_item)), ("item", "click_by", "user"): (torch.tensor(click_item), torch.tensor(click_user)) } G = dgl.heterograph(data_dict) # process with fastext model # Todo install fasttext in the repo # Todo test this in Jupyter (not tested) #model = fasttext.load_model('../fastText/cc.zh.200.bin') model = fasttext.load_model('../cc.zh.200.bin') temp1 = {k: model.get_sentence_vector(v) for v,k in cate_dic.items()} cid1_feature = torch.tensor([temp1[k] for _, k in cate_dic.items()]) temp2 = {k: model.get_sentence_vector(v) for v, k in campaign_dic.items()} cid2_feature = torch.tensor([temp2[k] for _, k in campaign_dic.items()]) temp3 = {k: model.get_sentence_vector(v) for v, k in brand_dic.items()} cid3_feature = torch.tensor([temp3[k] for _, k in brand_dic.items()]) uid2id = {num: i for i, num in enumerate(df_user['uid'])} df_user = col_map(df_user, 'uid', uid2id) user_label = label_map(df_user, df_user.columns[1:]) # Pass the label into "label" label_gender = user_label.gender label_age = user_label.bin_age label_buy = user_label.buy label_student = user_label.student label_city = user_label.city label_bin_buy = user_label.bin_buy G.nodes['user'].data['bin_gender'] = torch.tensor(label_gender[:G.number_of_nodes('user')]) G.nodes['user'].data['bin_age'] = torch.tensor(label_age[:G.number_of_nodes('user')]) G.nodes['user'].data['buy'] = torch.tensor(label_buy[:G.number_of_nodes('user')]) G.nodes['user'].data['student'] = torch.tensor(label_student[:G.number_of_nodes('user')]) G.nodes['user'].data['city'] = torch.tensor(label_city[:G.number_of_nodes('user')]) G.nodes['user'].data['bin_buy'] = torch.tensor(label_bin_buy[:G.number_of_nodes('user')]) G.nodes['item'].data['cid1'] = torch.tensor(c1[:G.number_of_nodes('item')]) G.nodes['item'].data['cid2'] = torch.tensor(c2[:G.number_of_nodes('item')]) G.nodes['item'].data['cid3'] = torch.tensor(c3[:G.number_of_nodes('item')]) print(G) print(cid1_feature.shape,) print(cid2_feature.shape,) print(cid3_feature.shape,) return G, cid1_feature, cid2_feature, cid3_feature, user_label