import dgl import math import torch import torch.nn as nn import torch.nn.functional as F import dgl.function as fn from dgl.nn.functional import edge_softmax import pandas as pd class RHGNLayer(nn.Module): def __init__(self, in_dim, out_dim, node_dict, edge_dict, n_heads, dropout = 0.2, use_norm = False): super(RHGNLayer, self).__init__() self.in_dim = in_dim self.out_dim = out_dim self.node_dict = node_dict self.edge_dict = edge_dict self.num_types = len(node_dict) self.num_relations = len(edge_dict) self.total_rel = self.num_types * self.num_relations * self.num_types self.n_heads = n_heads self.d_k = out_dim // n_heads self.sqrt_dk = math.sqrt(self.d_k) self.att = None self.k_linears = nn.ModuleList() self.q_linears = nn.ModuleList() self.v_linears = nn.ModuleList() self.a_linears = nn.ModuleList() self.norms = nn.ModuleList() self.use_norm = use_norm for t in range(self.num_types): self.k_linears.append(nn.Linear(in_dim, out_dim)) self.q_linears.append(nn.Linear(in_dim, out_dim)) self.v_linears.append(nn.Linear(in_dim, out_dim)) self.a_linears.append(nn.Linear(out_dim, out_dim)) if use_norm: self.norms.append(nn.LayerNorm(out_dim)) self.relation_pri = nn.Parameter(torch.ones(self.num_relations, self.n_heads)) self.relation_att = nn.Parameter(torch.Tensor(self.num_relations, n_heads, self.d_k, self.d_k)) self.relation_msg = nn.Parameter(torch.Tensor(self.num_relations, n_heads, self.d_k, self.d_k)) self.skip = nn.Parameter(torch.ones(self.num_types)) self.drop = nn.Dropout(dropout) nn.init.xavier_uniform_(self.relation_att) nn.init.xavier_uniform_(self.relation_msg) def forward(self, G, h,is_batch=True,is_train=True,print_flag=False): with G.local_scope(): node_dict, edge_dict = self.node_dict, self.edge_dict for srctype, etype, dsttype in G.canonical_etypes: sub_graph = G[srctype, etype, dsttype] k_linear = self.k_linears[node_dict[srctype]] v_linear = self.v_linears[node_dict[srctype]] q_linear = self.q_linears[node_dict[dsttype]] #k_linear = self.k_linears[0] #v_linear = self.v_linears[0] #q_linear = self.q_linears[0] k = k_linear(h[srctype]).view(-1, self.n_heads, self.d_k) v = v_linear(h[srctype]).view(-1, self.n_heads, self.d_k) if is_batch: q = q_linear(h[dsttype][:sub_graph.number_of_dst_nodes()]).view(-1, self.n_heads, self.d_k) else: q = q_linear(h[dsttype]).view(-1, self.n_heads, self.d_k) e_id = self.edge_dict[etype] relation_att = self.relation_att[e_id] relation_pri = self.relation_pri[e_id] relation_msg = self.relation_msg[e_id] #relation_att = self.relation_att[0] #relation_msg = self.relation_msg[0] #relation_pri = self.relation_pri[0] k = torch.einsum("bij,ijk->bik", k, relation_att) v = torch.einsum("bij,ijk->bik", v, relation_msg) sub_graph.srcdata['k'] = k sub_graph.dstdata['q'] = q sub_graph.srcdata['v_%d' % e_id] = v sub_graph.apply_edges(fn.v_dot_u('q', 'k', 't')) attn_score = sub_graph.edata.pop('t').sum(-1) * relation_pri / self.sqrt_dk attn_score = edge_softmax(sub_graph, attn_score, norm_by='dst') sub_graph.edata['t'] = attn_score.unsqueeze(-1) ''' if print_flag==True: # print('---------------',srctype,etype,dsttype,'---------------------') srcnode=sub_graph.edges()[0].cpu().numpy() dstnode=sub_graph.edges()[1].cpu().numpy() attweight=attn_score.mean(dim=-1).cpu().detach().numpy() # print(srcnode.shape,dstnode.shape,attweight.shape) import time if etype=='click': df=pd.DataFrame({srctype:srcnode,dsttype:dstnode,etype:attweight}) df.to_csv('../data/attweight/{}.csv'.format(time.time()),index=False) if etype=='purchase': df = pd.DataFrame({srctype: srcnode, dsttype: dstnode, etype: attweight}) df.to_csv('../data/attweight/{}.csv'.format(time.time()), index=False) ''' G.multi_update_all({etype : (fn.u_mul_e('v_%d' % e_id, 't', 'm'), fn.sum('m', 't')) for etype, e_id in edge_dict.items()}, cross_reducer = 'mean') new_h = {} for ntype in G.ntypes: ''' Step 3: Target-specific Aggregation x = norm( W[node_type] * gelu( Agg(x) ) + x ) ''' n_id = node_dict[ntype] alpha = torch.sigmoid(self.skip[n_id]) if is_batch: t = G.dstnodes[ntype].data['t'].view(-1, self.out_dim) else: t = G.nodes[ntype].data['t'].view(-1, self.out_dim) trans_out = self.a_linears[n_id](t) if is_train: trans_out = self.drop(trans_out) trans_out = trans_out * alpha + h[ntype][:G.number_of_dst_nodes(ntype)] * (1-alpha) if self.use_norm: new_h[ntype] = self.norms[n_id](trans_out) else: new_h[ntype] = trans_out return new_h