import numpy as np from aif360.algorithms.inprocessing.celisMeta.General import General class FalseDiscovery(General): def getExpectedGrad(self, dist, a, b, params, samples, mu, z_prior): t, probc_m1_0, probc_m1_1, prob_z_0, prob_z_1 = self.getValueForX(dist, a, b, params, z_prior, samples, return_probs=True) res = np.vstack([probc_m1_0 - a*prob_z_0, probc_m1_1 - a*prob_z_1, -probc_m1_0 + b*prob_z_0, -probc_m1_1 + b*prob_z_1]) res *= t / np.sqrt(t**2 + mu**2) return np.mean(res, axis=1) def getValueForX(self, dist, a, b, params, z_prior, x, return_probs=False): u_1, u_2, l_1, l_2 = params z_0, z_1 = 1-z_prior, z_prior pos = np.ones(len(x)) prob_1_1 = self.prob(dist, np.c_[x, pos, pos]) prob_m1_1 = self.prob(dist, np.c_[x, -pos, pos]) prob_1_0 = self.prob(dist, np.c_[x, pos, np.zeros(len(x))]) prob_m1_0 = self.prob(dist, np.c_[x, -pos, np.zeros(len(x))]) total = prob_1_1 + prob_1_0 + prob_m1_0 + prob_m1_1 # if total == 0: # return 0 prob_y_1 = (prob_1_1 + prob_1_0) / total prob_z_0 = (prob_m1_0 + prob_1_0) / total prob_z_1 = (prob_m1_1 + prob_1_1) / total probc_m1_0 = prob_m1_0 / total probc_m1_1 = prob_m1_1 / total c_0 = prob_y_1 - 0.5 c_1 = u_1*(probc_m1_0 - a*prob_z_0) + u_2*(probc_m1_1 - a*prob_z_1) c_2 = l_1*(-probc_m1_0 + b*prob_z_0) + l_2*(-probc_m1_1 + b*prob_z_1) t = c_0 + c_1 + c_2 if return_probs: return t, probc_m1_0, probc_m1_1, prob_z_0, prob_z_1 return t def getFuncValue(self, dist, a, b, params, samples, z_prior): return np.mean(np.abs(self.getValueForX(dist, a, b, params, z_prior, samples))) @property def num_params(self): return 4 def gamma(self, y_true, y_pred, sens): pos_0 = y_pred[sens == 0] == 1 pos_1 = y_pred[sens == 1] == 1 if np.sum(pos_0) == 0 or np.sum(pos_1) == 0: return 0 fdr_0 = np.sum(pos_0 & (y_true[sens == 0] == -1)) / np.sum(pos_0) fdr_1 = np.sum(pos_1 & (y_true[sens == 1] == -1)) / np.sum(pos_1) if fdr_0 == 0 or fdr_1 == 0: return 0 return min(fdr_0/fdr_1, fdr_1/fdr_0)