import numpy as np from aif360.algorithms.inprocessing.celisMeta.General import General class StatisticalRate(General): def getExpectedGrad(self, dist, a, b, params, samples, mu, z_prior): l_1, l_2 = params t, c_1, c_2 = self.getValueForX(dist, a, b, params, z_prior, samples, return_cs=True) t1 = t * c_1/np.sqrt(t**2 + mu**2) t2 = t * c_2/np.sqrt(t**2 + mu**2) exp1 = np.mean(t1) exp2 = np.mean(t2) dl1 = exp1 - b + (b-a)/2 + (b-a)*l_1 / (2*np.sqrt(l_1**2 + mu**2)) dl2 = exp2 - b + (b-a)/2 + (b-a)*l_2 / (2*np.sqrt(l_2**2 + mu**2)) return dl1, dl2 def getValueForX(self, dist, a, b, params, z_prior, x, return_cs=False): l_1, l_2 = params z_0, z_1 = 1-z_prior, z_prior pos = np.ones(len(x)) prob_1_1 = self.prob(dist, np.c_[x, pos, pos]) prob_m1_1 = self.prob(dist, np.c_[x, -pos, pos]) prob_1_0 = self.prob(dist, np.c_[x, pos, np.zeros(len(x))]) prob_m1_0 = self.prob(dist, np.c_[x, -pos, np.zeros(len(x))]) total = prob_1_1 + prob_1_0 + prob_m1_0 + prob_m1_1 # if total == 0: # return 0 prob_y_1 = (prob_1_1 + prob_1_0) / total prob_z_0 = (prob_m1_0 + prob_1_0) / total prob_z_1 = (prob_m1_1 + prob_1_1) / total c_0 = prob_y_1 - 0.5 c_1 = prob_z_0 / z_0 c_2 = prob_z_1 / z_1 t = c_0 + c_1*l_1 + c_2*l_2 if return_cs: return t, c_1, c_2 else: return t def getFuncValue(self, dist, a, b, params, samples, z_prior): l_1, l_2 = params exp = np.mean(np.abs(self.getValueForX(dist, a, b, params, z_prior, samples))) result = exp - b*l_1 - b*l_2 if l_1 > 0: result += (b-a)*l_1 if l_2 > 0: result += (b-a)*l_2 return result @property def num_params(self): return 2 def init_params(self, i): return [i-5] * self.num_params def gamma(self, y_true, y_pred, sens): pos_0 = np.mean(y_pred[sens == 0] == 1) pos_1 = np.mean(y_pred[sens == 1] == 1) if pos_0 == 0 or pos_1 == 0: return 0 return min(pos_0/pos_1, pos_1/pos_0)