import numpy as np import pandas as pd import scipy.sparse as sp import time import os from fainress_component import disparate_impact_remover, reweighting, sample def ali_CatGCN_pre_processing(df, label, uid_pid, pid_cid, sens_attr, label_pred, special_case, debaising_approach=None): #print(df.columns.tolist()) print('') if debaising_approach != None: if special_case == True: label.rename(columns={'userid':'uid', 'final_gender_code':'gender','age_level':'age', 'pvalue_level':'buy', 'occupation':'student', 'new_user_class_level ':'city'}, inplace=True) label.dropna(inplace=True) label['gender'] = label['gender'].replace(1, 0) label['gender'] = label['gender'].replace(2, 1) label = apply_bin_age(label) label = apply_bin_buy(label) if debaising_approach == 'disparate_impact_remover': label = disparate_impact_remover(label, sens_attr, label_pred) elif debaising_approach == 'reweighting': label = reweighting(label, sens_attr, label_pred) elif debaising_approach == 'sample': label = sample(label, sens_attr, label_pred) if debaising_approach == 'sample': label = label.reset_index() label = label.drop(['index'], axis=1) label = label.drop_duplicates() else: df.rename(columns={'final_gender_code': 'gender', 'age_level':'age'}, inplace=True) df = apply_bin_age(df) df['gender'] = df['gender'].replace(1, 0) df['gender'] = df['gender'].replace(2, 1) if debaising_approach == 'disparate_impact_remover': df = disparate_impact_remover(df, sens_attr, label_pred) elif debaising_approach == 'reweighting': df = reweighting(df, sens_attr, label_pred) elif debaising_approach == 'sample': df = sample(df, sens_attr, label_pred) if debaising_approach == 'sample': df = df.reset_index() df = df.drop(['index'], axis=1) df = df.drop_duplicates() label, pid_cid, uid_pid = divide_data_2(df) label.rename(columns={'userid':'uid', 'pvalue_level':'buy', 'occupation':'student', 'new_user_class_level':'city'}, inplace=True) label.dropna(inplace=True) label = apply_bin_buy(label) else: # load ana clean data if special_case == False: label, pid_cid, uid_pid = divide_data(df) label.rename(columns={'userid':'uid', 'final_gender_code':'gender','age_level':'age', 'pvalue_level':'buy', 'occupation':'student', 'new_user_class_level ':'city'}, inplace=True) label.dropna(inplace=True) label = apply_bin_age(label) label = apply_bin_buy(label) #pid_cid pid_cid.rename(columns={'adgroup_id':'pid','cate_id':'cid'}, inplace=True) #uid_pid if special_case == True: uid_pid.rename(columns={'user':'uid','adgroup_id':'pid'}, inplace=True) else: uid_pid.rename(columns={'userid':'uid','adgroup_id':'pid'}, inplace=True) uid_pid = uid_pid[uid_pid['clk']>0] uid_pid.drop('clk', axis=1, inplace=True) uid_pid = uid_pid[uid_pid['uid'].isin(label['uid'])] uid_pid = uid_pid[uid_pid['pid'].isin(pid_cid['pid'])] uid_pid.drop_duplicates(inplace=True) # Filter and process # Filter uid_pid (item_interactions >= 2) uid_pid, uid_activity, pid_popularity = filter_triplets(uid_pid, 'uid', 'pid', min_uc=0, min_sc=2) # min_sc>=2 sparsity = 1. * uid_pid.shape[0] / (uid_activity.shape[0] * pid_popularity.shape[0]) print("After filtering, there are %d interacton events from %d users and %d items (sparsity: %.4f%%)" % (uid_pid.shape[0], uid_activity.shape[0], pid_popularity.shape[0], sparsity * 100)) # create uid_cid uid_pid_cid = pd.merge(uid_pid, pid_cid, how='inner', on='pid') raw_uid_cid = uid_pid_cid.drop('pid', axis=1, inplace=False) raw_uid_cid.drop_duplicates(inplace=True) # Filter uid_cid (cid_interactions >= 2 is optional) uid_cid, uid_activity, cid_popularity = filter_triplets(raw_uid_cid, 'uid', 'cid', min_uc=0, min_sc=2) # min_sc>=2 sparsity = 1. * uid_cid.shape[0] / (uid_activity.shape[0] * cid_popularity.shape[0]) print("After filtering, there are %d interacton events from %d users and %d items (sparsity: %.4f%%)" % (uid_cid.shape[0], uid_activity.shape[0], cid_popularity.shape[0], sparsity * 100)) # create uid_uid uid_pid = uid_pid[uid_pid['uid'].isin(uid_cid['uid'])] uid_pid_1 = uid_pid[['uid','pid']].copy() uid_pid_1.rename(columns={'uid':'uid1'}, inplace=True) uid_pid_2 = uid_pid[['uid','pid']].copy() uid_pid_2.rename(columns={'uid':'uid2'}, inplace=True) uid_pid_uid = pd.merge(uid_pid_1, uid_pid_2, how='inner', on='pid') uid_uid = uid_pid_uid.drop('pid', axis=1, inplace=False) uid_uid.drop_duplicates(inplace=True) del uid_pid_1, uid_pid_2, uid_pid_uid # Map user_label = label[label['uid'].isin(uid_cid['uid'])] uid2id = {num: i for i, num in enumerate(user_label['uid'])} cid2id = {num: i for i, num in enumerate(pd.unique(uid_cid['cid']))} user_label = col_map(user_label, 'uid', uid2id) user_label = label_map(user_label, user_label.columns[1:]) # create user_edge (uid - uid) user_edge = uid_uid[uid_uid['uid1'].isin(uid_cid['uid'])] user_edge = user_edge[user_edge['uid2'].isin(uid_cid['uid'])] user_edge = col_map(user_edge, 'uid1', uid2id) user_edge = col_map(user_edge, 'uid2', uid2id) # create user_field (uid - cid) user_field = col_map(uid_cid, 'uid', uid2id) user_field = col_map(user_field, 'cid', cid2id) if debaising_approach == 'disparate_impact_remover': user_field = user_field.reset_index() user_field = user_field.drop(['uid'], axis=1) user_field = user_field.rename(columns={"index": "uid"}) user_field['uid'] = user_field['uid'].astype(str).astype(int) # save ? save_path = './' user_edge.to_csv(os.path.join(save_path, 'user_edge.csv'), index=False) user_field.to_csv(os.path.join(save_path, 'user_field.csv'), index=False) user_label.to_csv(os.path.join(save_path, 'user_labels.csv'), index=False) print('user_label columns', user_label.columns.tolist()) user_label[['uid','buy']].to_csv(os.path.join(save_path, 'user_buy.csv'), index=False) # create the user_buy variable for the return of the function user_buy = user_label[['uid','buy']] user_label[['uid','city']].to_csv(os.path.join(save_path, 'user_city.csv'), index=False) user_label[['uid','bin_age']].to_csv(os.path.join(save_path, 'user_age.csv'), index=False) user_label[['uid','gender']].to_csv(os.path.join(save_path, 'user_gender.csv'), index=False) user_gender = user_label[['uid', 'gender']] user_label[['uid','student']].to_csv(os.path.join(save_path, 'user_student.csv'), index=False) user_label[['uid','bin_age']].to_csv(os.path.join(save_path, 'user_bin_age.csv'), index=False) user_label[['uid','bin_buy']].to_csv(os.path.join(save_path, 'user_bin_buy.csv'), index=False) # re_process NUM_FIELD = 10 #np.random_seed(42) # load user_field.csv user_field = field_reader(os.path.join(save_path, 'user_field.csv')) print("Shapes of user with field:", user_field.shape) print("Number of user with field:", np.count_nonzero(np.sum(user_field, axis=1))) neighs = get_neighs(user_field) if debaising_approach == 'disparate_impact_remover': neighs = [x for x in neighs if x.size != 0] sample_neighs = [] for i in range(len(neighs)): sample_neighs.append(list(sample_neigh(neighs[i], NUM_FIELD))) sample_neighs = np.array(sample_neighs) np.save(os.path.join(save_path, 'user_field.npy'), sample_neighs) user_field_new = sample_neighs user_edge_path = './user_edge.csv' user_field_new_path = './user_field.npy' user_gender_path = './user_gender.csv' user_label_path = './user_labels.csv' return user_edge_path, user_field_new_path, user_gender_path, user_label_path def divide_data(df): # divide data into 3 label = df[['userid', 'final_gender_code', 'age_level', 'pvalue_level', 'occupation', 'new_user_class_level']].copy() pid_cid = df[['adgroup_id', 'cate_id']].copy() uid_pid = df[['userid', 'adgroup_id', 'clk']].copy() return label, pid_cid, uid_pid def divide_data_2(df): df_user = df[{'userid', 'gender', 'bin_age', 'pvalue_level', 'occupation', 'new_user_class_level'}].copy() df_item = df[['adgroup_id', 'cate_id', 'campaign_id', 'brand']].copy() df_click = df[['userid', 'adgroup_id', 'clk']].copy() return df_user, df_item, df_click def apply_bin_age(label): label['bin_age'] = label['age'] label['bin_age'] = label['bin_age'].replace(1,0) label['bin_age'] = label['bin_age'].replace(2,0) label['bin_age'] = label['bin_age'].replace(3,1) label['bin_age'] = label['bin_age'].replace(4,0) label['bin_age'] = label['bin_age'].replace(5,0) label['bin_age'] = label['bin_age'].replace(6,0) return label def apply_bin_buy(label): label['bin_buy'] = label['buy'] label['bin_buy'] = label['bin_buy'].replace(3.0,2.0) return label def get_count(tp, id): playcount_groupbyid = tp[[id]].groupby(id, as_index=True) count = playcount_groupbyid.size() return count def filter_triplets(tp, user, item, min_uc=0, min_sc=0): # Only keep the triplets for users who clicked on at least min_uc items if min_uc > 0: usercount = get_count(tp, user) tp = tp[tp[user].isin(usercount.index[usercount >= min_uc])] # Only keep the triplets for items which were clicked on by at least min_sc users. if min_sc > 0: itemcount = get_count(tp, item) tp = tp[tp[item].isin(itemcount.index[itemcount >= min_sc])] # Update both usercount and itemcount after filtering usercount, itemcount = get_count(tp, user), get_count(tp, item) return tp, usercount, itemcount def col_map(df, col, num2id): df[[col]] = df[[col]].applymap(lambda x: num2id[x]) return df def label_map(label_df, label_list): for label in label_list: label2id = {num: i for i, num in enumerate(pd.unique(label_df[label]))} label_df = col_map(label_df, label, label2id) return label_df def field_reader(path): """ Reading the sparse field matrix stored as csv from the disk. :param path: Path to the csv file. :return field: csr matrix of field. """ user_field = pd.read_csv(path) user_index = user_field["uid"].values.tolist() field_index = user_field["cid"].values.tolist() user_count = max(user_index)+1 field_count = max(field_index)+1 field_index = sp.csr_matrix((np.ones_like(user_index), (user_index, field_index)), shape=(user_count, field_count)) return field_index def get_neighs(csr): neighs = [] # t = time.time() idx = np.arange(csr.shape[1]) for i in range(csr.shape[0]): x = csr[i, :].toarray()[0] > 0 if idx[x].size > 0: neighs.append(idx[x]) # if i % (10*1000) == 0: # print('sec/10k:', time.time()-t) return neighs def sample_neigh(neigh, num_sample): if len(neigh) >= num_sample: sample_neigh = np.random.choice(neigh, num_sample, replace=False) elif len(neigh) < num_sample: sample_neigh = np.random.choice(neigh, num_sample, replace=True) return sample_neigh