from torch.nn import Linear from torch_geometric.nn.conv import MessagePassing, GCNConv # from torch_geometric.nn.conv.gcn_conv import gcn_norm # implementation of 'GCNConv.norm' method of Pytorch Geometric v1.3.2 (not present in the latest version) import torch from torch_scatter import scatter_add from torch_geometric.utils import add_remaining_self_loops def gcn_norm_old(edge_index, num_nodes, edge_weight=None, improved=False, dtype=None): if edge_weight is None: edge_weight = torch.ones((edge_index.size(1), ), dtype=dtype, device=edge_index.device) fill_value = 1 if not improved else 2 edge_index, edge_weight = add_remaining_self_loops(edge_index, edge_weight, fill_value, num_nodes) row, col = edge_index deg = scatter_add(edge_weight, row, dim=0, dim_size=num_nodes) deg_inv_sqrt = deg.pow(-0.5) deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0 return edge_index, deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col] class PNAConv(MessagePassing): """ Pure neighborhood aggregation layer. """ def __init__(self, K=1, cached=False, bias=True, **kwargs): super(PNAConv, self).__init__(aggr='add', **kwargs) self.K = K def forward(self, x, edge_index, edge_weight=None): # edge_index, norm = GCNConv.norm(edge_index, x.size(0), edge_weight, dtype=x.dtype) edge_index, norm = gcn_norm_old(edge_index, x.size(0), edge_weight, dtype=x.dtype) for k in range(self.K): x = self.propagate(edge_index, x=x, norm=norm) return x def message(self, x_j, norm): return norm.view(-1, 1) * x_j def __repr__(self): return '{}(K={})'.format(self.__class__.__name__, self.K)