from dis import dis import numpy as np import pandas as pd import os import scipy.sparse as sp from fainress_component import disparate_impact_remover, reweighting, sample def pokec_z_CatGCN_pre_process(df, df_edge_list, sens_attr, label, debaising_approach=True): df['I_am_working_in_field'] = df['I_am_working_in_field'].replace(-1, 0) df['I_am_working_in_field'] = df['I_am_working_in_field'].replace(0, 0) df['I_am_working_in_field'] = df['I_am_working_in_field'].replace(1, 0) df['I_am_working_in_field'] = df['I_am_working_in_field'].replace(2, 1) df['I_am_working_in_field'] = df['I_am_working_in_field'].replace(3, 1) df['I_am_working_in_field'] = df['I_am_working_in_field'].replace(4, 1) if debaising_approach != None: if debaising_approach == 'disparate_impact_remover': df = disparate_impact_remover(df, sens_attr, label) elif debaising_approach == 'reweighting': df = reweighting(df, sens_attr, label) elif debaising_approach == 'sample': df = sample(df, sens_attr, label) uid_age = df[['user_id', 'AGE']].copy() uid_age.dropna(inplace=True) uid_age2 = df[['user_id', 'AGE']].copy() #create uid2id uid2id = {num: i for i, num in enumerate(df['user_id'])} #create age2id age2id = {num: i for i, num in enumerate(pd.unique(uid_age['AGE']))} #create user_field user_field = col_map(uid_age, 'user_id', uid2id) user_field = col_map(user_field, 'AGE', age2id) if debaising_approach == 'disparate_impact_remover': user_field = user_field.reset_index() user_field = user_field.drop(['user_id'], axis=1) user_field = user_field.rename(columns={"index": "user_id"}) user_field['user_id'] = user_field['user_id'].astype(str).astype(int) #create user_label user_label = df[df['user_id'].isin(uid_age2['user_id'])] user_label = col_map(user_label, 'user_id', uid2id) user_label = label_map(user_label, user_label.columns[1:]) # save_path = "./input_ali_data" save_path = "./" # process edge list #if df_edge_list['source'].dtype != 'int64': # df_edge_list['source'] = df_edge_list['source'].astype(str).astype(np.int64) # df_edge_list['target'] = df_edge_list['target'].astype(str).astype(np.int64) source = [] target = [] print('adjusting edge list') #for i in range(df_edge_list.shape[0]): # print(i) # if any(df.user_id == df_edge_list.source[i]) == True and any(df.user_id == df_edge_list.target[i]) == True: # index = df.user_id[df.user_id == df_edge_list.source[i]].index.tolist()[0] # source.append(index) # index2 = df.user_id[df.user_id == df_edge_list.target[i]].index.tolist()[0] # target.append(index2) #user_edge_new = pd.DataFrame({'uid': source, 'uid2': target}) print('saving edge list') user_edge_new = df_edge_list user_edge_new.to_csv(os.path.join(save_path, 'user_edge.csv'), index=False) user_field.to_csv(os.path.join(save_path, 'user_field.csv'), index=False) user_label.to_csv(os.path.join(save_path, 'user_labels.csv'), index=False) user_label[['user_id','public']].to_csv(os.path.join(save_path, 'user_public.csv'), index=False) user_label[['user_id','completion_percentage']].to_csv(os.path.join(save_path, 'user_completion_percentage.csv'), index=False) user_label[['user_id','gender']].to_csv(os.path.join(save_path, 'user_gender.csv'), index=False) user_label[['user_id','region']].to_csv(os.path.join(save_path, 'user_region.csv'), index=False) user_label[['user_id','AGE']].to_csv(os.path.join(save_path, 'user_age.csv'), index=False) user_label[['user_id','I_am_working_in_field']].to_csv(os.path.join(save_path, 'user_work.csv'), index=False) user_work = user_label[['user_id','I_am_working_in_field']] user_label[['user_id','spoken_languages_indicator']].to_csv(os.path.join(save_path, 'user_spoken_languages_indicator.csv'), index=False) NUM_FIELD = 10 #np.random_seed(42) # load user_field.csv user_field = field_reader(os.path.join(save_path, 'user_field.csv')) print("Shapes of user with field:", user_field.shape) print("Number of user with field:", np.count_nonzero(np.sum(user_field, axis=1))) neighs = get_neighs(user_field) sample_neighs = [] for i in range(len(neighs)): sample_neighs.append(list(sample_neigh(neighs[i], NUM_FIELD))) sample_neighs = np.array(sample_neighs) np.save(os.path.join(save_path, 'user_field.npy'), sample_neighs) user_field_new = sample_neighs user_edge_path = './user_edge.csv' user_field_new_path = './user_field.npy' user_work_path = './user_work.csv' user_label_path = './user_labels.csv' return user_edge_path, user_field_new_path, user_work_path, user_label_path def get_count(tp, id): playcount_groupbyid = tp[[id]].groupby(id, as_index=True) count = playcount_groupbyid.size() return count def filter_triplets(tp, user, item, min_uc=0, min_sc=0): # Only keep the triplets for users who clicked on at least min_uc items if min_uc > 0: usercount = get_count(tp, user) tp = tp[tp[user].isin(usercount.index[usercount >= min_uc])] # Only keep the triplets for items which were clicked on by at least min_sc users. if min_sc > 0: itemcount = get_count(tp, item) tp = tp[tp[item].isin(itemcount.index[itemcount >= min_sc])] # Update both usercount and itemcount after filtering usercount, itemcount = get_count(tp, user), get_count(tp, item) return tp, usercount, itemcount def col_map(df, col, num2id): df[[col]] = df[[col]].applymap(lambda x: num2id[x]) return df def label_map(label_df, label_list): for label in label_list: label2id = {num: i for i, num in enumerate(pd.unique(label_df[label]))} label_df = col_map(label_df, label, label2id) return label_df def field_reader(path): """ Reading the sparse field matrix stored as csv from the disk. :param path: Path to the csv file. :return field: csr matrix of field. """ user_field = pd.read_csv(path) user_index = user_field["user_id"].values.tolist() field_index = user_field["AGE"].values.tolist() user_count = max(user_index)+1 field_count = max(field_index)+1 field_index = sp.csr_matrix((np.ones_like(user_index), (user_index, field_index)), shape=(user_count, field_count)) return field_index #user_field = field_reader(os.path.join(save_path, 'user_field.csv')) #print("Shapes of user with field:", user_field.shape) #print("Number of user with field:", np.count_nonzero(np.sum(user_field, axis=1))) def get_neighs(csr): neighs = [] # t = time.time() idx = np.arange(csr.shape[1]) for i in range(csr.shape[0]): x = csr[i, :].toarray()[0] > 0 neighs.append(idx[x]) # if i % (10*1000) == 0: # print('sec/10k:', time.time()-t) return neighs def sample_neigh(neigh, num_sample): if len(neigh) >= num_sample: sample_neigh = np.random.choice(neigh, num_sample, replace=False) elif len(neigh) < num_sample: sample_neigh = np.random.choice(neigh, num_sample, replace=True) return sample_neigh