from asyncore import readwrite import pandas as pd import numpy as np import scipy.sparse as sp import os from fainress_component import disparate_impact_remover, reweighting, sample import time def tec_CatGCN_pre_process(df, df_user, df_click, df_item, sens_attr, label, special_case, debaising_approach=None): if debaising_approach != None: if special_case == True: df_user.dropna(inplace=True) age_dic = {'11~15':0, '16~20':0, '21~25':0, '26~30':1, '31~35':1, '36~40':2, '41~45':2, '46~50':3, '51~55':3, '56~60':4, '61~65':4, '66~70':4, '71~':4} df_user[["age_range"]] = df_user[["age_range"]].applymap(lambda x:age_dic[x]) df_user.rename(columns={"user_id":"uid", "age_range":"age"}, inplace=True) # binarize age df_user = apply_bin_age(df_user) if debaising_approach == 'disparate_impact_remover': df_user = disparate_impact_remover(df_user, sens_attr, label) elif debaising_approach == 'reweighting': df_user = reweighting(df_user, sens_attr, label) elif debaising_approach == 'sample': df_user = sample(df_user, sens_attr, label) else: # binarize age df_user = apply_bin_age(df_user) df.dropna(inplace=True) age_dic = {'11~15':0, '16~20':0, '21~25':0, '26~30':1, '31~35':1, '36~40':2, '41~45':2, '46~50':3, '51~55':3, '56~60':4, '61~65':4, '66~70':4, '71~':4} df[["age_range"]] = df[["age_range"]].applymap(lambda x:age_dic[x]) df.rename(columns={"user_id":"uid","age_range":"age"}, inplace=True) df = apply_bin_age(df) df.drop(columns=["cid1", "cid2", "cid1_name", "cid2_name ", "cid3_name", "brand_code", "price", "item_name", "seg_name"], inplace=True) if debaising_approach == 'disparate_impact_remover': df = disparate_impact_remover(df, sens_attr, label) elif debaising_approach == 'reweighting': df = reweighting(df, sens_attr, label) elif debaising_approach == 'sample': df = sample(df, sens_attr, label) df_user, df_item, df_click = divide_data2(df) else: if special_case == False: print('special case is false') df_user, df_item, df_click = divide_data(df) df_user.dropna(inplace=True) age_dic = {'11~15':0, '16~20':0, '21~25':0, '26~30':1, '31~35':1, '36~40':2, '41~45':2, '46~50':3, '51~55':3, '56~60':4, '61~65':4, '66~70':4, '71~':4} df_user[["age_range"]] = df_user[["age_range"]].applymap(lambda x:age_dic[x]) df_user.rename(columns={"user_id":"uid", "age_range":"age"}, inplace=True) # binarize age df_user = apply_bin_age(df_user) # item df_item.dropna(inplace=True) df_item.rename(columns={"item_id":"pid", "cid3":"cid"}, inplace=True) if debaising_approach == None: df_item.drop(columns=["cid1", "cid2", "cid1_name", "cid2_name", "cid3_name", "brand_code", "price", "item_name", "seg_name"], inplace=True) df_item.reset_index(drop=True, inplace=True) df_item = df_item.sample(frac=0.15, random_state=11) df_item.reset_index(drop=True, inplace=True) # click df_click.dropna(inplace=True) if debaising_approach == None and special_case == True: df_click.rename(columns={"user_id":"uid", "item_id":"pid"}, inplace=True) elif debaising_approach != None and special_case == False: df_click.rename(columns={"item_id":"pid"}, inplace=True) elif debaising_approach != None and special_case == True: df_click.rename(columns={"user_id":"uid", "item_id":"pid"}, inplace=True) df_click.reset_index(drop=True, inplace=True) df_click = df_click.sample(frac=0.15, random_state=11) df_click.reset_index(drop=True, inplace=True) df_click = df_click[df_click["uid"].isin(df_user["uid"])] df_click = df_click[df_click["pid"].isin(df_item["pid"])] df_click.drop_duplicates(inplace=True) df_click.reset_index(drop=True, inplace=True) # filter df_click (item interactions >= 2) # Before filtering users = set(df_click.uid.tolist()) items = set(df_click.pid.tolist()) print('User before filtering {} and items before filtering {}'.format(len(users), len(items))) df_click, uid_activity, pid_popularity = filter_triplets(df_click, 'uid', 'pid', min_uc=0, min_sc=2) sparsity = 1. * df_click.shape[0] / (uid_activity.shape[0] * pid_popularity.shape[0]) print("After filtering, there are %d interaction events from %d users and %d items (sparsity: %.4f%%)" % (df_click.shape[0], uid_activity.shape[0], pid_popularity.shape[0], sparsity * 100)) # After filtering users = set(df_click.uid.tolist()) items = set(df_click.pid.tolist()) print('Users after filtering {} and items after filtering {}'.format(len(users), len(items))) # Click-item merge df_click_item = pd.merge(df_click, df_item, how="inner", on="pid") raw_click_item = df_click_item.drop("pid", axis=1, inplace=False) raw_click_item.drop_duplicates(inplace=True) # filter df_click_item (cid interactions >= 2) df_click_item, uid_activity, cid_popularity = filter_triplets(raw_click_item, 'uid', 'cid', min_uc=0, min_sc=2) sparsity = 1. * df_click_item.shape[0] / (uid_activity.shape[0] * cid_popularity.shape[0]) print("After filtering, there are %d interacton events from %d users and %d items (sparsity: %.4f%%)" % (df_click_item.shape[0], uid_activity.shape[0], cid_popularity.shape[0], sparsity * 100)) # uid-uid analysis df_click = df_click[df_click["uid"].isin(df_click_item["uid"])] df_click_1 = df_click[["uid", "pid"]].copy() df_click_1.rename(columns={"uid":"uid1"}, inplace=True) df_click_2 = df_click[["uid", "pid"]].copy() df_click_2.rename(columns={"uid":"uid2"}, inplace=True) df_click1_click2 = pd.merge(df_click_1, df_click_2, how="inner", on="pid") #create df_uid_uid df_uid_uid = df_click1_click2.drop("pid", axis=1, inplace=False) df_uid_uid.drop_duplicates(inplace=True) # delete unneeded dataframes del df_click_1, df_click_2, df_click1_click2 # Map # Map df_label = df_user[df_user["uid"].isin(df_click_item["uid"])] if debaising_approach == None and special_case == True: uid2id = {num: i for i, num in enumerate(df_label['uid'])} elif debaising_approach == 'sample' or debaising_approach == 'reweighting' and special_case == True: uid2id = {num: i for i, num in enumerate(df_label['uid'])} else: uid2id = {num: i for i, num in enumerate(df_click_item['uid'])} cid2id = {num: i for i, num in enumerate(pd.unique(df_click_item['cid']))} df_label = col_map(df_label, 'uid', uid2id) df_label = label_map(df_label, df_label.columns[1:]) user_edge = df_uid_uid[df_uid_uid['uid1'].isin(df_click_item['uid'])] user_edge = user_edge[user_edge['uid2'].isin(df_click_item['uid'])] user_edge = col_map(user_edge, 'uid1', uid2id) user_edge = col_map(user_edge, 'uid2', uid2id) user_field = col_map(df_click_item, 'uid', uid2id) user_field = col_map(user_field, 'cid', cid2id) if debaising_approach == 'disparate_impact_remover' or debaising_approach == 'sample' or debaising_approach == 'reweighting': user_field = user_field.reset_index() user_field = user_field.drop(['uid'], axis=1) user_field = user_field.rename(columns={"index": "uid"}) user_field['uid'] = user_field['uid'].astype(str).astype(int) # new if debaising_approach != None: if 'bin_age' not in df_user: df_label = df_label.join(df_user['bin_age']) # Save? save_path = './' user_edge.to_csv(os.path.join(save_path, "user_edge.csv"), index=False) user_field.to_csv(os.path.join(save_path, "user_field.csv"), index=False) df_label.to_csv(os.path.join(save_path, "user_labels.csv"), index=False) df_label[["uid", "age"]].to_csv(os.path.join(save_path, "user_age.csv"), index=False) df_label[["uid", "bin_age"]].to_csv(os.path.join(save_path, "user_bin_age.csv"), index=False) df_label[["uid", "gender"]].to_csv(os.path.join(save_path, "user_gender.csv"), index=False) user_gender = df_label[["uid", "gender"]] NUM_FIELD = 10 np.random.seed(42) user_field = field_reader(os.path.join(save_path, "user_field.csv")) neighs = get_neighs(user_field) if debaising_approach == 'disparate_impact_remover': neighs = [x for x in neighs if x.size != 0] sample_neighs = [] for i in range(len(neighs)): sample_neighs.append(list(sample_neigh(neighs[i], NUM_FIELD))) sample_neighs = np.array(sample_neighs) np.save(os.path.join(save_path, 'user_field.npy'), sample_neighs) user_field_new = sample_neighs user_edge_path = './user_edge.csv' user_field_new_path = './user_field.npy' user_gender_path = './user_gender.csv' user_label_path = './user_labels.csv' return user_edge_path, user_field_new_path, user_gender_path, user_label_path def divide_data(df): df_user = df[['user_id', 'gender', 'age_range']].copy() df_item = df[['item_id', 'cid1', 'cid2', 'cid3', 'cid1_name', 'cid2_name ', 'cid3_name', 'brand_code', 'price', 'item_name', 'seg_name']].copy() df_click = df[['user_id', 'item_id']].copy() return df_user, df_item, df_click def divide_data2(df): df_user = df[['uid', 'gender', 'age']].copy() df_item = df[['item_id', 'cid3']].copy() df_click = df[['uid', 'item_id']].copy() return df_user, df_item, df_click def apply_bin_age(df_user): df_user["bin_age"] = df_user["age"] df_user["bin_age"] = df_user["bin_age"].replace(1,0) df_user["bin_age"] = df_user["bin_age"].replace(2,1) df_user["bin_age"] = df_user["bin_age"].replace(3,1) df_user["bin_age"] = df_user["bin_age"].replace(4,1) return df_user def get_count(tp, id): playcount_groupbyid = tp[[id]].groupby(id, as_index=True) count = playcount_groupbyid.size() return count def filter_triplets(tp, user, item, min_uc=0, min_sc=0): # Only keep the triplets for users who clicked on at least min_uc items if min_uc > 0: usercount = get_count(tp, user) tp = tp[tp[user].isin(usercount.index[usercount >= min_uc])] # Only keep the triplets for items which were clicked on by at least min_sc users. if min_sc > 0: itemcount = get_count(tp, item) tp = tp[tp[item].isin(itemcount.index[itemcount >= min_sc])] # Update both usercount and itemcount after filtering usercount, itemcount = get_count(tp, user), get_count(tp, item) return tp, usercount, itemcount def col_map(df, col, num2id): df[[col]] = df[[col]].applymap(lambda x: num2id[x]) return df def label_map(label_df, label_list): for label in label_list: label2id = {num: i for i, num in enumerate(pd.unique(label_df[label]))} label_df = col_map(label_df, label, label2id) return label_df def field_reader(path): """ Reading the sparse field matrix stored as csv from the disk. :param path: Path to the csv file. :return field: csr matrix of field. """ user_field = pd.read_csv(path) user_index = user_field["uid"].values.tolist() field_index = user_field["cid"].values.tolist() user_count = max(user_index)+1 field_count = max(field_index)+1 field_index = sp.csr_matrix((np.ones_like(user_index), (user_index, field_index)), shape=(user_count, field_count)) return field_index def get_neighs(csr): neighs = [] # t = time.time() idx = np.arange(csr.shape[1]) for i in range(csr.shape[0]): x = csr[i, :].toarray()[0] > 0 neighs.append(idx[x]) # if i % (10*1000) == 0: # print('sec/10k:', time.time()-t) return neighs def sample_neigh(neigh, num_sample): if len(neigh) >= num_sample: sample_neigh = np.random.choice(neigh, num_sample, replace=False) elif len(neigh) < num_sample: sample_neigh = np.random.choice(neigh, num_sample, replace=True) return sample_neigh