erathi's picture
Create app.py
960f71e verified
raw
history blame contribute delete
318 Bytes
import streamlit
from transformers import pipeline
from transformers import logging
pipe = pipeline("summarization")
logging.set_verbosity_warning()
logging.set_verbosity_error()
text = streamlit.text_area("enter text to summarize")
if text:
summary = pipe(text)[0]['summary_text']
streamlit.json(summary)