Spaces:
Runtime error
Runtime error
File size: 5,461 Bytes
630e75f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 |
import gradio as gr
from io import BytesIO
import requests
import PIL
from PIL import Image
import numpy as np
import os
import uuid
import torch
from torch import autocast
import cv2
from matplotlib import pyplot as plt
from torchvision import transforms
from diffusers import DiffusionPipeline
from PIL import Image, ImageOps
import requests
from io import BytesIO
from transparent_background import Remover
def resize_with_padding(img, expected_size):
img.thumbnail((expected_size[0], expected_size[1]))
delta_width = expected_size[0] - img.size[0]
delta_height = expected_size[1] - img.size[1]
pad_width = delta_width // 2
pad_height = delta_height // 2
padding = (pad_width, pad_height, delta_width - pad_width, delta_height - pad_height)
return ImageOps.expand(img, padding)
bird_image = Image.open('bird.jpeg').convert('RGB')
bird_controlnet = Image.open('bird-controlnet.webp').convert('RGB')
bird_sd2 = Image.open('bird-sd2.webp').convert('RGB')
bird_mask = Image.open('bird-mask.webp').convert('RGB')
device = 'cuda'
# Load background detection model
remover = Remover() # default setting
remover = Remover(mode='base')
pipe = DiffusionPipeline.from_pretrained("yahoo-inc/photo-background-generation", custom_pipeline="yahoo-inc/photo-background-generation").to(device)
def read_content(file_path: str) -> str:
"""read the content of target file
"""
with open(file_path, 'r', encoding='utf-8') as f:
content = f.read()
return content
def predict(img, prompt="", seed=0):
img = img.convert("RGB")
img = resize_with_padding(img, (512, 512))
mask = remover.process(img, type='map')
mask = ImageOps.invert(mask)
with torch.autocast("cuda"):
generator = torch.Generator(device='cuda').manual_seed(seed)
output_controlnet = pipe(generator=generator, prompt=prompt, image=img, mask_image=mask, control_image=mask, num_images_per_prompt=1, num_inference_steps=20, guess_mode=False, controlnet_conditioning_scale=1.0, guidance_scale=7.5).images[0]
generator = torch.Generator(device='cuda').manual_seed(seed)
output_sd2 = pipe(generator=generator, prompt=prompt, image=img, mask_image=mask, control_image=mask, num_images_per_prompt=1, num_inference_steps=20, guess_mode=False, controlnet_conditioning_scale=0.0, guidance_scale=7.5).images[0]
torch.cuda.empty_cache()
return output_controlnet, output_sd2, mask
css = '''
.container {max-width: 1150px;margin: auto;padding-top: 1.5rem}
#image_upload{min-height:400px}
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 512px}
#mask_radio .gr-form{background:transparent; border: none}
#word_mask{margin-top: .75em !important}
#word_mask textarea:disabled{opacity: 0.3}
.footer {margin-bottom: 45px;margin-top: 35px;text-align: center;border-bottom: 1px solid #e5e5e5}
.footer>p {font-size: .8rem; display: inline-block; padding: 0 10px;transform: translateY(10px);background: white}
.dark .footer {border-color: #303030}
.dark .footer>p {background: #0b0f19}
.acknowledgments h4{margin: 1.25em 0 .25em 0;font-weight: bold;font-size: 115%}
#image_upload .touch-none{display: flex}
@keyframes spin {
from {
transform: rotate(0deg);
}
to {
transform: rotate(360deg);
}
}
#share-btn-container {
display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem;
}
#share-btn {
all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;
}
#share-btn * {
all: unset;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
'''
image_blocks = gr.Blocks(css=css)
with image_blocks as demo:
gr.HTML(read_content("header.html"))
with gr.Group():
with gr.Row(variant='compact', equal_height=True, ):
with gr.Column(variant='compact', ):
image = gr.Image(value=bird_image, sources=['upload'], elem_id="image_upload", type="pil", label="Upload an image", width=512, height=512)
with gr.Row(variant='compact', elem_id="prompt-container", equal_height=True):
prompt = gr.Textbox(label='prompt', placeholder = 'What you want in the background?', show_label=True, elem_id="input-text")
seed = gr.Number(label="seed", value=13)
btn = gr.Button("Generate Background!")
with gr.Column(variant='compact', ):
controlnet_out = gr.Image(value=bird_controlnet, label="SD2+ControlNet (Ours) Output", elem_id="output-controlnet", width=512, height=512)
with gr.Row(variant='compact', equal_height=True, ):
with gr.Column(variant='compact', ):
mask_out = gr.Image(value=bird_mask, label="Background Mask", elem_id="output-mask", width=512, height=512)
with gr.Column(variant='compact', ):
sd2_out = gr.Image(value=bird_sd2, label="SD2 Output", elem_id="output-sd2", width=512, height=512)
btn.click(fn=predict, inputs=[image, prompt, seed], outputs=[controlnet_out, sd2_out, mask_out ])
image_blocks.launch()
|