File size: 7,775 Bytes
de080b7
 
 
248b0d6
 
de080b7
248b0d6
de080b7
 
 
 
 
 
 
248b0d6
de080b7
248b0d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de080b7
 
 
 
 
248b0d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
de080b7
 
248b0d6
de080b7
 
248b0d6
 
de080b7
248b0d6
de080b7
 
248b0d6
de080b7
 
 
 
 
 
248b0d6
de080b7
 
 
 
 
248b0d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import streamlit as st
from transformers import pipeline
from PIL import Image
import numpy as np
import cv2
from rag_model import *
from yolo_model import *


@st.cache_resource
def load_image_model():
    return pipeline("image-classification", model="Heem2/wound-image-classification")

pipeline = load_image_model()
yolo_model = load_yolo_model()

# Add custom CSS
css = """
<style>
body {
    font-family: 'Arial', sans-serif;
    background-color: #f5f5f5;
}
.main {
    background-color: #ffffff;
    padding: 20px;
    border-radius: 10px;
    box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
}
.stButton button {
    background-color: #4CAF50;
    color: white;
    border: none;
    padding: 10px 20px;
    text-align: center;
    text-decoration: none;
    display: inline-block;
    font-size: 16px;
    margin: 4px 2px;
    cursor: pointer;
    border-radius: 5px;
}
.stButton button:hover {
    background-color: #45a049;
}
.stApp > header {
    background-color: transparent;
}
.stApp {
    margin: auto;
    background-color: #D9AFD9;
    background-image: linear-gradient(0deg, #D9AFD9 0%, #97D9E1 100%);
}
[data-testid='stFileUploader'] {
    width: max-content;
}
[data-testid='stFileUploader'] section {
    padding: 0;
    float: left;
}
[data-testid='stFileUploader'] section > input + div {
    display: none;
}
[data-testid='stFileUploader'] section + div {
    float: right;
    padding-top: 0;
}
</style>
"""

st.markdown(css, unsafe_allow_html=True)

st.title("**FirstAid-AI**")

# Add a description at the top
st.markdown("""
### Welcome to FirstAid-AI
This application provides medical advice based on images of wounds and medical equipment. 
Upload an image of your wound or medical equipment, and the AI will classify the image and provide relevant advice.
""")

st.markdown("## How to Use FirstAid-AI")
st.markdown("### 1. Upload an image of a wound and a piece of equipment (if applicable)")
st.image("images/example3.png", use_container_width=True)
st.caption("The AI model will detect the wound or equipment in the image and provide confidence levels. The AI assistant will then provide treatment or usage advice.")
st.markdown("### 2. Ask follow-up questions and continue the conversation with the AI assistant!")

# Initialize chat history
if "messages" not in st.session_state:
    st.session_state.messages = []

# Dropdown to select the type of images to provide
option = st.selectbox(
    "Select the type of images you want to provide:",
    ("Provide just wound image", "Provide both wound and equipment")
)

# Upload images based on the selected option
file_wound = None
file_equipment = None

if option == "Provide just wound image":
    file_wound = st.file_uploader("Upload an image of your wound")
elif option == "Provide both wound and equipment":
    file_wound = st.file_uploader("Upload an image of your wound")
    file_equipment = st.file_uploader("Upload an image of your equipment")

# Reset chat history if no file is uploaded
if file_wound is None and file_equipment is None:
    st.session_state.messages = []

if file_wound is not None and option == "Provide just wound image":
    # Display the wound image and predictions
    col1, col2 = st.columns(2)
    image = Image.open(file_wound)
    col1.image(image, use_container_width=True)

    # Classify the wound image
    predictions = pipeline(image)
    detected_wound = predictions[0]['label']
    col2.header("Detected Wound")
    for p in predictions:
        col2.subheader(f"{p['label']}: {round(p['score'] * 100, 1)}%")

    # Initial advice for wound
    if not st.session_state.messages:
        initial_query = f"Provide treatment advice for a {detected_wound} wound"
        initial_response = rag_chain.invoke(initial_query)
        st.session_state.messages.append({"role": "assistant", "content": initial_response})

    # Display chat messages from history
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])

    # Accept user input if an image is uploaded
    if (file_wound is not None or file_equipment is not None) and (prompt := st.chat_input("Ask a follow-up question or continue the conversation:")):
        # Display user message in chat
        with st.chat_message("user"):
            st.markdown(prompt)
        # Add user message to chat history
        st.session_state.messages.append({"role": "user", "content": prompt})

        # Prepare the conversation history for rag_chain
        conversation_history = "\n".join(
            f"{message['role']}: {message['content']}" for message in st.session_state.messages
        )

        # Generate response from rag_chain
        query = f"Context:\n{conversation_history}\n\nAssistant, respond to the user's latest query: {prompt}"
        response = rag_chain.invoke(query)

        # Display assistant response in chat message container
        with st.chat_message("assistant"):
            st.markdown(response)

        # Add assistant response to chat history
        st.session_state.messages.append({"role": "assistant", "content": response})

if file_wound is not None and file_equipment is not None and option == "Provide both wound and equipment":
    # Display the wound image and predictions
    col1, col2 = st.columns(2)
    image = Image.open(file_wound)
    col1.image(image, use_container_width=True)

    # Classify the wound image
    predictions = pipeline(image)
    detected_wound = predictions[0]['label']
    col2.header("Detected Wound")
    for p in predictions:
        col2.subheader(f"{p['label']}: {round(p['score'] * 100, 1)}%")
    
    # Display the equipment image and predictions
    col3, col4 = st.columns(2)
    image = Image.open(file_equipment)
    col3.image(image, use_container_width=True)

    # Convert the image to a format supported by YOLO
    image_np = np.array(image)
    image_cv = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR)

    # Classify the equipment image using YOLO model
    detected_equipment = get_detected_objects(yolo_model, image_cv)
    col4.header("Detected Equipment")
    col4.subheader(detected_equipment)

    # Initial advice for equipment
    if not st.session_state.messages:
        initial_query = f"Provide usage advice for {detected_equipment} when treating a {detected_wound} wound"
        initial_response = rag_chain.invoke(initial_query)
        st.session_state.messages.append({"role": "assistant", "content": initial_response})

    # Display chat messages from history
    for message in st.session_state.messages:
        with st.chat_message(message["role"]):
            st.markdown(message["content"])

    # Accept user input if an image is uploaded
    if (file_wound is not None or file_equipment is not None) and (prompt := st.chat_input("Ask a follow-up question or continue the conversation:")):
        # Display user message in chat
        with st.chat_message("user"):
            st.markdown(prompt)
        # Add user message to chat history
        st.session_state.messages.append({"role": "user", "content": prompt})

        # Prepare the conversation history for rag_chain
        conversation_history = "\n".join(
            f"{message['role']}: {message['content']}" for message in st.session_state.messages
        )

        # Generate response from rag_chain
        query = f"Context:\n{conversation_history}\n\nAssistant, respond to the user's latest query: {prompt}"
        response = rag_chain.invoke(query)

        # Display assistant response in chat message container
        with st.chat_message("assistant"):
            st.markdown(response)

        # Add assistant response to chat history
        st.session_state.messages.append({"role": "assistant", "content": response})