Spaces:
Runtime error
Runtime error
File size: 4,649 Bytes
99e97ac 9373001 99e97ac 9373001 99e97ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 |
import openai
from openai import OpenAI
class Answering_Agent:
def __init__(self, openai_api_key) -> None:
self.openai_client = openai
openai.api_key = openai_api_key
def get_document_content(self, doc_id):
# Placeholder for retrieving document content
return "Document content for ID " + doc_id
def is_relevant(self, query, context_texts, history_str):
# Define a list of common stop words
stop_words = set([
"the", "what", "is", "are", "in", "of", "on", "for", "and", "a", "to",
"an", "by", "as", "at", "about", "above", "after", "again", "against",
"all", "am", "an", "any", "aren't", "as", "at", "be", "because", "been",
"before", "being", "below", "between", "both", "but", "by", "could",
"couldn't", "did", "didn't", "do", "does", "doesn't", "doing", "don't",
"down", "during", "each", "few", "for", "from", "further", "had", "hadn't",
"has", "hasn't", "have", "haven't", "having", "he", "he'd", "he'll", "he's",
"her", "here", "here's", "hers", "herself", "him", "himself", "his", "how",
"how's", "i", "i'd", "i'll", "i'm", "i've", "if", "in", "into", "is", "isn't",
"it", "it's", "its", "itself", "let's", "me", "more", "most", "mustn't",
"my", "myself", "no", "nor", "not", "of", "off", "on", "once", "only", "or",
"other", "ought", "our", "ours", "ourselves", "out", "over", "own", "same",
"shan't", "she", "she'd", "she'll", "she's", "should", "shouldn't", "so",
"some", "such", "than", "that", "that's", "the", "their", "theirs",
"them", "themselves", "then", "there", "there's", "these", "they", "they'd",
"they'll", "they're", "they've", "this", "those", "through", "to", "too",
"under", "until", "up", "very", "was", "wasn't", "we", "we'd", "we'll",
"we're", "we've", "were", "weren't", "what", "what's", "when", "when's",
"where", "where's", "which", "while", "who", "who's", "whom", "why",
"why's", "with", "won't", "would", "wouldn't", "you", "you'd", "you'll",
"you're", "you've", "your", "yours", "yourself", "yourselves"
])
# Filter out stop words and split query into keywords
keywords = [word for word in query.lower().split() if word not in stop_words]
context = context_texts.lower()
return any(keyword in context for keyword in keywords)
def generate_response(self, query, docs, conv_history, k=5, mode="chatty"):
# Concatenate the contents of the top k relevant documents
context_texts = "\n\n".join([f"Context {idx + 1}: {result[2]}" for idx, result in enumerate(docs)])
history_str = "\n".join([f"{turn['role']}: {turn['content']}" for turn in conv_history]) if conv_history else ""
print("context_texts: " + context_texts)
# Check relevance of the context and history to the query
relevant = self.is_relevant(query, context_texts, history_str)
# If not relevant, return a predefined message
if not relevant:
return "No relevant documents found in the documents. Please ask a relevant question to the book on Machine Learning."
# Formulate the prompt, incorporating conversation history if present
conversation_history = f'Conversation:\n{history_str}\n' if conv_history else ''
prompt = f"Based on the following documents{' and conversation history' if conv_history else ''}, answer the query:\nDocuments:\n{context_texts}\n{conversation_history}Query: {query}\nAnswer:"
if mode == "chatty":
prompt += " Please provide a detailed and comprehensive response that includes background information, relevant examples, and any important distinctions or perspectives related to the topic. Where possible, include step-by-step explanations or descriptions to ensure clarity and depth in your answer."
# Configure max_tokens and temperature based on the specified mode
# a longer response
max_tokens = 3500 if mode == "chatty" else 1000
temperature = 0.9 if mode == "chatty" else 0.5
# generate the response
client = OpenAI(api_key=openai.api_key)
message = {"role": "user", "content": prompt}
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages=[message],
max_tokens=max_tokens,
temperature=temperature,
stop=["\n", "Query:"]
)
return response.choices[0].message.content
|