import openai from openai import OpenAI class Answering_Agent: def __init__(self, openai_api_key) -> None: self.openai_client = openai openai.api_key = openai_api_key def get_document_content(self, doc_id): # Placeholder for retrieving document content return "Document content for ID " + doc_id def is_relevant(self, query, context_texts, history_str): # Define a list of common stop words stop_words = set([ "the", "what", "is", "are", "in", "of", "on", "for", "and", "a", "to", "an", "by", "as", "at", "about", "above", "after", "again", "against", "all", "am", "an", "any", "aren't", "as", "at", "be", "because", "been", "before", "being", "below", "between", "both", "but", "by", "could", "couldn't", "did", "didn't", "do", "does", "doesn't", "doing", "don't", "down", "during", "each", "few", "for", "from", "further", "had", "hadn't", "has", "hasn't", "have", "haven't", "having", "he", "he'd", "he'll", "he's", "her", "here", "here's", "hers", "herself", "him", "himself", "his", "how", "how's", "i", "i'd", "i'll", "i'm", "i've", "if", "in", "into", "is", "isn't", "it", "it's", "its", "itself", "let's", "me", "more", "most", "mustn't", "my", "myself", "no", "nor", "not", "of", "off", "on", "once", "only", "or", "other", "ought", "our", "ours", "ourselves", "out", "over", "own", "same", "shan't", "she", "she'd", "she'll", "she's", "should", "shouldn't", "so", "some", "such", "than", "that", "that's", "the", "their", "theirs", "them", "themselves", "then", "there", "there's", "these", "they", "they'd", "they'll", "they're", "they've", "this", "those", "through", "to", "too", "under", "until", "up", "very", "was", "wasn't", "we", "we'd", "we'll", "we're", "we've", "were", "weren't", "what", "what's", "when", "when's", "where", "where's", "which", "while", "who", "who's", "whom", "why", "why's", "with", "won't", "would", "wouldn't", "you", "you'd", "you'll", "you're", "you've", "your", "yours", "yourself", "yourselves" ]) # Filter out stop words and split query into keywords keywords = [word for word in query.lower().split() if word not in stop_words] context = context_texts.lower() return any(keyword in context for keyword in keywords) def generate_response(self, query, docs, conv_history, k=5, mode="chatty"): # Concatenate the contents of the top k relevant documents context_texts = "\n\n".join([f"Context {idx + 1}: {result[2]}" for idx, result in enumerate(docs)]) history_str = "\n".join([f"{turn['role']}: {turn['content']}" for turn in conv_history]) if conv_history else "" print("context_texts: " + context_texts) # Check relevance of the context and history to the query relevant = self.is_relevant(query, context_texts, history_str) # If not relevant, return a predefined message if not relevant: return "No relevant documents found in the documents. Please ask a relevant question to the book on Machine Learning." # Formulate the prompt, incorporating conversation history if present conversation_history = f'Conversation:\n{history_str}\n' if conv_history else '' prompt = f"Based on the following documents{' and conversation history' if conv_history else ''}, answer the query:\nDocuments:\n{context_texts}\n{conversation_history}Query: {query}\nAnswer:" if mode == "chatty": prompt += " Please provide a detailed and comprehensive response that includes background information, relevant examples, and any important distinctions or perspectives related to the topic. Where possible, include step-by-step explanations or descriptions to ensure clarity and depth in your answer." # Configure max_tokens and temperature based on the specified mode # a longer response max_tokens = 3500 if mode == "chatty" else 1000 temperature = 0.9 if mode == "chatty" else 0.5 # generate the response client = OpenAI(api_key=openai.api_key) message = {"role": "user", "content": prompt} response = client.chat.completions.create( model="gpt-3.5-turbo", messages=[message], max_tokens=max_tokens, temperature=temperature, stop=["\n", "Query:"] ) return response.choices[0].message.content