File size: 11,061 Bytes
2913b41
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
"""
In this code block, you can develop a class for Embeddings -
That can fetch embeddings of different kinds for the purpose of "Semantic Search"
"""

from sentence_transformers import SentenceTransformer
import numpy as np
import pickle

import numpy.linalg as la


class Embeddings:

    def __init__(self):
        """
        Initialize the class
        """
        self.glove_embedding_dimension = 50

    def download_glove_embeddings(self):
        """
        Download glove embeddings from web or from your gdrive if in optimized format
        """
        # use data from gdrive
        embeddings_temp = "/content/drive/MyDrive/LLM596/embeddings_50d_temp.npy"

        word_index_temp = "/content/drive/MyDrive/LLM596/word_index_dict_50d_temp.pkl"

    def load_glove_embeddings(self, embedding_dimension):
        # load data
        word_index_temp = "word_index_dict_50d_temp.pkl"
        embeddings_temp = "embeddings_50d_temp.npy"

        # Load word index dictionary
        word_index_dict = pickle.load(open(word_index_temp, "rb"), encoding="latin")

        # Load embeddings numpy
        embeddings = np.load(embeddings_temp)

        return word_index_dict, embeddings

    def get_glove_embedding(self, word, word_index_dict, embeddings):
        """
        Retrieve GloVe embedding of a specific dimension
        """
        word = word.lower()
        if word in word_index_dict:
            return embeddings[word_index_dict[word]]
        else:
            return np.zeros(self.glove_embedding_dimension)

    def embeddings_before_answer(self, word_index_dict, positive_words, negative_words, embeddings):
        new_embedding = np.zeros(self.glove_embedding_dimension)

        #  for negative words
        for word in negative_words:
            new_embedding -= self.get_glove_embedding(word, word_index_dict, embeddings)

        # for positive words
        for word in positive_words:
            new_embedding += self.get_glove_embedding(word, word_index_dict, embeddings)

        return new_embedding

    def get_sentence_transformer_embedding(self, sentence, transformer_name="all-MiniLM-L6-v2"):
        """
        Encode a sentence using sentence transformer and return embedding
        """

        sentenceTransformer = SentenceTransformer(transformer_name)

        return sentenceTransformer.encode(sentence)

    def get_averaged_glove_embeddings(self, sentence, embeddings_dict):
        words = sentence.split(" ")
        # Initialize an array of zeros for the embedding
        glove_embedding = np.zeros(embeddings_dict['embeddings'].shape[1])

        count_words = 0
        for word in words:
            word = word.lower()  # Convert to lowercase to match the embeddings dictionary
            if word in embeddings_dict['word_index']:
                # Sum up embeddings for each word
                glove_embedding += embeddings_dict['embeddings'][embeddings_dict['word_index'][word]]
                count_words += 1

        if count_words > 0:
            # Average the embeddings
            glove_embedding /= count_words

        return glove_embedding


class Search:

    def __init__(self, embeddings_model):
        self.embeddings_model = embeddings_model

    def cosine_similarity(self, x, y):

        return np.dot(x, y) / max(la.norm(x) * la.norm(y), 1e-3)

    def normalize_func(self, vector):
        norm = np.linalg.norm(vector)
        if norm == 0:
            return vector
        return vector / norm

    def find_closest_words(self, current_embedding, answer_list, word_index_dict, embeddings):
        """
        Find the closest word to the target embedding from a list of answer_list
        """
        highest_similarity = -50
        closest_answer = None

        for choice in answer_list:
            choice_embedding = self.embeddings_model.get_glove_embedding(choice, word_index_dict, embeddings)
            similarity = self.cosine_similarity(current_embedding, choice_embedding)
            if similarity > highest_similarity:
                highest_similarity = similarity
                closest_answer = choice

        return closest_answer

    def find_word_as(self, current_relation, target_word, answer_list, word_index_dict, embeddings):

        base_vector_a = self.embeddings_model.get_glove_embedding(current_relation[0], word_index_dict, embeddings)
        base_vector_b = self.embeddings_model.get_glove_embedding(current_relation[1], word_index_dict, embeddings)
        target_vector = self.embeddings_model.get_glove_embedding(target_word, word_index_dict, embeddings)

        ref_difference = self.normalize_func(base_vector_b - base_vector_a)

        answer = None
        highest_similarity = -50

        for choice in answer_list:
            choice_vector = self.embeddings_model.get_glove_embedding(choice, word_index_dict, embeddings)
            choice_difference = self.normalize_func(choice_vector - target_vector)
            similarity = self.cosine_similarity(ref_difference, choice_difference)
            if similarity > highest_similarity:
                highest_similarity = similarity
                answer = choice

        return answer

    def find_similarity_scores(self, current_embedding, choices, word_index_dict, embeddings):

        similarity_scores = {}

        for choice in choices:
            choice_embedding = self.embeddings_model.get_glove_embedding(choice, word_index_dict, embeddings)
            similarity = self.cosine_similarity(current_embedding, choice_embedding)
            similarity_scores[choice] = similarity

        return similarity_scores

    def get_topK_similar_categories(self, sentence, categories, top_k=10):
        """
        Return the most similar categories to a given sentence -
        This is a baseline implementation of a semantic search engine
        """

        # Implement your code here
        sentence_embedding = self.embeddings_model.get_sentence_transformer_embedding(sentence)

        similarities = {}
        for category, category_embedding in categories.items():
            similarity = self.cosine_similarity(sentence_embedding, category_embedding)
            similarities[category] = similarity
            # print(similarity)

        # sorted_categories ={}
        # sorted_categories = sorted(similarities, key=lambda x: x[1], reverse=True)

        sorted_cosine_sim = dict(sorted(similarities.items(), key=lambda item: item[1], reverse=True))

        # Return top K categories
        return sorted_cosine_sim


def plot_alatirchart(sorted_cosine_scores_models):
    models = list(sorted_cosine_scores_models.keys())
    tabs = st.tabs(models)
    figs = {}
    for model in models:
        # modified
        figs[model] = plot_piechart_helper(sorted_cosine_scores_models[model])

    for index in range(len(tabs)):
        with tabs[index]:
            st.pyplot(figs[models[index]])


import matplotlib.pyplot as plt


def plot_pie_chart(category_simiarity_scores):
    categories = list(category_simiarity_scores.keys())
    cur_similarities = list(category_simiarity_scores.values())

    similarities = [similar / sum(cur_similarities) for similar in cur_similarities]

    fig, ax = plt.subplots()
    ax.pie(similarities, labels=categories,
           autopct="%1.1f%%",
           startangle=90)
    ax.axis('equal')
    plt.show()


def plot_piechart_helper(sorted_cosine_scores_items):
    sorted_cosine_scores = np.array(list(sorted_cosine_scores_items.values()))
    categories_sorted = list(sorted_cosine_scores_items.keys())

    fig, ax = plt.subplots(figsize=(3, 3))
    my_explode = np.zeros(len(categories_sorted))
    my_explode[0] = 0.2
    if len(categories_sorted) == 3:
        my_explode[1] = 0.1
    elif len(categories_sorted) > 3:
        my_explode[2] = 0.05

    ax.pie(
        sorted_cosine_scores,
        labels=categories_sorted,
        autopct="%1.1f%%",
        explode=my_explode,
    )

    return fig


import streamlit as st

### Text Search ###
st.sidebar.title("GloVe Twitter")
st.sidebar.markdown(
    """
GloVe is an unsupervised learning algorithm for obtaining vector representations for words. Pretrained on
2 billion tweets with vocabulary size of 1.2 million. Download from [Stanford NLP](http://nlp.stanford.edu/data/glove.twitter.27B.zip).

Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. *GloVe: Global Vectors for Word Representation*.
"""
)

if 'categories' not in st.session_state:
    st.session_state['categories'] = "Flowers Colors Cars Weather Food"
if 'text_search' not in st.session_state:
    st.session_state['text_search'] = "Roses are red, trucks are blue, and Seattle is grey right now"

embeddings_model = Embeddings()

model_type = st.sidebar.selectbox("Choose the model", ("25d", "50d"), index=1)

st.title("Demo in in-class coding")
st.subheader(
    "Pass in space separated categories you want this search demo to be about."
)

# categories of user input
user_categories = st.text_input(
    label="Categories", value=st.session_state.categories
)

st.session_state.categories = user_categories.split(" ")

print(st.session_state.get("categories"))

print(type(st.session_state.get("categories")))

st.subheader("Pass in an input word or even a sentence")
user_text_search = st.text_input(
    label="Input your sentence",
    value=st.session_state.text_search,
)

st.session_state.text_search = user_text_search

# Load glove embeddings
word_index_dict, embeddings = embeddings_model.load_glove_embeddings(model_type)

category_embeddings = {category: embeddings_model.get_sentence_transformer_embedding(category) for category in
                       st.session_state.categories}

search_using_cos = Search(embeddings_model)

# Find closest word to an input word
if st.session_state.text_search:
    # sentence transformer embeddings
    print("sentence transformer  Embedding")
    embeddings_metadata = {
        "word_index_dict": word_index_dict,
        "embeddings": embeddings,
        "model_type": model_type,
        "text_search": st.session_state.text_search
    }
    with st.spinner("Obtaining Cosine similarity for Glove..."):
        sorted_cosine_sim_transformer = search_using_cos.get_topK_similar_categories(
            st.session_state.text_search, category_embeddings
        )

    # Results and Plot Pie Chart for Glove
    print("Categories are: ", st.session_state.categories)
    st.subheader(
        "Closest word I have between: "
        + " ".join(st.session_state.categories)
        + " as per different Embeddings"
    )

    # print(sorted_cosine_sim_glove)
    print(sorted_cosine_sim_transformer)
    print(list(sorted_cosine_sim_transformer.keys())[0])

    st.write(
        f"Closest category using sentence transformer embeddings : {list(sorted_cosine_sim_transformer.keys())[0]}")

    plot_alatirchart(
        {
            "sentence_transformer_384": sorted_cosine_sim_transformer,
        }
    )

    st.write("")
    st.write(
        "Demo developed by Kechen Liu"
    )