Spaces:
Sleeping
Sleeping
""" | |
In this code block, you can develop a class for Embeddings - | |
That can fetch embeddings of different kinds for the purpose of "Semantic Search" | |
""" | |
from sentence_transformers import SentenceTransformer | |
import numpy as np | |
import pickle | |
import numpy.linalg as la | |
class Embeddings: | |
def __init__(self): | |
""" | |
Initialize the class | |
""" | |
self.glove_embedding_dimension = 50 | |
def download_glove_embeddings(self): | |
""" | |
Download glove embeddings from web or from your gdrive if in optimized format | |
""" | |
# use data from gdrive | |
embeddings_temp = "/content/drive/MyDrive/LLM596/embeddings_50d_temp.npy" | |
word_index_temp = "/content/drive/MyDrive/LLM596/word_index_dict_50d_temp.pkl" | |
def load_glove_embeddings(self, embedding_dimension): | |
# load data | |
word_index_temp = "word_index_dict_50d_temp.pkl" | |
embeddings_temp = "embeddings_50d_temp.npy" | |
# Load word index dictionary | |
word_index_dict = pickle.load(open(word_index_temp, "rb"), encoding="latin") | |
# Load embeddings numpy | |
embeddings = np.load(embeddings_temp) | |
return word_index_dict, embeddings | |
def get_glove_embedding(self, word, word_index_dict, embeddings): | |
""" | |
Retrieve GloVe embedding of a specific dimension | |
""" | |
word = word.lower() | |
if word in word_index_dict: | |
return embeddings[word_index_dict[word]] | |
else: | |
return np.zeros(self.glove_embedding_dimension) | |
def embeddings_before_answer(self, word_index_dict, positive_words, negative_words, embeddings): | |
new_embedding = np.zeros(self.glove_embedding_dimension) | |
# for negative words | |
for word in negative_words: | |
new_embedding -= self.get_glove_embedding(word, word_index_dict, embeddings) | |
# for positive words | |
for word in positive_words: | |
new_embedding += self.get_glove_embedding(word, word_index_dict, embeddings) | |
return new_embedding | |
def get_sentence_transformer_embedding(self, sentence, transformer_name="all-MiniLM-L6-v2"): | |
""" | |
Encode a sentence using sentence transformer and return embedding | |
""" | |
sentenceTransformer = SentenceTransformer(transformer_name) | |
return sentenceTransformer.encode(sentence) | |
def get_averaged_glove_embeddings(self, sentence, embeddings_dict): | |
words = sentence.split(" ") | |
# Initialize an array of zeros for the embedding | |
glove_embedding = np.zeros(embeddings_dict['embeddings'].shape[1]) | |
count_words = 0 | |
for word in words: | |
word = word.lower() # Convert to lowercase to match the embeddings dictionary | |
if word in embeddings_dict['word_index']: | |
# Sum up embeddings for each word | |
glove_embedding += embeddings_dict['embeddings'][embeddings_dict['word_index'][word]] | |
count_words += 1 | |
if count_words > 0: | |
# Average the embeddings | |
glove_embedding /= count_words | |
return glove_embedding | |
class Search: | |
def __init__(self, embeddings_model): | |
self.embeddings_model = embeddings_model | |
def cosine_similarity(self, x, y): | |
return np.dot(x, y) / max(la.norm(x) * la.norm(y), 1e-3) | |
def normalize_func(self, vector): | |
norm = np.linalg.norm(vector) | |
if norm == 0: | |
return vector | |
return vector / norm | |
def find_closest_words(self, current_embedding, answer_list, word_index_dict, embeddings): | |
""" | |
Find the closest word to the target embedding from a list of answer_list | |
""" | |
highest_similarity = -50 | |
closest_answer = None | |
for choice in answer_list: | |
choice_embedding = self.embeddings_model.get_glove_embedding(choice, word_index_dict, embeddings) | |
similarity = self.cosine_similarity(current_embedding, choice_embedding) | |
if similarity > highest_similarity: | |
highest_similarity = similarity | |
closest_answer = choice | |
return closest_answer | |
def find_word_as(self, current_relation, target_word, answer_list, word_index_dict, embeddings): | |
base_vector_a = self.embeddings_model.get_glove_embedding(current_relation[0], word_index_dict, embeddings) | |
base_vector_b = self.embeddings_model.get_glove_embedding(current_relation[1], word_index_dict, embeddings) | |
target_vector = self.embeddings_model.get_glove_embedding(target_word, word_index_dict, embeddings) | |
ref_difference = self.normalize_func(base_vector_b - base_vector_a) | |
answer = None | |
highest_similarity = -50 | |
for choice in answer_list: | |
choice_vector = self.embeddings_model.get_glove_embedding(choice, word_index_dict, embeddings) | |
choice_difference = self.normalize_func(choice_vector - target_vector) | |
similarity = self.cosine_similarity(ref_difference, choice_difference) | |
if similarity > highest_similarity: | |
highest_similarity = similarity | |
answer = choice | |
return answer | |
def find_similarity_scores(self, current_embedding, choices, word_index_dict, embeddings): | |
similarity_scores = {} | |
for choice in choices: | |
choice_embedding = self.embeddings_model.get_glove_embedding(choice, word_index_dict, embeddings) | |
similarity = self.cosine_similarity(current_embedding, choice_embedding) | |
similarity_scores[choice] = similarity | |
return similarity_scores | |
def get_topK_similar_categories(self, sentence, categories, top_k=10): | |
""" | |
Return the most similar categories to a given sentence - | |
This is a baseline implementation of a semantic search engine | |
""" | |
# Implement your code here | |
sentence_embedding = self.embeddings_model.get_sentence_transformer_embedding(sentence) | |
similarities = {} | |
for category, category_embedding in categories.items(): | |
similarity = self.cosine_similarity(sentence_embedding, category_embedding) | |
similarities[category] = similarity | |
# print(similarity) | |
# sorted_categories ={} | |
# sorted_categories = sorted(similarities, key=lambda x: x[1], reverse=True) | |
sorted_cosine_sim = dict(sorted(similarities.items(), key=lambda item: item[1], reverse=True)) | |
# Return top K categories | |
return sorted_cosine_sim | |
def plot_alatirchart(sorted_cosine_scores_models): | |
models = list(sorted_cosine_scores_models.keys()) | |
tabs = st.tabs(models) | |
figs = {} | |
for model in models: | |
# modified | |
figs[model] = plot_piechart_helper(sorted_cosine_scores_models[model]) | |
for index in range(len(tabs)): | |
with tabs[index]: | |
st.pyplot(figs[models[index]]) | |
import matplotlib.pyplot as plt | |
def plot_pie_chart(category_simiarity_scores): | |
categories = list(category_simiarity_scores.keys()) | |
cur_similarities = list(category_simiarity_scores.values()) | |
similarities = [similar / sum(cur_similarities) for similar in cur_similarities] | |
fig, ax = plt.subplots() | |
ax.pie(similarities, labels=categories, | |
autopct="%1.1f%%", | |
startangle=90) | |
ax.axis('equal') | |
plt.show() | |
def plot_piechart_helper(sorted_cosine_scores_items): | |
sorted_cosine_scores = np.array(list(sorted_cosine_scores_items.values())) | |
categories_sorted = list(sorted_cosine_scores_items.keys()) | |
fig, ax = plt.subplots(figsize=(3, 3)) | |
my_explode = np.zeros(len(categories_sorted)) | |
my_explode[0] = 0.2 | |
if len(categories_sorted) == 3: | |
my_explode[1] = 0.1 | |
elif len(categories_sorted) > 3: | |
my_explode[2] = 0.05 | |
ax.pie( | |
sorted_cosine_scores, | |
labels=categories_sorted, | |
autopct="%1.1f%%", | |
explode=my_explode, | |
) | |
return fig | |
import streamlit as st | |
### Text Search ### | |
st.sidebar.title("GloVe Twitter") | |
st.sidebar.markdown( | |
""" | |
GloVe is an unsupervised learning algorithm for obtaining vector representations for words. Pretrained on | |
2 billion tweets with vocabulary size of 1.2 million. Download from [Stanford NLP](http://nlp.stanford.edu/data/glove.twitter.27B.zip). | |
Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. *GloVe: Global Vectors for Word Representation*. | |
""" | |
) | |
if 'categories' not in st.session_state: | |
st.session_state['categories'] = "Flowers Colors Cars Weather Food" | |
if 'text_search' not in st.session_state: | |
st.session_state['text_search'] = "Roses are red, trucks are blue, and Seattle is grey right now" | |
embeddings_model = Embeddings() | |
model_type = st.sidebar.selectbox("Choose the model", ("25d", "50d"), index=1) | |
st.title("Demo in in-class coding") | |
st.subheader( | |
"Pass in space separated categories you want this search demo to be about." | |
) | |
# categories of user input | |
user_categories = st.text_input( | |
label="Categories", value=st.session_state.categories | |
) | |
st.session_state.categories = user_categories.split(" ") | |
print(st.session_state.get("categories")) | |
print(type(st.session_state.get("categories"))) | |
st.subheader("Pass in an input word or even a sentence") | |
user_text_search = st.text_input( | |
label="Input your sentence", | |
value=st.session_state.text_search, | |
) | |
st.session_state.text_search = user_text_search | |
# Load glove embeddings | |
word_index_dict, embeddings = embeddings_model.load_glove_embeddings(model_type) | |
category_embeddings = {category: embeddings_model.get_sentence_transformer_embedding(category) for category in | |
st.session_state.categories} | |
search_using_cos = Search(embeddings_model) | |
# Find closest word to an input word | |
if st.session_state.text_search: | |
# sentence transformer embeddings | |
print("sentence transformer Embedding") | |
embeddings_metadata = { | |
"word_index_dict": word_index_dict, | |
"embeddings": embeddings, | |
"model_type": model_type, | |
"text_search": st.session_state.text_search | |
} | |
with st.spinner("Obtaining Cosine similarity for Glove..."): | |
sorted_cosine_sim_transformer = search_using_cos.get_topK_similar_categories( | |
st.session_state.text_search, category_embeddings | |
) | |
# Results and Plot Pie Chart for Glove | |
print("Categories are: ", st.session_state.categories) | |
st.subheader( | |
"Closest word I have between: " | |
+ " ".join(st.session_state.categories) | |
+ " as per different Embeddings" | |
) | |
# print(sorted_cosine_sim_glove) | |
print(sorted_cosine_sim_transformer) | |
print(list(sorted_cosine_sim_transformer.keys())[0]) | |
st.write( | |
f"Closest category using sentence transformer embeddings : {list(sorted_cosine_sim_transformer.keys())[0]}") | |
plot_alatirchart( | |
{ | |
"sentence_transformer_384": sorted_cosine_sim_transformer, | |
} | |
) | |
st.write("") | |
st.write( | |
"Demo developed by Kechen Liu" | |
) | |