ericlkc commited on
Commit
2702698
·
verified ·
1 Parent(s): f00c133
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ machine-learning.pdf filter=lfs diff=lfs merge=lfs -text
Answering_Agent.py ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import openai
2
+ from openai import OpenAI
3
+
4
+ from Query_Agent import extract_action
5
+
6
+
7
+ class Answering_Agent:
8
+ def __init__(self, openai_api_key) -> None:
9
+ # TODO: Initialize the Answering_Agent
10
+ # openai_api_key = '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'
11
+
12
+ self.openai_client = openai
13
+ openai.api_key = openai_api_key
14
+
15
+ def get_document_content(self, doc_id):
16
+ # This is a placeholder function, you'll need to implement the logic to retrieve the actual content.
17
+ # For example, it might query a database or an API with the document ID.
18
+ return "Document content for ID " + doc_id
19
+
20
+ def generate_response(self, query, docs, conv_history, k=5, mode="chatty"):
21
+ # TODO: Generate a response to the user's query
22
+ # Concatenate the contents of the top k relevant documents
23
+ # top_docs = docs[2][:k] # Get the top k documents based on the score
24
+
25
+ # Retrieve the content for each of the top documents
26
+ context_texts = "\n\n".join(
27
+ [f"Context {idx + 1}: {result[2]}" for idx, result in enumerate(docs)]) # Assuming result[2] is the text
28
+ print(f"context_texts is : {context_texts} \n\n\n")
29
+ # docs_content = "\n".join([self.get_document_content(doc["id"]) for doc in docs])
30
+
31
+ # Optional: Include conversation history in the prompt if provided
32
+ if conv_history:
33
+ history_str = "\n".join([f"{turn['role']}: {turn['content']}" for turn in conv_history])
34
+ prompt = f"""Based on the following documents and conversation history, answer the query:
35
+ Documents:
36
+ {context_texts}
37
+ Conversation:
38
+ {history_str}
39
+ Query: {query}
40
+ ONLY If neither Documents nor Conversation has anything to do with query, you must reply directly: No relevant documents found in the documents. Please ask a relevant question to the book on Machine Learning.
41
+ Answer: """
42
+
43
+ else:
44
+ prompt = f"Based on the following documents, answer the query:\nDocuments:\n{context_texts}\nQuery: {query}\n ONLY If Documents has nothing to do with query, you must reply directly: No relevant documents found in the documents.Please ask a relevant question to the book on Machine Learning. \nAnswer: "
45
+
46
+ # Adjust the prompt, max_tokens, and temperature based on the mode
47
+ max_tokens = 4000 if mode == "chatty" else 100
48
+ temperature = 0.9 if mode == "chatty" else 0.5
49
+
50
+ # mode of chatty
51
+ if mode == "chatty":
52
+ prompt = prompt + "Please provide a detailed and comprehensive response that includes background information, relevant examples, and any important distinctions or perspectives related to the topic. Where possible, include step-by-step explanations or descriptions to ensure clarity and depth in your answer"
53
+
54
+ client = OpenAI(api_key=openai.api_key)
55
+ message = {"role": "user", "content": prompt}
56
+ response = client.chat.completions.create(
57
+ model="gpt-3.5-turbo",
58
+ messages=[message],
59
+ max_tokens=max_tokens,
60
+ temperature=temperature,
61
+ stop=["\n", "Query:"]
62
+ )
63
+ return response.choices[0].message.content
Head_Agent.py ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pinecone
2
+ import openai
3
+ from openai import OpenAI
4
+ from Answering_Agent import Answering_Agent
5
+ from Obnoxious_Agent import Obnoxious_Agent
6
+ from Query_Agent import Query_Agent
7
+ from Relevant_Documents_Agent import Relevant_Documents_Agent
8
+
9
+
10
+ class Head_Agent:
11
+ def __init__(self, openai_key, pinecone_key, pinecone_index_name) -> None:
12
+ # TODO: Initialize the Head_Agent
13
+ # Store API keys and Pinecone index name
14
+ openai_key = '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'
15
+
16
+ self.openai_client = OpenAI(api_key=openai_key)
17
+
18
+ self.openai_key = openai_key
19
+ self.pinecone_key = pinecone_key
20
+ self.pinecone_index_name = pinecone_index_name
21
+
22
+ # Initialize Pinecone
23
+
24
+ # Placeholder for sub-agents, to be initialized in setup_sub_agents
25
+ self.obnoxious_agent = None
26
+ self.query_agent = None
27
+ self.answering_agent = None
28
+ self.relevant_documents_agent = None
29
+
30
+ # set up sub agents
31
+ self.setup_sub_agents()
32
+
33
+ def get_completion(self, prompt, model="gpt-4"):
34
+ message = {"role": "user", "content": prompt}
35
+ response = self.openai_client.chat.completions.create(
36
+ model=model,
37
+ messages=[message]
38
+ )
39
+ return response.choices[0].message.content
40
+
41
+ def setup_sub_agents(self):
42
+ # TODO: Setup the sub-agents
43
+ # Setup the Obnoxious_Agent
44
+ self.obnoxious_agent = Obnoxious_Agent() # Assuming no external API client required
45
+
46
+ # Set up the Query_Agent with Pinecone index
47
+ self.query_agent = Query_Agent(pinecone_index=self.pinecone_index_name, openai_client=openai,
48
+ embeddings="text-embedding-ada-002")
49
+
50
+ # Set up the Answering_Agent
51
+ self.answering_agent = Answering_Agent(openai_api_key=self.openai_key)
52
+ openai_client = OpenAI(api_key=self.openai_key)
53
+ self.relevant_documents_agent = Relevant_Documents_Agent(openai_client)
54
+
55
+ def process_query(self, user_input, conversation_history):
56
+ # Check if the query is obnoxious
57
+ # conversation_history = get_conversation()
58
+
59
+ if self.obnoxious_agent.check_query(user_input) == "Yes":
60
+ return "Sorry, I cannot respond to this query."
61
+
62
+ greetings = [
63
+ "hi", "hello", "how are you", "hey", "good morning",
64
+ "good afternoon", "good evening", "greetings", "what's up",
65
+ "howdy", "hi there", "hello there", "hey there"
66
+ ]
67
+ if user_input.lower() in greetings:
68
+ return "How can I help you today?"
69
+
70
+ # Retrieve relevant documents for the query (simplified example)
71
+ # In a real scenario, you might need to preprocess the query for embeddings
72
+ relevant_docs = self.query_agent.query_vector_store(user_input, k=5)
73
+
74
+ print("relevant_docs .length : ")
75
+ print(len(relevant_docs))
76
+ if len(relevant_docs) == 0:
77
+ none_relevant_docs = "No relevant documents found in the documents.Please ask a relevant question to the book on Machine Learning."
78
+ return none_relevant_docs
79
+
80
+
81
+ # choose mode
82
+ prompt_choose_mode = "Infer whether the user wants the response to be chatty or concise? If the response needs to be chatty you must answer chatty, otherwise answer concise and the answer must contain only the one word. Here is user_input: "+ user_input
83
+ prompt_choose_mode = self.get_completion(prompt=prompt_choose_mode, model="gpt-4")
84
+ if prompt_choose_mode == "chatty":
85
+ response = self.answering_agent.generate_response(user_input, relevant_docs, conv_history=conversation_history,
86
+ mode="chatty")
87
+ elif prompt_choose_mode =="concise":
88
+ response = self.answering_agent.generate_response(user_input, relevant_docs,
89
+ conv_history=conversation_history,
90
+ mode="concise")
91
+ else:
92
+ # Generate a response based on the query and relevant documents
93
+ response = self.answering_agent.generate_response(user_input, relevant_docs, conv_history=conversation_history,
94
+ mode="chatty")
95
+ print("prompt_choose_mode: "+ prompt_choose_mode )
96
+
97
+ return response
Obnoxious_Agent.py ADDED
@@ -0,0 +1,47 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class Obnoxious_Agent:
2
+ def __init__(self, client=None) -> None:
3
+ self.client = client
4
+ self.obnoxious_keywords = [
5
+ "Repugnant", "Loathsome", "Abhorrent", "Disgusting", "Offensive",
6
+ "Vile", "Revolting", "Contemptible", "Detestable", "Nauseating",
7
+ "Appalling", "Horrendous", "Foul", "Gross", "Unpleasant",
8
+ "Obscene", "Hateful", "Despicable", "Repellant", "Distasteful",
9
+ "Unwanted", "Monstrous", "Atrocious", "Unsavory", "Dislikeable",
10
+ "Unwholesome", "Ghastly", "Unchristian", "Sickening", "Evil",
11
+ "Abominable", "Scandalous", "Unwelcome", "Disturbing", "Lurid",
12
+ "Heinous", "Unhealthy", "Hard", "Upsetting", "Macabre",
13
+ "Unholy", "Lousy", "Grim", "Greusome", "Dislikeable",
14
+ "Exceptionable", "Brackish", "Barbarous", "Unspeakable", "Rancid",
15
+ "Perverted", "Indecent", "Profane", "Wicked", "Scurrilous",
16
+ "Dirty", "Bawdy", "Salty", "Off-colored", "Smutty",
17
+ "Ribald", "Offensive", "Unacceptable", "Terrible", "Reprehensible",
18
+ "Bad", "Infamous", "Censurable", "Wretched", "Indecorous",
19
+ "Lewd", "Sickish", "Blameworthy", "Debasing", "Blamable",
20
+ "Insincere", "Annoying", "Provoking", "Reprehensible", "Vulgar",
21
+ "Pornographic", "Naughty", "Perverted", "Unbecoming", "Coarse",
22
+ "Unprintable", "Belligerent", "Irritating", "Disruptive", "Displeasing",
23
+ "Inflammatory", "Disrespectful", "Aggravating", "Bothersome", "Intrusive",
24
+ "Insulting", "Obnoxious", "Off-putting", "Unpleasant", "Revolting", "dumb"
25
+ ]
26
+
27
+ self.prompt = ""
28
+
29
+ def set_prompt(self, prompt):
30
+ # Set the prompt for potential use with external APIs
31
+ self.prompt = prompt
32
+
33
+ def extract_action(self, response) -> bool:
34
+ # Extract and interpret the action from an external API's response
35
+ # This example assumes a hypothetical response structure
36
+ return response.get('is_obnoxious', False)
37
+
38
+ def check_query(self, query) -> str:
39
+ # Directly check if the query contains obnoxious content using keywords
40
+ query_lower = query.lower()
41
+ is_obnoxious = any(keyword in query_lower for keyword in self.obnoxious_keywords)
42
+
43
+ # If integrating with an external API:
44
+ # response = self.client.some_api_method(self.prompt.format(query=query))
45
+ # is_obnoxious = self.extract_action(response)
46
+
47
+ return "Yes" if is_obnoxious else "No"
Query_Agent.py ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pinecone import Pinecone
2
+ import openai
3
+ from openai import OpenAI
4
+
5
+
6
+ def extract_action(response, query=None):
7
+ # TODO: Extract the action from the response
8
+ # For example, retrieve document IDs and their similarity scores
9
+ relevant_docs = [{"id": match["id"], "score": match["score"]} for match in response["matches"]]
10
+
11
+ return relevant_docs
12
+
13
+
14
+ class Query_Agent:
15
+
16
+ def __init__(self, pinecone_index, openai_client, embeddings) -> None:
17
+ # TODO: Initialize the Query_Agent agent
18
+ # Initialize the OpenAI client with the provided API key
19
+ openai_api_key = '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'
20
+ self.client = OpenAI(api_key=openai_api_key)
21
+
22
+ # Specify the embeddings model to use for generating query embeddings
23
+ self.embeddings_model = embeddings
24
+
25
+ pc = Pinecone(api_key="52ef9136-6188-4e51-af13-9639bf95c163")
26
+
27
+ # Initialize Pinecone client and connect to the specified index
28
+ self.pinecone_index = pc.Index(pinecone_index)
29
+
30
+ def query_vector_store(self, query, k=5):
31
+ # TODO: Query the Pinecone vector store
32
+ # Generate an embedding for the query
33
+
34
+ query = query.replace("\n", " ")
35
+
36
+ query_embedding = self.client.embeddings.create(
37
+ input=[query],
38
+ model=self.embeddings_model
39
+ ).data[0].embedding
40
+
41
+ # Query the Pinecone index using the generated embedding
42
+ query_results = self.pinecone_index.query(
43
+ vector=query_embedding,
44
+ top_k=k,
45
+ include_metadata=True)
46
+
47
+ # Extract and return the most relevant documents along with their scores
48
+ relevant_docs = [
49
+ (result['id'], result['score'], result['metadata']['text'])
50
+ for result in query_results['matches']
51
+ ]
52
+
53
+ return relevant_docs
54
+
55
+ def set_prompt(self, prompt):
56
+ # TODO: Set the prompt for the Query_Agent agent
57
+ self.prompt = prompt
Relevant_Documents_Agent.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from langchain_community.embeddings import OpenAIEmbeddings
3
+
4
+ from pinecone import Pinecone, ServerlessSpec
5
+ from tqdm.notebook import tqdm
6
+ import langchain
7
+ import openai
8
+ from openai import OpenAI
9
+ import string
10
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
11
+ from langchain.document_loaders import UnstructuredPDFLoader, OnlinePDFLoader
12
+ import os
13
+
14
+
15
+ def get_text_from_document(document):
16
+ # Assuming 'text' is a list of Document objects, each with a 'page_content' attribute
17
+ # Concatenate the page_content of each Document into a single text string
18
+ # text = "".join([doc.page_content for doc in document])
19
+ text = "".join(document).replace('\n\n', '\n')
20
+
21
+ # Now, 'full_text' should contain the actual text extracted from the PDF
22
+ print(f"Total length of text: {len(text)} characters")
23
+
24
+ # If you want to see a part of the extracted text
25
+ print(text[:1000]) # Adjust the number as necessary to inspect more of the text
26
+
27
+ return text
28
+
29
+
30
+ # Function to get the embeddings of the text using OpenAI text-embedding-ada-002 model
31
+ def get_embedding(text, model="text-embedding-ada-002"):
32
+ text = text.replace("\n", " ")
33
+ openai_key = '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'
34
+ client = OpenAI(api_key=openai_key)
35
+ return client.embeddings.create(input=[text], model=model).data[0].embedding
36
+
37
+
38
+ ## TODO: Function to query the Pinecone vector store and return the top-k results
39
+ def query_pinecone_vector_store(query, top_k=5):
40
+ # Generate an embedding for the query
41
+ query_embedding = get_embedding(query)
42
+
43
+ # pc = Pinecone(api_key="c25f9e89-fc9e-4d21-b3eb-057dbc21c17c")
44
+ pc = Pinecone(api_key="52ef9136-6188-4e51-af13-9639bf95c163")
45
+ pinecone_index_name = "ee596llm-project2"
46
+ index = pc.Index(pinecone_index_name)
47
+
48
+ # Query the Pinecone index with the generated embedding
49
+ query_results = index.query(
50
+ vector=query_embedding,
51
+ top_k=top_k,
52
+ include_metadata=True
53
+ )
54
+
55
+ # Extract and return the most relevant documents along with their scores
56
+ relevant_docs = [
57
+ (result['id'], result['score'], result['metadata']['text'])
58
+ for result in query_results['matches']
59
+ ]
60
+ return relevant_docs
61
+
62
+
63
+ def get_completion(prompt, model="gpt-3.5-turbo"):
64
+ message = {"role": "user", "content": prompt}
65
+ client = OpenAI(api_key='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')
66
+ response = client.chat.completions.create(
67
+ model=model,
68
+ messages=[message]
69
+ )
70
+ return response.choices[0].message.content
71
+
72
+
73
+ def generate_answer_with_context(query, results):
74
+ # Construct the prompt with the top-k results as context
75
+ context_texts = "\n\n".join(
76
+ [f"Context {idx + 1}: {result[1]}" for idx, result in enumerate(results)]) # Assuming result[1] is the text
77
+ print(f"context_texts is : {context_texts} \n\n\n")
78
+ prompt = f"Given the following contexts related to the query '{query}', provide a detailed answer:\n\n{context_texts}\n\nAnswer the query:"
79
+
80
+ # Generate the answer using the GPT-3.5 Turbo model with the constructed prompt
81
+ answer = get_completion(prompt, model="gpt-3.5-turbo")
82
+
83
+ return answer
84
+
85
+
86
+ class Relevant_Documents_Agent:
87
+ def __init__(self, openai_client) -> None:
88
+ # TODO: Initialize the Relevant_Documents_Agent
89
+ self.openai_client = openai_client
90
+
91
+ def get_relevance(self, conversation) -> str:
92
+ # TODO: Get if the returned documents are relevant
93
+ # Generate embeddings for the query and all documents
94
+
95
+ top_k_results = query_pinecone_vector_store(conversation, top_k=4)
96
+
97
+ answer = generate_answer_with_context(conversation, top_k_results)
98
+
99
+ most_relevant_document = answer
100
+
101
+ return most_relevant_document
102
+
103
+ def compute_cosine_similarity(self, vec1, vec2):
104
+ # Ensure the vectors are numpy arrays for mathematical operations
105
+ vec1 = np.array(vec1)
106
+ vec2 = np.array(vec2)
107
+
108
+ # Compute the cosine similarity
109
+ dot_product = np.dot(vec1, vec2)
110
+ norm_vec1 = np.linalg.norm(vec1)
111
+ norm_vec2 = np.linalg.norm(vec2)
112
+ cosine_similarity = dot_product / (norm_vec1 * norm_vec2)
113
+
114
+ return cosine_similarity
app.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import datetime
2
+ from Obnoxious_Agent import Obnoxious_Agent
3
+ from Relevant_Documents_Agent import Relevant_Documents_Agent
4
+ from Query_Agent import Query_Agent
5
+ from Answering_Agent import Answering_Agent
6
+ from datetime import datetime
7
+ from langchain.document_loaders import UnstructuredPDFLoader, OnlinePDFLoader
8
+ import streamlit as st
9
+ from openai import OpenAI
10
+ from Head_Agent import Head_Agent
11
+
12
+ st.title("Mini Project 2: Streamlit Chatbot")
13
+
14
+ # TODO: Replace with your actual OpenAI API key
15
+ client = OpenAI(api_key='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')
16
+
17
+
18
+ # Define a function to get the conversation history (Not required for Part-2, will be useful in Part-3)
19
+ def get_conversation():
20
+ # ... (code for getting conversation history)
21
+ history_conversation = []
22
+ for message in st.session_state.messages:
23
+ if message["sender"] == "user":
24
+ cur_map = dict()
25
+ cur_map['role']= "user"
26
+ cur_map['content'] = message['content']
27
+ history_conversation.append(cur_map)
28
+ elif message["sender"] == "assistant":
29
+ cur_map = dict()
30
+ cur_map['role'] = "assistant"
31
+ cur_map['content'] = message['content']
32
+ history_conversation.append(cur_map)
33
+ return history_conversation
34
+
35
+
36
+ def display_all_chat_messages():
37
+ for message in st.session_state.messages:
38
+ # st.text_area("", value=message["content"], key=message["sender"] + str(message["id"]))
39
+ if message["sender"] == "user":
40
+ with st.chat_message("user"): # 显示avatar
41
+ st.container().markdown(f"**You [{message['timestamp']}]:** {message['content']}")
42
+ elif message["sender"] == "assistant":
43
+ with st.chat_message("assistant"): # 显示avatar
44
+ st.container().markdown(f"**Assistant [{message['timestamp']}]:** {message['content']}")
45
+
46
+
47
+ # Initialize the Head Agent with necessary parameters
48
+ if 'head_agent' not in st.session_state:
49
+ openai_key = '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'
50
+ pinecone_key = "52ef9136-6188-4e51-af13-9639bf95c163"
51
+ pinecone_index_name = "ee596llm-project2"
52
+ st.session_state.head_agent = Head_Agent(openai_key, pinecone_key, pinecone_index_name)
53
+
54
+ # Your existing code for handling user input and displaying messages
55
+ # Replace the direct call to `get_completion` with `st.session_state.head_agent.process_query(prompt)`
56
+
57
+ # Example:
58
+ if prompt := st.chat_input("What would you like to chat about?"):
59
+ try:
60
+ if "messages" not in st.session_state:
61
+ st.session_state.messages = []
62
+ message_id = len(st.session_state.messages)
63
+ current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
64
+ user_message = {"id": message_id, "sender": "user", "content": prompt, "timestamp": current_time}
65
+ st.session_state.messages.append(user_message)
66
+
67
+ # Instantiate the Obnoxious Agent
68
+ obnoxious_agent = Obnoxious_Agent()
69
+ is_obnoxious = obnoxious_agent.check_query(prompt)
70
+ # Respond based on the check
71
+ if is_obnoxious:
72
+ response = "Yes"
73
+ else:
74
+ response = "No"
75
+ # You can then display this response to the user or use it as part of your application logic
76
+ is_obnoxious_response = "Is the query obnoxious? " + response
77
+ # st.write("Is the query obnoxious? " + response)
78
+
79
+ # display_message(user_message)
80
+
81
+ except Exception as e:
82
+ st.error("Failed to process your message. Please try again.")
83
+
84
+ # ... (display user message in the chat interface)
85
+ # display_message(user_message) # Use the display_message function to show the user's message
86
+
87
+ # Generate AI response
88
+ # with st.chat_message("assistant"): 删除掉 chat聊天框 不能嵌套
89
+
90
+ # ... (send request to OpenAI API)
91
+ # ... (get AI response and display it)
92
+ ai_response = st.session_state.head_agent.process_query(prompt, get_conversation())
93
+
94
+ # ... (append AI response to messages)
95
+ ai_message = {"id": len(st.session_state.messages), "sender": "assistant", "content": ai_response,
96
+ "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")}
97
+ st.session_state.messages.append(ai_message)
98
+ print(ai_message)
99
+ # display_message(ai_message)
100
+ display_all_chat_messages()
machine-learning.pdf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:32251b6d23adf23e887ba1dcb6fbd91c5369a5c6c99df4b16dd2da56bf0fdad5
3
+ size 3921784
requirements.txt ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ openai
2
+ langchain
3
+ langchain_openai
4
+ unstructured
5
+ datetime
6
+ unstructured_inference
7
+ pikepdf
8
+ pypdf
9
+ numpy
10
+ pinecone-client
11
+ tiktoken
12
+ pandas
13
+ pillow_heif
14
+ sentence_transformers
15
+ streamlit
16
+ IPython