from pinecone import Pinecone import openai from openai import OpenAI def extract_action(response, query=None): # TODO: Extract the action from the response # For example, retrieve document IDs and their similarity scores relevant_docs = [{"id": match["id"], "score": match["score"]} for match in response["matches"]] return relevant_docs class Query_Agent: def __init__(self, pinecone_index, openai_client, embeddings) -> None: # TODO: Initialize the Query_Agent agent # Initialize the OpenAI client with the provided API key openai_api_key = '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' self.client = OpenAI(api_key=openai_api_key) # Specify the embeddings model to use for generating query embeddings self.embeddings_model = embeddings pc = Pinecone(api_key="52ef9136-6188-4e51-af13-9639bf95c163") # Initialize Pinecone client and connect to the specified index self.pinecone_index = pc.Index(pinecone_index) def query_vector_store(self, query, k=5): # TODO: Query the Pinecone vector store # Generate an embedding for the query query = query.replace("\n", " ") query_embedding = self.client.embeddings.create( input=[query], model=self.embeddings_model ).data[0].embedding # Query the Pinecone index using the generated embedding query_results = self.pinecone_index.query( vector=query_embedding, top_k=k, include_metadata=True) # Extract and return the most relevant documents along with their scores relevant_docs = [ (result['id'], result['score'], result['metadata']['text']) for result in query_results['matches'] ] return relevant_docs def set_prompt(self, prompt): # TODO: Set the prompt for the Query_Agent agent self.prompt = prompt