File size: 1,744 Bytes
da3cfe0
dc64cbc
e808226
 
7aee41a
da3cfe0
e808226
 
 
 
 
dc64cbc
ac9ffd6
 
 
 
8d352e6
ac9ffd6
 
 
 
dc64cbc
8d352e6
 
 
 
 
 
 
 
 
dc64cbc
 
ac9ffd6
 
dc64cbc
 
 
ac9ffd6
 
 
 
 
 
 
8d352e6
 
 
 
 
 
 
 
ac9ffd6
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
import streamlit as st
from transformers import pipeline
from ldclient import LDClient, Config, Context
import os
import torch

# Retrieve the LaunchDarkly SDK key from environment variables
ld_sdk_key = os.getenv("LAUNCHDARKLY_SDK_KEY")

# Initialize LaunchDarkly client with the correct configuration
ld_client = LDClient(Config(ld_sdk_key))

# Function to get the AI model configuration from LaunchDarkly
def get_model_config():
    flag_key = "swap-sentiment-models"  # Replace with your flag key
    # Create context using Context builder
    context = Context.builder("context-key-123abc").name("Erin").build()
    flag_variation = ld_client.variation(flag_key, context, default={})
    
    model_id = flag_variation.get("modelID", "distilbert-base-uncased")
    return model_id

# Function to translate sentiment labels to user-friendly terms
def translate_label(label):
    label_mapping = {
        "LABEL_0": "🀬 Negative",
        "LABEL_1": "😢 Neutral",
        "LABEL_2": "πŸ˜ƒ Positive"
    }
    return label_mapping.get(label, "Unknown")


# Streamlit app
st.title("Sentiment Analysis Demo with AI Model Flags")

user_input = st.text_area("Enter text for sentiment analysis:")

if st.button("Analyze"):
    model_id = get_model_config()
    model = pipeline("sentiment-analysis", model=model_id)
    
    # Display model details
    st.write(f"Using model: {model_id}")
    
    # Perform sentiment analysis
    results = model(user_input)
    st.write("Results:")

    # Translate and display the results
    for result in results:
        label = translate_label(result['label'])
        score = result['score']
        st.write(f"Sentiment: {label}, Confidence: {score:.2f}")

# Closing the LD client
ld_client.close()