erjonb commited on
Commit
13b0284
·
1 Parent(s): b93fefe

Delete P2 - Secom Notebook - Mercury.ipynb

Browse files
Files changed (1) hide show
  1. P2 - Secom Notebook - Mercury.ipynb +0 -1434
P2 - Secom Notebook - Mercury.ipynb DELETED
@@ -1,1434 +0,0 @@
1
- {
2
- "cells": [
3
- {
4
- "attachments": {},
5
- "cell_type": "markdown",
6
- "metadata": {
7
- "slideshow": {
8
- "slide_type": "skip"
9
- }
10
- },
11
- "source": [
12
- "# **Classifying products in Semiconductor Industry**"
13
- ]
14
- },
15
- {
16
- "attachments": {},
17
- "cell_type": "markdown",
18
- "metadata": {
19
- "slideshow": {
20
- "slide_type": "skip"
21
- }
22
- },
23
- "source": [
24
- "#### **Import the data**"
25
- ]
26
- },
27
- {
28
- "cell_type": "code",
29
- "execution_count": 2,
30
- "metadata": {
31
- "slideshow": {
32
- "slide_type": "skip"
33
- }
34
- },
35
- "outputs": [],
36
- "source": [
37
- "# import pandas for data manipulation\n",
38
- "# import numpy for numerical computation\n",
39
- "# import seaborn for data visualization\n",
40
- "# import matplotlib for data visualization\n",
41
- "# import stats for statistical analysis\n",
42
- "# import train_test_split for splitting data into training and testing sets\n",
43
- "\n",
44
- "\n",
45
- "import pandas as pd\n",
46
- "import numpy as np\n",
47
- "import seaborn as sns\n",
48
- "import matplotlib.pyplot as plt\n",
49
- "from scipy import stats\n",
50
- "from sklearn.model_selection import train_test_split\n",
51
- "import mercury as mr"
52
- ]
53
- },
54
- {
55
- "cell_type": "code",
56
- "execution_count": 3,
57
- "metadata": {
58
- "slideshow": {
59
- "slide_type": "skip"
60
- }
61
- },
62
- "outputs": [
63
- {
64
- "data": {
65
- "application/mercury+json": {
66
- "allow_download": true,
67
- "code_uid": "App.0.40.24.1-rande8c4e67c",
68
- "continuous_update": false,
69
- "description": "Recumpute everything dynamically",
70
- "full_screen": true,
71
- "model_id": "mercury-app",
72
- "notify": "{}",
73
- "output": "app",
74
- "schedule": "",
75
- "show_code": false,
76
- "show_prompt": false,
77
- "show_sidebar": true,
78
- "static_notebook": false,
79
- "title": "Secom Web App Demo",
80
- "widget": "App"
81
- },
82
- "text/html": [
83
- "<h3>Mercury Application</h3><small>This output won't appear in the web app.</small>"
84
- ],
85
- "text/plain": [
86
- "mercury.App"
87
- ]
88
- },
89
- "metadata": {},
90
- "output_type": "display_data"
91
- }
92
- ],
93
- "source": [
94
- "app = mr.App(title=\"Secom Web App Demo\", description=\"Recumpute everything dynamically\", continuous_update=False)"
95
- ]
96
- },
97
- {
98
- "cell_type": "code",
99
- "execution_count": 4,
100
- "metadata": {
101
- "slideshow": {
102
- "slide_type": "skip"
103
- }
104
- },
105
- "outputs": [],
106
- "source": [
107
- "# Read the features data from the the url of csv into pandas dataframes and rename the columns to F1, F2, F3, etc.\n",
108
- "# Read the labels data from the url of csv into pandas dataframes and rename the columns to pass/fail and date/time\n",
109
- "\n",
110
- "#url_data = 'https://archive.ics.uci.edu/ml/machine-learning-databases/secom/secom.data'\n",
111
- "#url_labels = 'https://archive.ics.uci.edu/ml/machine-learning-databases/secom/secom_labels.data'\n",
112
- "\n",
113
- "url_data = '..\\Dataset\\secom_data.csv'\n",
114
- "url_labels = '..\\Dataset\\secom_labels.csv'\n",
115
- "\n",
116
- "features = pd.read_csv(url_data, delimiter=' ', header=None)\n",
117
- "labels = pd.read_csv(url_labels, delimiter=' ', names=['pass/fail', 'date_time'])\n",
118
- "\n",
119
- "prefix = 'F'\n",
120
- "new_column_names = [prefix + str(i) for i in range(1, len(features.columns)+1)]\n",
121
- "features.columns = new_column_names\n",
122
- "\n",
123
- "labels['pass/fail'] = labels['pass/fail'].replace({-1: 0, 1: 1})\n"
124
- ]
125
- },
126
- {
127
- "attachments": {},
128
- "cell_type": "markdown",
129
- "metadata": {
130
- "slideshow": {
131
- "slide_type": "skip"
132
- }
133
- },
134
- "source": [
135
- "#### **Split the data**"
136
- ]
137
- },
138
- {
139
- "cell_type": "code",
140
- "execution_count": 5,
141
- "metadata": {
142
- "slideshow": {
143
- "slide_type": "skip"
144
- }
145
- },
146
- "outputs": [
147
- {
148
- "name": "stdout",
149
- "output_type": "stream",
150
- "text": [
151
- "Dropped date/time column from labels dataframe\n"
152
- ]
153
- }
154
- ],
155
- "source": [
156
- "# if there is a date/time column, drop it from the features and labels dataframes, else continue\n",
157
- "\n",
158
- "if 'date_time' in labels.columns:\n",
159
- " labels = labels.drop(['date_time'], axis=1)\n",
160
- " print('Dropped date/time column from labels dataframe')\n",
161
- "\n",
162
- "\n",
163
- "# Split the dataset and the labels into training and testing sets\n",
164
- "# use stratify to ensure that the training and testing sets have the same percentage of pass and fail labels\n",
165
- "# use random_state to ensure that the same random split is generated each time the code is run\n",
166
- "\n",
167
- "\n",
168
- "X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size=0.25, stratify=labels, random_state=13)"
169
- ]
170
- },
171
- {
172
- "attachments": {},
173
- "cell_type": "markdown",
174
- "metadata": {
175
- "slideshow": {
176
- "slide_type": "skip"
177
- }
178
- },
179
- "source": [
180
- "### **Functions**"
181
- ]
182
- },
183
- {
184
- "attachments": {},
185
- "cell_type": "markdown",
186
- "metadata": {
187
- "slideshow": {
188
- "slide_type": "skip"
189
- }
190
- },
191
- "source": [
192
- "#### **Feature Removal**"
193
- ]
194
- },
195
- {
196
- "cell_type": "code",
197
- "execution_count": 6,
198
- "metadata": {
199
- "slideshow": {
200
- "slide_type": "skip"
201
- }
202
- },
203
- "outputs": [],
204
- "source": [
205
- "def columns_to_drop(df,drop_duplicates='yes', missing_values_threshold=100, variance_threshold=0, \n",
206
- " correlation_threshold=1.1):\n",
207
- " \n",
208
- " print('Shape of the dataframe is: ', df.shape)\n",
209
- "\n",
210
- " # Drop duplicated columns\n",
211
- " if drop_duplicates == 'yes':\n",
212
- " new_column_names = df.columns\n",
213
- " df = df.T.drop_duplicates().T\n",
214
- " print('the number of columns to be dropped due to duplications is: ', len(new_column_names) - len(df.columns))\n",
215
- " drop_duplicated = list(set(new_column_names) - set(df.columns))\n",
216
- "\n",
217
- " elif drop_duplicates == 'no':\n",
218
- " df = df.T.T\n",
219
- " print('No columns were dropped due to duplications') \n",
220
- "\n",
221
- " # Print the percentage of columns in df with missing values more than or equal to threshold\n",
222
- " print('the number of columns to be dropped due to missing values is: ', len(df.isnull().mean()[df.isnull().mean() > missing_values_threshold/100].index))\n",
223
- " \n",
224
- " # Print into a list the columns to be dropped due to missing values\n",
225
- " drop_missing = list(df.isnull().mean()[df.isnull().mean() > missing_values_threshold/100].index)\n",
226
- "\n",
227
- " # Drop columns with more than or equal to threshold missing values from df\n",
228
- " df.drop(drop_missing, axis=1, inplace=True)\n",
229
- " \n",
230
- " # Print the number of columns in df with variance less than threshold\n",
231
- " print('the number of columns to be dropped due to low variance is: ', len(df.var()[df.var() <= variance_threshold].index))\n",
232
- "\n",
233
- " # Print into a list the columns to be dropped due to low variance\n",
234
- " drop_variance = list(df.var()[df.var() <= variance_threshold].index)\n",
235
- "\n",
236
- " # Drop columns with more than or equal to threshold variance from df\n",
237
- " df.drop(drop_variance, axis=1, inplace=True)\n",
238
- "\n",
239
- " # Print the number of columns in df with more than or equal to threshold correlation\n",
240
- " \n",
241
- " # Create correlation matrix and round it to 4 decimal places\n",
242
- " corr_matrix = df.corr().abs().round(4)\n",
243
- " upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool))\n",
244
- " to_drop = [column for column in upper.columns if any(upper[column] >= correlation_threshold)]\n",
245
- " print('the number of columns to be dropped due to high correlation is: ', len(to_drop))\n",
246
- "\n",
247
- " # Print into a list the columns to be dropped due to high correlation\n",
248
- " drop_correlation = [column for column in upper.columns if any(upper[column] >= correlation_threshold)]\n",
249
- "\n",
250
- " # Drop columns with more than or equal to threshold correlation from df\n",
251
- " df.drop(to_drop, axis=1, inplace=True)\n",
252
- " \n",
253
- " if drop_duplicates == 'yes':\n",
254
- " dropped = (drop_duplicated+drop_missing+drop_variance+drop_correlation)\n",
255
- "\n",
256
- " elif drop_duplicates =='no':\n",
257
- " dropped = (drop_missing+drop_variance+drop_correlation)\n",
258
- " \n",
259
- " print('Total number of columns to be dropped is: ', len(dropped))\n",
260
- " print('New shape of the dataframe is: ', df.shape)\n",
261
- "\n",
262
- " global drop_duplicates_var\n",
263
- " drop_duplicates_var = drop_duplicates\n",
264
- " \n",
265
- " global missing_values_threshold_var\n",
266
- " missing_values_threshold_var = missing_values_threshold\n",
267
- "\n",
268
- " global variance_threshold_var\n",
269
- " variance_threshold_var = variance_threshold\n",
270
- "\n",
271
- " global correlation_threshold_var\n",
272
- " correlation_threshold_var = correlation_threshold\n",
273
- " \n",
274
- " print(type(dropped))\n",
275
- " return dropped"
276
- ]
277
- },
278
- {
279
- "attachments": {},
280
- "cell_type": "markdown",
281
- "metadata": {
282
- "slideshow": {
283
- "slide_type": "skip"
284
- }
285
- },
286
- "source": [
287
- "#### **Outlier Removal**"
288
- ]
289
- },
290
- {
291
- "cell_type": "code",
292
- "execution_count": 7,
293
- "metadata": {
294
- "slideshow": {
295
- "slide_type": "skip"
296
- }
297
- },
298
- "outputs": [],
299
- "source": [
300
- "def outlier_removal(z_df, z_threshold=4):\n",
301
- " \n",
302
- " global outlier_var\n",
303
- "\n",
304
- " if z_threshold == 'none':\n",
305
- " print('No outliers were removed')\n",
306
- " outlier_var = 'none'\n",
307
- " return z_df\n",
308
- " \n",
309
- " else:\n",
310
- " print('The z-score threshold is:', z_threshold)\n",
311
- "\n",
312
- " z_df_copy = z_df.copy()\n",
313
- "\n",
314
- " z_scores = np.abs(stats.zscore(z_df_copy))\n",
315
- "\n",
316
- " # Identify the outliers in the dataset using the z-score method\n",
317
- " outliers_mask = z_scores > z_threshold\n",
318
- " z_df_copy[outliers_mask] = np.nan\n",
319
- "\n",
320
- " outliers_count = np.count_nonzero(outliers_mask)\n",
321
- " print('The number of outliers in the whole dataset is / was:', outliers_count)\n",
322
- "\n",
323
- " outlier_var = z_threshold\n",
324
- "\n",
325
- " print(type(z_df_copy))\n",
326
- " return z_df_copy"
327
- ]
328
- },
329
- {
330
- "attachments": {},
331
- "cell_type": "markdown",
332
- "metadata": {
333
- "slideshow": {
334
- "slide_type": "skip"
335
- }
336
- },
337
- "source": [
338
- "#### **Scaling Methods**"
339
- ]
340
- },
341
- {
342
- "cell_type": "code",
343
- "execution_count": 8,
344
- "metadata": {
345
- "slideshow": {
346
- "slide_type": "skip"
347
- }
348
- },
349
- "outputs": [],
350
- "source": [
351
- "# define a function to scale the dataframe using different scaling models\n",
352
- "\n",
353
- "def scale_dataframe(scale_model,df_fit, df_transform):\n",
354
- " \n",
355
- " global scale_model_var\n",
356
- "\n",
357
- " if scale_model == 'robust':\n",
358
- " from sklearn.preprocessing import RobustScaler\n",
359
- " scaler = RobustScaler()\n",
360
- " scaler.fit(df_fit)\n",
361
- " df_scaled = scaler.transform(df_transform)\n",
362
- " df_scaled = pd.DataFrame(df_scaled, columns=df_transform.columns)\n",
363
- " print('The dataframe has been scaled using the robust scaling model')\n",
364
- " scale_model_var = 'robust'\n",
365
- " return df_scaled\n",
366
- " \n",
367
- " elif scale_model == 'standard':\n",
368
- " from sklearn.preprocessing import StandardScaler\n",
369
- " scaler = StandardScaler()\n",
370
- " scaler.fit(df_fit)\n",
371
- " df_scaled = scaler.transform(df_transform)\n",
372
- " df_scaled = pd.DataFrame(df_scaled, columns=df_transform.columns)\n",
373
- " print('The dataframe has been scaled using the standard scaling model')\n",
374
- " scale_model_var = 'standard'\n",
375
- " return df_scaled\n",
376
- " \n",
377
- " elif scale_model == 'normal':\n",
378
- " from sklearn.preprocessing import Normalizer\n",
379
- " scaler = Normalizer()\n",
380
- " scaler.fit(df_fit)\n",
381
- " df_scaled = scaler.transform(df_transform)\n",
382
- " df_scaled = pd.DataFrame(df_scaled, columns=df_transform.columns)\n",
383
- " print('The dataframe has been scaled using the normal scaling model')\n",
384
- " scale_model_var = 'normal'\n",
385
- " return df_scaled\n",
386
- " \n",
387
- " elif scale_model == 'minmax':\n",
388
- " from sklearn.preprocessing import MinMaxScaler\n",
389
- " scaler = MinMaxScaler()\n",
390
- " scaler.fit(df_fit)\n",
391
- " df_scaled = scaler.transform(df_transform)\n",
392
- " df_scaled = pd.DataFrame(df_scaled, columns=df_transform.columns)\n",
393
- " print('The dataframe has been scaled using the minmax scaling model')\n",
394
- " scale_model_var = 'minmax'\n",
395
- " return df_scaled\n",
396
- " \n",
397
- " elif scale_model == 'none':\n",
398
- " print('The dataframe has not been scaled')\n",
399
- " scale_model_var = 'none'\n",
400
- " return df_transform\n",
401
- " \n",
402
- " else:\n",
403
- " print('Please choose a valid scaling model: robust, standard, normal, or minmax')\n",
404
- " return None"
405
- ]
406
- },
407
- {
408
- "attachments": {},
409
- "cell_type": "markdown",
410
- "metadata": {
411
- "slideshow": {
412
- "slide_type": "skip"
413
- }
414
- },
415
- "source": [
416
- "#### **Missing Value Imputation**"
417
- ]
418
- },
419
- {
420
- "cell_type": "code",
421
- "execution_count": 9,
422
- "metadata": {
423
- "slideshow": {
424
- "slide_type": "skip"
425
- }
426
- },
427
- "outputs": [],
428
- "source": [
429
- "# define a function to impute missing values using different imputation models\n",
430
- "\n",
431
- "def impute_missing_values(imputation, df_fit, df_transform, n_neighbors=5):\n",
432
- "\n",
433
- " print('Number of missing values before imputation: ', df_transform.isnull().sum().sum())\n",
434
- "\n",
435
- " global imputation_var\n",
436
- "\n",
437
- " if imputation == 'knn':\n",
438
- "\n",
439
- " from sklearn.impute import KNNImputer\n",
440
- " imputer = KNNImputer(n_neighbors=n_neighbors)\n",
441
- " imputer.fit(df_fit)\n",
442
- " df_imputed = imputer.transform(df_transform)\n",
443
- " df_imputed = pd.DataFrame(df_imputed, columns=df_transform.columns)\n",
444
- " print('Number of missing values after imputation: ', df_imputed.isnull().sum().sum())\n",
445
- " imputation_var = 'knn'\n",
446
- " return df_imputed\n",
447
- " \n",
448
- " elif imputation == 'mean':\n",
449
- "\n",
450
- " from sklearn.impute import SimpleImputer\n",
451
- " imputer = SimpleImputer(strategy='mean')\n",
452
- " imputer.fit(df_fit)\n",
453
- " df_imputed = imputer.transform(df_transform)\n",
454
- " df_imputed = pd.DataFrame(df_imputed, columns=df_transform.columns)\n",
455
- " print('Number of missing values after imputation: ', df_imputed.isnull().sum().sum())\n",
456
- " imputation_var = 'mean'\n",
457
- " return df_imputed\n",
458
- " \n",
459
- " elif imputation == 'median':\n",
460
- "\n",
461
- " from sklearn.impute import SimpleImputer\n",
462
- " imputer = SimpleImputer(strategy='median')\n",
463
- " imputer.fit(df_fit)\n",
464
- " df_imputed = imputer.transform(df_transform)\n",
465
- " df_imputed = pd.DataFrame(df_imputed, columns=df_transform.columns)\n",
466
- " print('Number of missing values after imputation: ', df_imputed.isnull().sum().sum())\n",
467
- " imputation_var = 'median'\n",
468
- " return df_imputed\n",
469
- " \n",
470
- " elif imputation == 'most_frequent':\n",
471
- " \n",
472
- " from sklearn.impute import SimpleImputer\n",
473
- " imputer = SimpleImputer(strategy='most_frequent')\n",
474
- " imputer.fit(df_fit)\n",
475
- " df_imputed = imputer.transform(df_transform)\n",
476
- " df_imputed = pd.DataFrame(df_imputed, columns=df_transform.columns)\n",
477
- " print('Number of missing values after imputation: ', df_imputed.isnull().sum().sum())\n",
478
- " imputation_var = 'most_frequent'\n",
479
- " return df_imputed\n",
480
- " \n",
481
- " else:\n",
482
- " print('Please choose an imputation model from the following: knn, mean, median, most_frequent')\n",
483
- " df_imputed = df_transform.copy()\n",
484
- " return df_imputed\n"
485
- ]
486
- },
487
- {
488
- "attachments": {},
489
- "cell_type": "markdown",
490
- "metadata": {
491
- "slideshow": {
492
- "slide_type": "skip"
493
- }
494
- },
495
- "source": [
496
- "#### **Imbalance Treatment**"
497
- ]
498
- },
499
- {
500
- "cell_type": "code",
501
- "execution_count": 10,
502
- "metadata": {
503
- "slideshow": {
504
- "slide_type": "skip"
505
- }
506
- },
507
- "outputs": [],
508
- "source": [
509
- "#define a function to oversample and understamble the imbalance in the training set\n",
510
- "\n",
511
- "def imbalance_treatment(method, X_train, y_train):\n",
512
- "\n",
513
- " global imbalance_var\n",
514
- "\n",
515
- " if method == 'smote': \n",
516
- " from imblearn.over_sampling import SMOTE\n",
517
- " sm = SMOTE(random_state=42)\n",
518
- " X_train_res, y_train_res = sm.fit_resample(X_train, y_train)\n",
519
- " print('Shape of the training set after oversampling with SMOTE: ', X_train_res.shape)\n",
520
- " print('Value counts of the target variable after oversampling with SMOTE: \\n', y_train_res.value_counts())\n",
521
- " imbalance_var = 'smote'\n",
522
- " return X_train_res, y_train_res\n",
523
- " \n",
524
- " if method == 'undersampling':\n",
525
- " from imblearn.under_sampling import RandomUnderSampler\n",
526
- " rus = RandomUnderSampler(random_state=42)\n",
527
- " X_train_res, y_train_res = rus.fit_resample(X_train, y_train)\n",
528
- " print('Shape of the training set after undersampling with RandomUnderSampler: ', X_train_res.shape)\n",
529
- " print('Value counts of the target variable after undersampling with RandomUnderSampler: \\n', y_train_res.value_counts())\n",
530
- " imbalance_var = 'random_undersampling'\n",
531
- " return X_train_res, y_train_res\n",
532
- " \n",
533
- " if method == 'rose':\n",
534
- " from imblearn.over_sampling import RandomOverSampler\n",
535
- " ros = RandomOverSampler(random_state=42)\n",
536
- " X_train_res, y_train_res = ros.fit_resample(X_train, y_train)\n",
537
- " print('Shape of the training set after oversampling with RandomOverSampler: ', X_train_res.shape)\n",
538
- " print('Value counts of the target variable after oversampling with RandomOverSampler: \\n', y_train_res.value_counts())\n",
539
- " imbalance_var = 'rose'\n",
540
- " return X_train_res, y_train_res\n",
541
- " \n",
542
- " \n",
543
- " if method == 'none':\n",
544
- " X_train_res = X_train\n",
545
- " y_train_res = y_train\n",
546
- " print('Shape of the training set after no resampling: ', X_train_res.shape)\n",
547
- " print('Value counts of the target variable after no resampling: \\n', y_train_res.value_counts())\n",
548
- " imbalance_var = 'none'\n",
549
- " return X_train_res, y_train_res\n",
550
- " \n",
551
- " else:\n",
552
- " print('Please choose a valid resampling method: smote, rose, undersampling or none')\n",
553
- " X_train_res = X_train\n",
554
- " y_train_res = y_train\n",
555
- " return X_train_res, y_train_res"
556
- ]
557
- },
558
- {
559
- "attachments": {},
560
- "cell_type": "markdown",
561
- "metadata": {
562
- "slideshow": {
563
- "slide_type": "skip"
564
- }
565
- },
566
- "source": [
567
- "#### **Training Models**"
568
- ]
569
- },
570
- {
571
- "cell_type": "code",
572
- "execution_count": 11,
573
- "metadata": {
574
- "slideshow": {
575
- "slide_type": "skip"
576
- }
577
- },
578
- "outputs": [],
579
- "source": [
580
- "# define a function where you can choose the model you want to use to train the data\n",
581
- "\n",
582
- "def train_model(model, X_train, y_train, X_test, y_test):\n",
583
- "\n",
584
- " global model_var\n",
585
- "\n",
586
- " if model == 'random_forest':\n",
587
- " from sklearn.ensemble import RandomForestClassifier\n",
588
- " rfc = RandomForestClassifier(n_estimators=100, random_state=13)\n",
589
- " rfc.fit(X_train, y_train)\n",
590
- " y_pred = rfc.predict(X_test)\n",
591
- " model_var = 'random_forest'\n",
592
- " return y_pred\n",
593
- "\n",
594
- " if model == 'logistic_regression':\n",
595
- " from sklearn.linear_model import LogisticRegression\n",
596
- " lr = LogisticRegression()\n",
597
- " lr.fit(X_train, y_train)\n",
598
- " y_pred = lr.predict(X_test)\n",
599
- " model_var = 'logistic_regression'\n",
600
- " return y_pred\n",
601
- " \n",
602
- " if model == 'knn':\n",
603
- " from sklearn.neighbors import KNeighborsClassifier\n",
604
- " knn = KNeighborsClassifier(n_neighbors=5)\n",
605
- " knn.fit(X_train, y_train)\n",
606
- " y_pred = knn.predict(X_test)\n",
607
- " model_var = 'knn'\n",
608
- " return y_pred\n",
609
- " \n",
610
- " if model == 'svm':\n",
611
- " from sklearn.svm import SVC\n",
612
- " svm = SVC()\n",
613
- " svm.fit(X_train, y_train)\n",
614
- " y_pred = svm.predict(X_test)\n",
615
- " model_var = 'svm'\n",
616
- " return y_pred\n",
617
- " \n",
618
- " if model == 'naive_bayes':\n",
619
- " from sklearn.naive_bayes import GaussianNB\n",
620
- " nb = GaussianNB()\n",
621
- " nb.fit(X_train, y_train)\n",
622
- " y_pred = nb.predict(X_test)\n",
623
- " model_var = 'naive_bayes'\n",
624
- " return y_pred\n",
625
- " \n",
626
- " if model == 'decision_tree':\n",
627
- " from sklearn.tree import DecisionTreeClassifier\n",
628
- " dt = DecisionTreeClassifier()\n",
629
- " dt.fit(X_train, y_train)\n",
630
- " y_pred = dt.predict(X_test)\n",
631
- " model_var = 'decision_tree'\n",
632
- " return y_pred\n",
633
- " \n",
634
- " if model == 'xgboost':\n",
635
- " from xgboost import XGBClassifier\n",
636
- " xgb = XGBClassifier()\n",
637
- " xgb.fit(X_train, y_train)\n",
638
- " y_pred = xgb.predict(X_test)\n",
639
- " model_var = 'xgboost'\n",
640
- " return y_pred\n",
641
- " \n",
642
- " else:\n",
643
- " print('Please choose a model from the following: random_forest, logistic_regression, knn, svm, naive_bayes, decision_tree, xgboost')\n",
644
- " return None"
645
- ]
646
- },
647
- {
648
- "attachments": {},
649
- "cell_type": "markdown",
650
- "metadata": {
651
- "slideshow": {
652
- "slide_type": "skip"
653
- }
654
- },
655
- "source": [
656
- "#### **Evaluation Function**"
657
- ]
658
- },
659
- {
660
- "cell_type": "code",
661
- "execution_count": 12,
662
- "metadata": {
663
- "slideshow": {
664
- "slide_type": "skip"
665
- }
666
- },
667
- "outputs": [],
668
- "source": [
669
- "#define a function that prints the strings below\n",
670
- "\n",
671
- "from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, f1_score\n",
672
- "\n",
673
- "def evaluate_models(model='all'):\n",
674
- " print('Have the duplicates been removed?', drop_duplicates_var)\n",
675
- " print('What is the missing values threshold %?', missing_values_threshold_var)\n",
676
- " print('What is the variance threshold?', variance_threshold_var)\n",
677
- " print('What is the correlation threshold?', correlation_threshold_var)\n",
678
- " print('What is the outlier removal threshold?', outlier_var)\n",
679
- " print('What is the scaling method?', scale_model_var)\n",
680
- " print('What is the imputation method?', imputation_var) \n",
681
- " print('What is the imbalance treatment?', imbalance_var)\n",
682
- "\n",
683
- " all_models = ['random_forest', 'logistic_regression', 'knn', 'svm', 'naive_bayes', 'decision_tree', 'xgboost']\n",
684
- " evaluation_score_append = []\n",
685
- " evaluation_count_append = []\n",
686
- " \n",
687
- " for selected_model in all_models:\n",
688
- " \n",
689
- " if model == 'all' or model == selected_model:\n",
690
- "\n",
691
- " evaluation_score = []\n",
692
- " evaluation_count = []\n",
693
- "\n",
694
- " y_pred = globals()['y_pred_' + selected_model] # Get the prediction variable dynamically\n",
695
- "\n",
696
- " def namestr(obj, namespace):\n",
697
- " return [name for name in namespace if namespace[name] is obj]\n",
698
- "\n",
699
- " model_name = namestr(y_pred, globals())[0]\n",
700
- " model_name = model_name.replace('y_pred_', '') \n",
701
- "\n",
702
- " cm = confusion_matrix(y_test, y_pred)\n",
703
- "\n",
704
- " # create a dataframe with the results for each model\n",
705
- "\n",
706
- " evaluation_score.append(model_name)\n",
707
- " evaluation_score.append(round(accuracy_score(y_test, y_pred), 2))\n",
708
- " evaluation_score.append(round(precision_score(y_test, y_pred, zero_division=0), 2))\n",
709
- " evaluation_score.append(round(recall_score(y_test, y_pred), 2))\n",
710
- " evaluation_score.append(round(f1_score(y_test, y_pred), 2))\n",
711
- " evaluation_score_append.append(evaluation_score)\n",
712
- "\n",
713
- "\n",
714
- " # create a dataframe with the true positives, true negatives, false positives and false negatives for each model\n",
715
- "\n",
716
- " evaluation_count.append(model_name)\n",
717
- " evaluation_count.append(cm[0][0])\n",
718
- " evaluation_count.append(cm[0][1])\n",
719
- " evaluation_count.append(cm[1][0])\n",
720
- " evaluation_count.append(cm[1][1])\n",
721
- " evaluation_count_append.append(evaluation_count)\n",
722
- "\n",
723
- " \n",
724
- " evaluation_score_append = pd.DataFrame(evaluation_score_append, \n",
725
- " columns=['Model', 'Accuracy', 'Precision', 'Recall', 'F1-score'])\n",
726
- " \n",
727
- " \n",
728
- "\n",
729
- " evaluation_count_append = pd.DataFrame(evaluation_count_append,\n",
730
- " columns=['Model', 'True Negatives', 'False Positives', 'False Negatives', 'True Positives'])\n",
731
- " \n",
732
- " \n",
733
- " return evaluation_score_append, evaluation_count_append"
734
- ]
735
- },
736
- {
737
- "attachments": {},
738
- "cell_type": "markdown",
739
- "metadata": {
740
- "slideshow": {
741
- "slide_type": "skip"
742
- }
743
- },
744
- "source": [
745
- "### **Input Variables**"
746
- ]
747
- },
748
- {
749
- "cell_type": "code",
750
- "execution_count": 14,
751
- "metadata": {
752
- "slideshow": {
753
- "slide_type": "skip"
754
- }
755
- },
756
- "outputs": [
757
- {
758
- "data": {
759
- "application/mercury+json": {
760
- "choices": [
761
- "yes",
762
- "no"
763
- ],
764
- "code_uid": "Select.0.40.16.25-rand036599f5",
765
- "disabled": false,
766
- "hidden": false,
767
- "label": "Drop Duplicates",
768
- "model_id": "5fecbac257a74b428ee00725045f2f1a",
769
- "url_key": "",
770
- "value": "yes",
771
- "widget": "Select"
772
- },
773
- "application/vnd.jupyter.widget-view+json": {
774
- "model_id": "5fecbac257a74b428ee00725045f2f1a",
775
- "version_major": 2,
776
- "version_minor": 0
777
- },
778
- "text/plain": [
779
- "mercury.Select"
780
- ]
781
- },
782
- "metadata": {},
783
- "output_type": "display_data"
784
- },
785
- {
786
- "data": {
787
- "application/mercury+json": {
788
- "code_uid": "Slider.0.40.26.28-rand8662cf24",
789
- "disabled": false,
790
- "hidden": false,
791
- "label": "Missing Value Threeshold",
792
- "max": 100,
793
- "min": 0,
794
- "model_id": "6a2670f9135442b0bc97dc794af3af46",
795
- "step": 1,
796
- "url_key": "",
797
- "value": 80,
798
- "widget": "Slider"
799
- },
800
- "application/vnd.jupyter.widget-view+json": {
801
- "model_id": "6a2670f9135442b0bc97dc794af3af46",
802
- "version_major": 2,
803
- "version_minor": 0
804
- },
805
- "text/plain": [
806
- "mercury.Slider"
807
- ]
808
- },
809
- "metadata": {},
810
- "output_type": "display_data"
811
- },
812
- {
813
- "data": {
814
- "application/mercury+json": {
815
- "choices": [
816
- 0,
817
- 0.01,
818
- 0.05,
819
- 0.1
820
- ],
821
- "code_uid": "Select.0.40.16.31-rand1afeeedb",
822
- "disabled": false,
823
- "hidden": false,
824
- "label": "Variance Threshold",
825
- "model_id": "59ec4772499d416088166b4dba0a473d",
826
- "url_key": "",
827
- "value": 0,
828
- "widget": "Select"
829
- },
830
- "application/vnd.jupyter.widget-view+json": {
831
- "model_id": "59ec4772499d416088166b4dba0a473d",
832
- "version_major": 2,
833
- "version_minor": 0
834
- },
835
- "text/plain": [
836
- "mercury.Select"
837
- ]
838
- },
839
- "metadata": {},
840
- "output_type": "display_data"
841
- },
842
- {
843
- "data": {
844
- "application/mercury+json": {
845
- "choices": [
846
- 1,
847
- 0.95,
848
- 0.9,
849
- 0.8
850
- ],
851
- "code_uid": "Select.0.40.16.34-rand09f1eb56",
852
- "disabled": false,
853
- "hidden": false,
854
- "label": "Correlation Threshold",
855
- "model_id": "cdf52ecc5c7247f3bf67809ca9a76e06",
856
- "url_key": "",
857
- "value": 1,
858
- "widget": "Select"
859
- },
860
- "application/vnd.jupyter.widget-view+json": {
861
- "model_id": "cdf52ecc5c7247f3bf67809ca9a76e06",
862
- "version_major": 2,
863
- "version_minor": 0
864
- },
865
- "text/plain": [
866
- "mercury.Select"
867
- ]
868
- },
869
- "metadata": {},
870
- "output_type": "display_data"
871
- },
872
- {
873
- "data": {
874
- "application/mercury+json": {
875
- "choices": [
876
- "none",
877
- 3,
878
- 4,
879
- 5
880
- ],
881
- "code_uid": "Select.0.40.16.38-rand12ce2c73",
882
- "disabled": false,
883
- "hidden": false,
884
- "label": "Outlier Removal Threshold",
885
- "model_id": "2bb20270437540978d58f2a176876560",
886
- "url_key": "",
887
- "value": "none",
888
- "widget": "Select"
889
- },
890
- "application/vnd.jupyter.widget-view+json": {
891
- "model_id": "2bb20270437540978d58f2a176876560",
892
- "version_major": 2,
893
- "version_minor": 0
894
- },
895
- "text/plain": [
896
- "mercury.Select"
897
- ]
898
- },
899
- "metadata": {},
900
- "output_type": "display_data"
901
- },
902
- {
903
- "data": {
904
- "application/mercury+json": {
905
- "choices": [
906
- "none",
907
- "normal",
908
- "standard",
909
- "minmax",
910
- "robust"
911
- ],
912
- "code_uid": "Select.0.40.16.46-rand3811f110",
913
- "disabled": false,
914
- "hidden": false,
915
- "label": "Scaling Variables",
916
- "model_id": "e42256d4973d4777b895e2d8dbf32294",
917
- "url_key": "",
918
- "value": "none",
919
- "widget": "Select"
920
- },
921
- "application/vnd.jupyter.widget-view+json": {
922
- "model_id": "e42256d4973d4777b895e2d8dbf32294",
923
- "version_major": 2,
924
- "version_minor": 0
925
- },
926
- "text/plain": [
927
- "mercury.Select"
928
- ]
929
- },
930
- "metadata": {},
931
- "output_type": "display_data"
932
- },
933
- {
934
- "data": {
935
- "application/mercury+json": {
936
- "choices": [
937
- "mean",
938
- "median",
939
- "knn",
940
- "most_frequent"
941
- ],
942
- "code_uid": "Select.0.40.16.50-rande797a66e",
943
- "disabled": false,
944
- "hidden": false,
945
- "label": "Imputation Methods",
946
- "model_id": "f0776e7846b54620b4a297e68b02c1d9",
947
- "url_key": "",
948
- "value": "mean",
949
- "widget": "Select"
950
- },
951
- "application/vnd.jupyter.widget-view+json": {
952
- "model_id": "f0776e7846b54620b4a297e68b02c1d9",
953
- "version_major": 2,
954
- "version_minor": 0
955
- },
956
- "text/plain": [
957
- "mercury.Select"
958
- ]
959
- },
960
- "metadata": {},
961
- "output_type": "display_data"
962
- },
963
- {
964
- "data": {
965
- "application/mercury+json": {
966
- "choices": [
967
- "none",
968
- "smote",
969
- "undersampling",
970
- "rose"
971
- ],
972
- "code_uid": "Select.0.40.16.55-randec8ea8f6",
973
- "disabled": false,
974
- "hidden": false,
975
- "label": "Imbalance Treatment",
976
- "model_id": "e314e975c8e347aabc4e43958d9fa498",
977
- "url_key": "",
978
- "value": "none",
979
- "widget": "Select"
980
- },
981
- "application/vnd.jupyter.widget-view+json": {
982
- "model_id": "e314e975c8e347aabc4e43958d9fa498",
983
- "version_major": 2,
984
- "version_minor": 0
985
- },
986
- "text/plain": [
987
- "mercury.Select"
988
- ]
989
- },
990
- "metadata": {},
991
- "output_type": "display_data"
992
- },
993
- {
994
- "data": {
995
- "application/mercury+json": {
996
- "choices": [
997
- "random_forest",
998
- "logistic_regression",
999
- "knn",
1000
- "svm",
1001
- "naive_bayes",
1002
- "decision_tree",
1003
- "xgboost"
1004
- ],
1005
- "code_uid": "Select.0.40.16.60-rand7c34da2c",
1006
- "disabled": false,
1007
- "hidden": false,
1008
- "label": "Model Selection",
1009
- "model_id": "589c61ee60be41f9b72132986d3ea249",
1010
- "url_key": "",
1011
- "value": "random_forest",
1012
- "widget": "Select"
1013
- },
1014
- "application/vnd.jupyter.widget-view+json": {
1015
- "model_id": "589c61ee60be41f9b72132986d3ea249",
1016
- "version_major": 2,
1017
- "version_minor": 0
1018
- },
1019
- "text/plain": [
1020
- "mercury.Select"
1021
- ]
1022
- },
1023
- "metadata": {},
1024
- "output_type": "display_data"
1025
- }
1026
- ],
1027
- "source": [
1028
- "\n",
1029
- "evaluation_score_df = pd.DataFrame(columns=['Model', 'Accuracy', 'Precision', 'Recall', 'F1-score', 'model_variables'])\n",
1030
- "evaluation_count_df = pd.DataFrame(columns=['Model', 'True Negatives', 'False Positives', 'False Negatives', 'True Positives', 'model_variables'])\n",
1031
- "\n",
1032
- "#############################################################################################################\n",
1033
- "# reset the dataframe containing all results, evaluation_score_df and evaluation_count_df\n",
1034
- "\n",
1035
- "reset_results = 'no' # 'yes' or 'no'\n",
1036
- "\n",
1037
- "#############################################################################################################\n",
1038
- "\n",
1039
- "if reset_results == 'yes':\n",
1040
- " evaluation_score_df = pd.DataFrame(columns=['Model', 'Accuracy', 'Precision', 'Recall', 'F1-score', 'model_variables'])\n",
1041
- " evaluation_count_df = pd.DataFrame(columns=['Model', 'True Negatives', 'False Positives', 'False Negatives', 'True Positives', 'model_variables'])\n",
1042
- " \n",
1043
- "\n",
1044
- "#############################################################################################################\n",
1045
- "\n",
1046
- "# input train and test sets\n",
1047
- "input_train_set = X_train\n",
1048
- "input_test_set = X_test\n",
1049
- "\n",
1050
- "\n",
1051
- "\n",
1052
- "# input feature removal variables\n",
1053
- "input_drop_duplicates = mr.Select(label=\"Drop Duplicates\", value=\"yes\", choices=[\"yes\", \"no\"]) # 'yes' or 'no'\n",
1054
- "input_drop_duplicates = str(input_drop_duplicates.value)\n",
1055
- "\n",
1056
- "input_missing_values_threshold = mr.Slider(label=\"Missing Value Threeshold\", value=80, min=0, max=100) # 0-100 (removes columns with more missing values than the threshold)\n",
1057
- "input_missing_values_threshold = int(input_missing_values_threshold.value)\n",
1058
- "\n",
1059
- "input_variance_threshold = mr.Select(label=\"Variance Threshold\", value=0, choices=[0, 0.01, 0.05, 0.1]) # \n",
1060
- "input_variance_threshold = float(input_variance_threshold.value)\n",
1061
- "\n",
1062
- "input_correlation_threshold = mr.Select(label=\"Correlation Threshold\", value=1, choices=[1, 0.95, 0.9, 0.8]) # \n",
1063
- "input_correlation_threshold = float(input_correlation_threshold.value)\n",
1064
- "\n",
1065
- "# input outlier removal variables\n",
1066
- "input_outlier_removal_threshold = mr.Select(label=\"Outlier Removal Threshold\", value=\"none\", choices=['none', 3, 4, 5]) # 'none' or zscore from 0 to 100\n",
1067
- "\n",
1068
- "if input_outlier_removal_threshold.value != 'none':\n",
1069
- " input_outlier_removal_threshold = int(input_outlier_removal_threshold.value)\n",
1070
- "elif input_outlier_removal_threshold.value == 'none':\n",
1071
- " input_outlier_removal_threshold = str(input_outlier_removal_threshold.value)\n",
1072
- "\n",
1073
- "# input scaling variables\n",
1074
- "input_scale_model = mr.Select(label=\"Scaling Variables\", value=\"none\", choices=['none', 'normal', 'standard', 'minmax', 'robust']) # 'none', 'normal', 'standard', 'minmax', 'robust'\n",
1075
- "input_scale_model = str(input_scale_model.value)\n",
1076
- "\n",
1077
- "# input imputation variables\n",
1078
- "input_imputation_method = mr.Select(label=\"Imputation Methods\", value=\"mean\", choices=['mean', 'median', 'knn', 'most_frequent']) # 'mean', 'median', 'knn', 'most_frequent'\n",
1079
- "input_n_neighbors = 5 # only for knn imputation\n",
1080
- "input_imputation_method = str(input_imputation_method.value)\n",
1081
- "\n",
1082
- "# input imbalance treatment variables\n",
1083
- "input_imbalance_treatment = mr.Select(label=\"Imbalance Treatment\", value=\"none\", choices=['none', 'smote', 'undersampling', 'rose']) # 'none', 'smote', 'undersampling', 'rose'\n",
1084
- "input_imbalance_treatment = str(input_imbalance_treatment.value)\n",
1085
- "\n",
1086
- "\n",
1087
- "# input model\n",
1088
- "input_model = mr.Select(label=\"Model Selection\", value=\"random_forest\", choices=['random_forest', 'logistic_regression', 'knn', 'svm', 'naive_bayes','decision_tree','xgboost']) # 'all', 'random_forest', 'logistic_regression', 'knn', \n",
1089
- " # 'svm', 'naive_bayes', # 'decision_tree', 'xgboost'\n",
1090
- "input_model = str(input_model.value)\n"
1091
- ]
1092
- },
1093
- {
1094
- "attachments": {},
1095
- "cell_type": "markdown",
1096
- "metadata": {
1097
- "slideshow": {
1098
- "slide_type": "skip"
1099
- }
1100
- },
1101
- "source": [
1102
- "### **Transform Data**"
1103
- ]
1104
- },
1105
- {
1106
- "attachments": {},
1107
- "cell_type": "markdown",
1108
- "metadata": {
1109
- "slideshow": {
1110
- "slide_type": "skip"
1111
- }
1112
- },
1113
- "source": [
1114
- "#### **Remove Features**"
1115
- ]
1116
- },
1117
- {
1118
- "cell_type": "code",
1119
- "execution_count": 15,
1120
- "metadata": {
1121
- "slideshow": {
1122
- "slide_type": "skip"
1123
- }
1124
- },
1125
- "outputs": [
1126
- {
1127
- "name": "stdout",
1128
- "output_type": "stream",
1129
- "text": [
1130
- "Shape of the dataframe is: (1175, 590)\n",
1131
- "the number of columns to be dropped due to duplications is: 104\n",
1132
- "the number of columns to be dropped due to missing values is: 8\n",
1133
- "the number of columns to be dropped due to low variance is: 12\n",
1134
- "the number of columns to be dropped due to high correlation is: 21\n",
1135
- "Total number of columns to be dropped is: 145\n",
1136
- "New shape of the dataframe is: (1175, 445)\n",
1137
- "<class 'list'>\n",
1138
- "No outliers were removed\n",
1139
- "The dataframe has not been scaled\n",
1140
- "The dataframe has not been scaled\n",
1141
- "Number of missing values before imputation: 19977\n",
1142
- "Number of missing values after imputation: 0\n",
1143
- "Number of missing values before imputation: 6954\n",
1144
- "Number of missing values after imputation: 0\n",
1145
- "Shape of the training set after no resampling: (1175, 445)\n",
1146
- "Value counts of the target variable after no resampling: \n",
1147
- " pass/fail\n",
1148
- "0 1097\n",
1149
- "1 78\n",
1150
- "dtype: int64\n"
1151
- ]
1152
- }
1153
- ],
1154
- "source": [
1155
- "# remove features using the function list_columns_to_drop\n",
1156
- "\n",
1157
- "dropped = columns_to_drop(input_train_set, \n",
1158
- " input_drop_duplicates, input_missing_values_threshold, \n",
1159
- " input_variance_threshold, input_correlation_threshold)\n",
1160
- "\n",
1161
- "# drop the columns from the training and testing sets and save the new sets as new variables\n",
1162
- "\n",
1163
- "X_train2 = input_train_set.drop(dropped, axis=1)\n",
1164
- "X_test2 = input_test_set.drop(dropped, axis=1)\n",
1165
- "\n",
1166
- "X_train_dropped_outliers = outlier_removal(X_train2, input_outlier_removal_threshold)\n",
1167
- "\n",
1168
- "\n",
1169
- "X_train_scaled = scale_dataframe(input_scale_model, X_train_dropped_outliers, X_train_dropped_outliers)\n",
1170
- "X_test_scaled = scale_dataframe(input_scale_model, X_train_dropped_outliers, X_test2)\n",
1171
- "\n",
1172
- "# impute the missing values in the training and testing sets using the function impute_missing_values\n",
1173
- "\n",
1174
- "X_train_imputed = impute_missing_values(input_imputation_method,X_train_scaled, X_train_scaled, input_n_neighbors)\n",
1175
- "X_test_imputed = impute_missing_values(input_imputation_method,X_train_scaled, X_test_scaled, input_n_neighbors)\n",
1176
- "\n",
1177
- "# treat imbalance in the training set using the function oversample\n",
1178
- "\n",
1179
- "X_train_res, y_train_res = imbalance_treatment(input_imbalance_treatment, X_train_imputed, y_train)\n",
1180
- "\n"
1181
- ]
1182
- },
1183
- {
1184
- "attachments": {},
1185
- "cell_type": "markdown",
1186
- "metadata": {
1187
- "slideshow": {
1188
- "slide_type": "skip"
1189
- }
1190
- },
1191
- "source": [
1192
- "### **Model Training**"
1193
- ]
1194
- },
1195
- {
1196
- "cell_type": "code",
1197
- "execution_count": 16,
1198
- "metadata": {
1199
- "slideshow": {
1200
- "slide_type": "skip"
1201
- }
1202
- },
1203
- "outputs": [],
1204
- "source": [
1205
- "# disable warnings\n",
1206
- "\n",
1207
- "import warnings\n",
1208
- "warnings.filterwarnings('ignore')\n",
1209
- "\n",
1210
- "# train the model using the function train_model and save the predictions as new variables\n",
1211
- "\n",
1212
- "y_pred_random_forest = train_model('random_forest', X_train_res, y_train_res, X_test_imputed, y_test)\n",
1213
- "y_pred_logistic_regression = train_model('logistic_regression', X_train_res, y_train_res, X_test_imputed, y_test)\n",
1214
- "y_pred_knn = train_model('knn', X_train_res, y_train_res, X_test_imputed, y_test)\n",
1215
- "y_pred_svm = train_model('svm', X_train_res, y_train_res, X_test_imputed, y_test)\n",
1216
- "y_pred_naive_bayes = train_model('naive_bayes', X_train_res, y_train_res, X_test_imputed, y_test)\n",
1217
- "y_pred_decision_tree = train_model('decision_tree', X_train_res, y_train_res, X_test_imputed, y_test)\n",
1218
- "y_pred_xgboost = train_model('xgboost', X_train_res, y_train_res, X_test_imputed, y_test)"
1219
- ]
1220
- },
1221
- {
1222
- "attachments": {},
1223
- "cell_type": "markdown",
1224
- "metadata": {
1225
- "slideshow": {
1226
- "slide_type": "skip"
1227
- }
1228
- },
1229
- "source": [
1230
- "#### **Evaluate and Save**"
1231
- ]
1232
- },
1233
- {
1234
- "cell_type": "code",
1235
- "execution_count": 17,
1236
- "metadata": {
1237
- "slideshow": {
1238
- "slide_type": "slide"
1239
- }
1240
- },
1241
- "outputs": [
1242
- {
1243
- "name": "stdout",
1244
- "output_type": "stream",
1245
- "text": [
1246
- "Have the duplicates been removed? yes\n",
1247
- "What is the missing values threshold %? 80\n",
1248
- "What is the variance threshold? 0.0\n",
1249
- "What is the correlation threshold? 1.0\n",
1250
- "What is the outlier removal threshold? none\n",
1251
- "What is the scaling method? none\n",
1252
- "What is the imputation method? mean\n",
1253
- "What is the imbalance treatment? none\n"
1254
- ]
1255
- },
1256
- {
1257
- "data": {
1258
- "text/html": [
1259
- "<div>\n",
1260
- "<style scoped>\n",
1261
- " .dataframe tbody tr th:only-of-type {\n",
1262
- " vertical-align: middle;\n",
1263
- " }\n",
1264
- "\n",
1265
- " .dataframe tbody tr th {\n",
1266
- " vertical-align: top;\n",
1267
- " }\n",
1268
- "\n",
1269
- " .dataframe thead th {\n",
1270
- " text-align: right;\n",
1271
- " }\n",
1272
- "</style>\n",
1273
- "<table border=\"1\" class=\"dataframe\">\n",
1274
- " <thead>\n",
1275
- " <tr style=\"text-align: right;\">\n",
1276
- " <th></th>\n",
1277
- " <th>Model</th>\n",
1278
- " <th>Accuracy</th>\n",
1279
- " <th>Precision</th>\n",
1280
- " <th>Recall</th>\n",
1281
- " <th>F1-score</th>\n",
1282
- " </tr>\n",
1283
- " </thead>\n",
1284
- " <tbody>\n",
1285
- " <tr>\n",
1286
- " <th>0</th>\n",
1287
- " <td>random_forest</td>\n",
1288
- " <td>0.93</td>\n",
1289
- " <td>0.0</td>\n",
1290
- " <td>0.0</td>\n",
1291
- " <td>0.0</td>\n",
1292
- " </tr>\n",
1293
- " </tbody>\n",
1294
- "</table>\n",
1295
- "</div>"
1296
- ],
1297
- "text/plain": [
1298
- " Model Accuracy Precision Recall F1-score\n",
1299
- "0 random_forest 0.93 0.0 0.0 0.0"
1300
- ]
1301
- },
1302
- "metadata": {},
1303
- "output_type": "display_data"
1304
- },
1305
- {
1306
- "data": {
1307
- "text/html": [
1308
- "<div>\n",
1309
- "<style scoped>\n",
1310
- " .dataframe tbody tr th:only-of-type {\n",
1311
- " vertical-align: middle;\n",
1312
- " }\n",
1313
- "\n",
1314
- " .dataframe tbody tr th {\n",
1315
- " vertical-align: top;\n",
1316
- " }\n",
1317
- "\n",
1318
- " .dataframe thead th {\n",
1319
- " text-align: right;\n",
1320
- " }\n",
1321
- "</style>\n",
1322
- "<table border=\"1\" class=\"dataframe\">\n",
1323
- " <thead>\n",
1324
- " <tr style=\"text-align: right;\">\n",
1325
- " <th></th>\n",
1326
- " <th>Model</th>\n",
1327
- " <th>True Negatives</th>\n",
1328
- " <th>False Positives</th>\n",
1329
- " <th>False Negatives</th>\n",
1330
- " <th>True Positives</th>\n",
1331
- " </tr>\n",
1332
- " </thead>\n",
1333
- " <tbody>\n",
1334
- " <tr>\n",
1335
- " <th>0</th>\n",
1336
- " <td>random_forest</td>\n",
1337
- " <td>366</td>\n",
1338
- " <td>0</td>\n",
1339
- " <td>26</td>\n",
1340
- " <td>0</td>\n",
1341
- " </tr>\n",
1342
- " </tbody>\n",
1343
- "</table>\n",
1344
- "</div>"
1345
- ],
1346
- "text/plain": [
1347
- " Model True Negatives False Positives False Negatives \\\n",
1348
- "0 random_forest 366 0 26 \n",
1349
- "\n",
1350
- " True Positives \n",
1351
- "0 0 "
1352
- ]
1353
- },
1354
- "metadata": {},
1355
- "output_type": "display_data"
1356
- },
1357
- {
1358
- "data": {
1359
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFzCAYAAAAe6uPKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAtCElEQVR4nO3deVxUVf8H8M8IDqDAKCCDKCpuiGyyPCIq7oJaGk9mZrniWu57/kp9ysw9TA2zXJDyMTWzzHwy3EWWAsEFETVlkUWUVQwBh/n9YY2Oo8goOJzh83695lX3zL2H78xLPh7vPfceiVKpVIKIiIRRR9cFEBGRdhjcRESCYXATEQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU1EJBhDXRfwIsrLy5GRkQEzMzNIJBJdl0NE9NyUSiXu3LkDW1tb1KlT8Zha6ODOyMiAnZ2drssgIqoyaWlpaNq0aYX7CB3cZmZmAABp+1GQGEh1XA3ps9Tjq3VdAum5O4WFaG1vp8q1iggd3P+cHpEYSBncVK3Mzc11XQLVEpU57cuLk0REgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3Hpg/JCu+H3XAtw8tQo3T63C8e2z4delvdo+DvZy7Fk7EVknVyE7fDVObJ8NO5uGavt4u9rjf5um4nbEGmSeXIlDX0+HsVHdl/lRSE9s2hiMdm3s0cDUGJ07eiI8/JSuS9IrhrougF5c+s18LFz/E/5MvQ0AGD7QG3uCJqDTW8uReC0L9k2tcGTrLGz/MQKfbPwFBUXFaGdvg3slZao+vF3t8dOG97B622+YtWIPSu8r4Nq2CcrLlbr6WCSoPbt3Ye7sGfh8fTB8OnfB5q83IeDV/jhz7iKaNWum6/L0gkSpVAr7m1lYWAiZTAYjl/GQGEh1XU6Nkn58Bf5v7Y/Y/mMkQpePQVmZAmMXhj51/xPbZ+NI9CV8HPzLS6xSHHl/bNB1CcLw7ewNd3cPrPtio6qtg4sjBg4KwJKly3RYWc1WWFgIuaUMBQUFMDc3r3BfnirRM3XqSDDE3xP1TaSIPncdEokE/bo64UpqNvZ/MRkpR5bhZOgcDOzhqjqmUUNTdHS1x63cIhwLmYXkw5/it83T0blDSx1+EhJRaWkp4s7EondfP7X23n38EBUZoaOq9A+DW084tbbFrdNrUBC9Fus+GIqhs7/GpWtZsLYwhVl9Y8wZ0xdhERcx8N0N2H/sLL5bMw5dPVsDAOybWgEAPpg4AFt/iMBrk4MRn5iGg5umolWzRrr8WCSY27dvQ6FQwNpartYul8tx82aWjqrSPzzHrScuJ9+E91vL0MCsHgJ6d8DXH4+A37jPUXCnGABw4Ph5rN9xDABw7nI6vN1aYvwbXREeexV16kgAAFv2huOb/VEAgLNJN9CjowNGveaDRev36+ZDkbAkEonatlKp1Gij58cRt54ou6/AtbTbOHMxFYvW78f5y+mYPKwHbucVoaxMgcRrmWr7J13LUs0qybxVCABIvKY+Ikq6nqUx84SoIlZWVjAwMNAYXWdnZ2uMwun5Mbj1lAQSGEkNUXZfgdiLKWjbXP2Xpk1za6Rm5gEAUjJykJGdj7YtrNX2ad3cGqmZuS+tZhKfVCqFu4cnjh4OU2s/eiQMnXw666gq/cNTJXrgoykD8dvpi0jLyoNZfWMM8fdEN682GDQ5GAAQtP0wvlkRiPAzV3Ei5jL8OrfHgG7O8B//uaqPoO2H8eGkV3D+cjrOJt3A8IHecGghx9tzt+jqY5Ggps2YhbGjR8DD0wvenXywZfNXSEtNxbgJk3Rdmt5gcOsBa0szbPlkJGyszFFQdA8XrqRj0ORgHI2+BADYf+wcpi79DnMD/bBm3hu4nJKNYXM3IyL+mqqPDf89DmOjulg5ezAayurh/OV0vPruBly/cVtXH4sENeTNocjNycGnSz9GVmYmnJyc8ePPB9G8eXNdl6Y3dD6POzg4GKtWrUJmZiacnJywdu1a+Pr6VupYzuOml4XzuKm6CTOPe9euXZgxYwY++OADxMXFwdfXF/3790dqaqouyyIiqtF0GtyfffYZxo4di3HjxsHR0RFr166FnZ0dNm7c+OyDiYhqKZ0Fd2lpKWJjY+Hnp36HlZ+fHyIinnyHVUlJCQoLC9VeRES1jc6C+587rORyzTussrKefIfVsmXLIJPJVC87O7uXUSoRUY2i83nc2txhtWDBAhQUFKheaWlpL6NEIqIaRWfB/c8dVo+PrrOzszVG4f8wMjKCubm52qu2sJDVR8qRZWjW2EKndTi1tsXVX5egnjFn8eijnJwcNLO1Rkpysk7ruHD+PFq1aIq7d+/qtI6aSmfBLZVK4enpibAw9TuswsLC0Lkz77B63NxAPxw8eV51J+PquYNxesc85EcHIeq79yvVh7SuIT6bPwRpR5fjdsQa7Fk7EU2sG6jt08DMBFuWjETWyVXIOrkKW5aMhMzURPV+wtUMxFxIwdThPavss1HNsWrFMgx4ZSCat2gBAEhNTcXggIGwlNVHUxsrzJoxDaWlpRX2UVJSgpnTp6KpjRUsZfXxxr8H4caNG2r75OXlIXDUCMgtZZBbyhA4agTy8/NV7zu7uMDrXx2x/vOgqv6IekGnp0pmzZqFzZs3Y+vWrUhMTMTMmTORmpqKSZN4h9WjjI3qYlSAD0L2RaraJBIJQn+Kwve/nal0P6vmDsagnq4YuWAbeo8JgqmJFHvXTVI9ZAoAQpaNhqtDU7w2JRivTQmGq0NTbPlkpFo/ofujMGGIr9pxJL7i4mJs37YFowPHAQAUCgVeH/QK7t69iyPHwxG64zv8uG8v5s+dXWE/c2fNwP6f9iF0x3c4cjwcRUVFGPzaq1AoFKp9Ro94G+fOxuOnA7/ipwO/4tzZeIwdPUKtn5GjxuCrTRvVjqMHdHrn5NChQ5GTk4OPP/4YmZmZcHZ2xsGDvMPqcf5d2uO+QoHoc9dVbbNXfg8AsGo4AM5tmjyzD3NTY4wO8MHYD0NxLDoJABD4YSiu/G8Jenm3w+HIRDjYy+HfxQndRqzCHxdSAACTl/wXJ0LnoE1za1xJyQYAhEUkwkJWH76ebXDij8tV/XFJRw79+j8YGhqik48PAOBw2G9ITLyIKwfTYGtrCwBYvnINJowdjY+WLH3iqcqCggKEbNuCLSHfoFfvPgCArdu/RRt7Oxw9chh9/fxxKTERvx36FSfCo9DR2xsA8MWXX6OHrw8uJyWhrYMDAKCvnz9yc3Jw6uQJ9OjZ62V8BcLQ+cXJ9957D8nJySgpKUFsbCy6deum65JqnK4erXHm4ovdlOTu2AzSuoY4HJmoasu8VYCEPzPQyc0ewIPly/Lv/KUKbQD4/Xwy8u/8hU5uDxdVKLuvwPnL6eji3uqFaqKaJfzUSXh4eqm2o6Mi4eTkrApt4EGYlpSUIO5M7BP7iDsTi7KyMvR5ZCEFW1tbODk5qxZSiI6KhEwmU4U2AHh36gSZTKa22IJUKoWLqxtOc71KDToPbnq25rYWyLxV8EJ92Fiao6S0DPl/P5/7H9k5dyC3fDByklua41Zukcaxt3KLILdSH11lZOejua3lC9VENUtKSjIaN34Y0jezsmD92ESBhg0bQiqVPnXKblZWFqRSKRo2VH8csLVcjpt/H3PzZhYaWVtrHNvI2lrjcbC2TZro/EJpTcTgFoCxkRT3Su5XS98SiQSPPqzmSY+ukUgAPNZeXFKGesZcAV6f3CsuhrGxsVrbk6bmPs+iCI8f87R+8Vi7ibEJ/ir+S6ufVRswuAWQk1+Ehub1XqiPrJxCGEnrooGZiVp7IwtTZOc8uAP1Zk4hrC3NNI61amiKmzl31Noayurhdp7m6JzEZWlphbz8PNW23MZGNUr+R15eHsrKyp46ZdfGxgalpaXIy8tTa7+Vna0avcvlNsi+eVPj2Nu3bkH+2GILeXm5sLLi8nmPY3AL4OylG2jX0uaF+ohLTEVp2X307tRO1WZjZQ6nVraIOvvgomf0uetoYFYPXk4PLw7/y7k5GpjVQ9TZa2r9ObWyRXyS+hQvEpubuzsuXbyo2vbu5IOEhAvIzHy4etLhsN9gZGQEdw/PJ/bh7uGJunXr4sgjCylkZmYiIeGCaiEF704+KCgowB+//67a5/foaBQUFGgstpCQcAEdOrhXyefTJwxuAYRFJqJ9y8Zqo+WWdlZwbdsEcitzmBjVhWvbJnBt2wR1DQ0AALaNZIj/4UNVCBcW3UPIj5FYPut19OjYFm4OTbH1k1G4cDVD9dzupOs3ceh0Ar5YNAwdXVqgo0sLfLHwbfxy4rxqRgkANGtsAVtrGY79fRzph759/XHxYoJqtNynrx8cHdtj7OgRiI+Lw7GjR7Bg/hyMGTteNaMkPT0dbs7tVCEsk8kwesxYvD9vNo4dPYL4uDgEjhoOZ2cX1SyTdo6O8PPvh8mTxiM6KgrRUVGYPGk8BrzyqmpGCQCkJCcjIz0dPf8+jh7iQgoCSLiagTOJqRjs54Ete08DADYuegfdvNqo9onetQAA4DBgEVIzc2FoaAAHexuYPHKH47zVe6FQlOPbFWNhYlQXx35PwoTp36C8/OH56zH/tx1r5r2Bn4MnAwB+OXEeM5fvUavnzf5eOBx5SbX0GekHZxcXeHh6Ye+e3Rg3YSIMDAzww/5fMGPqe+jVvQtMTEzw5ltvY/nK1apj7peV4XJSEoofOQ+9ck0QDAwNMXzYmyguLkbPXr3x1ZYQGBgYqPbZFroDs2dMw8ABD2afvPLqIAStU3/m+e5dO9Gnrx+nBz+BzhdSeBG1aSEF/67tsWzmv+H5xqdPvID4skjrGuLCT4swakEIIh87faLPastCCr/+7yAWzJ+D2PgLqFNHd/8gLykpgbNjG2z/Zic6d+miszpeJm0WUuCIWxCHwi+itZ01mljLcONmvs7qaNbYAiu2HKpVoV2b9Os/AFevXEF6erpOn76ZmpKC+e9/UGtCW1sccRNVQm0ZcZPuCLN0GRERaY/BTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCcawMjvt37+/0h0OGjTouYshIqJnq1RwBwQEVKoziUQChULxIvUQEdEzVCq4y8vLq7sOIiKqpBc6x33v3r2qqoOIiCpJ6+BWKBRYsmQJmjRpAlNTU1y7dg0AsHDhQmzZsqXKCyQiInVaB/fSpUsREhKClStXQiqVqtpdXFywefPmKi2OiIg0aR3coaGh+Oqrr/DOO+/AwMBA1e7q6opLly5VaXFERKRJ6+BOT09H69atNdrLy8tRVlZWJUUREdHTaR3cTk5OOHXqlEb7nj174O7uXiVFERHR01VqOuCjFi9ejBEjRiA9PR3l5eX44YcfkJSUhNDQUBw4cKA6aiQiokdoPeIeOHAgdu3ahYMHD0IikWDRokVITEzEzz//jL59+1ZHjURE9AitR9wA4O/vD39//6quhYiIKuG5ghsAYmJikJiYCIlEAkdHR3h6elZlXURE9BRaB/eNGzcwbNgwnD59Gg0aNAAA5Ofno3Pnzti5cyfs7OyqukYiInqE1ue4AwMDUVZWhsTEROTm5iI3NxeJiYlQKpUYO3ZsddRIRESP0HrEferUKURERMDBwUHV5uDggPXr16NLly5VWhwREWnSesTdrFmzJ95oc//+fTRp0qRKiiIioqfTOrhXrlyJqVOnIiYmBkqlEsCDC5XTp0/H6tWrq7xAIiJSV6lTJQ0bNoREIlFt3717F97e3jA0fHD4/fv3YWhoiMDAwEovukBERM+nUsG9du3aai6DiIgqq1LBPWrUqOqug4iIKum5b8ABgOLiYo0Llebm5i9UEBERVUzri5N3797FlClTYG1tDVNTUzRs2FDtRURE1Uvr4J43bx6OHj2K4OBgGBkZYfPmzfjoo49ga2uL0NDQ6qiRiIgeofWpkp9//hmhoaHo0aMHAgMD4evri9atW6N58+bYsWMH3nnnneqok4iI/qb1iDs3Nxf29vYAHpzPzs3NBQB07doVJ0+erNrqiIhIg9bB3bJlSyQnJwMA2rdvj927dwN4MBL/56FTRERUfbQO7jFjxuDs2bMAgAULFqjOdc+cORNz586t8gKJiEid1ue4Z86cqfr/nj174tKlS4iJiUGrVq3g5uZWpcUREZGmF5rHDTx46FSzZs2qohYiIqqESgX3unXrKt3htGnTnrsYIiJ6tkoFd1BQUKU6k0gkDG4iompWqeC+fv16dddBRESVpPWsEiIi0i0GNxGRYBjcRESCYXATEQmGwU1EJJjnCu5Tp05h+PDh8PHxQXp6OgDgm2++QXh4eJUWR0REmrQO7r1798Lf3x8mJiaIi4tDSUkJAODOnTv49NNPq7xAIiJSp3Vwf/LJJ/jyyy/x9ddfo27duqr2zp0748yZM1VaHBERadI6uJOSktCtWzeNdnNzc+Tn51dFTUREVAGtg7tx48a4evWqRnt4eDhatmxZJUUREdHTaR3cEydOxPTp0xEdHQ2JRIKMjAzs2LEDc+bMwXvvvVcdNRIR0SO0fqzrvHnzUFBQgJ49e+LevXvo1q0bjIyMMGfOHEyZMqU6aiQiokdIlEql8nkO/Ouvv3Dx4kWUl5ejffv2MDU1reranqmwsBAymQxGLuMhMZC+9J9PtUfeHxt0XQLpucLCQsgtZSgoKIC5uXmF+z73Qgr16tWDl5fX8x5ORETPSevg7tmzJyQSyVPfP3r06AsVREREFdM6uDt06KC2XVZWhvj4eFy4cAGjRo2qqrqIiOgptA7up62G85///AdFRUUvXBAREVWsyh4yNXz4cGzdurWquiMioqeosuCOjIyEsbFxVXVHRERPofWpktdff11tW6lUIjMzEzExMVi4cGGVFUZERE+mdXDLZDK17Tp16sDBwQEff/wx/Pz8qqwwIiJ6Mq2CW6FQYPTo0XBxcYGFhUV11URERBXQ6hy3gYEB/P39UVBQUF31EBHRM2h9cdLFxQXXrl2rjlqIiKgStA7upUuXYs6cOThw4AAyMzNRWFio9iIiouql9cXJfv36AQAGDRqkduu7UqmERCKBQqGouuqIiEiD1sF97Nix6qiDiIgqSevgtre3h52dncaDppRKJdLS0qqsMCIiejKtz3Hb29vj1q1bGu25ubmwt7evkqKIiOjptA7uf85lP66oqIi3vBMRvQSVPlUya9YsAIBEIsHChQtRr1491XsKhQLR0dEaj3wlIqKqV+ngjouLA/BgxH3+/HlIpQ+XCpNKpXBzc8OcOXOqvkIiIlJT6eD+ZzbJmDFj8Pnnnz9zTTQiIqoeWs8q2bZtW3XUQURElVRlz+MmIqKXg8FNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFw66E5gX4I/3YussNXI+XIMuz+bDzaNLfW2M/BXo49ayci6+QqZIevxonts2Fn01AHFZO+2bQxGO3a2KOBqTE6d/REePgpXZekVxjcesjXozW+3HUS3UeuxqvvboCBgQEObJyCesZS1T72Ta1wZOssXL6eBf/xn6Pj0GVY9vWvuFdSpsPKSR/s2b0Lc2fPwPz3P0DUH3Ho3NUXAa/2R2pqqq5L0xsSpVKp1HURz6uwsBAymQxGLuMhMZA++4BayqqhKdKOLkefsUE4feZPAEDo8jEoK1Ng7MJQHVcnhrw/Nui6BGH4dvaGu7sH1n2xUdXWwcURAwcFYMnSZTqsrGYrLCyE3FKGgoICmJubV7gvR9y1gLmpMQAgr+AvAIBEIkG/rk64kpqN/V9MRsqRZTgZOgcDe7jqskzSA6WlpYg7E4veff3U2nv38UNUZISOqtI/DO5aYMXswTh95iou/pkJALC2MIVZfWPMGdMXYREXMfDdDdh/7Cy+WzMOXT1b67haEtnt27ehUChgbS1Xa5fL5bh5M0tHVekfQ10XQNUr6P034dLGFr3HBKna6tR58Pf1gePnsX7HMQDAucvp8HZrifFvdEV47FWd1Er6QyKRqG0rlUqNNnp+HHHrsc/mD8Gr3V3gP34d0rPzVe2384pQVqZA4rVMtf2TrmVxVgm9ECsrKxgYGGiMrrOzszVG4fT8GNx6Kmj+ELzWyw39Jq5DSkaO2ntl9xWIvZiCts3Vf5HaNLdGambeyyyT9IxUKoW7hyeOHg5Taz96JAydfDrrqCr9w1MlemjtgjcxtL8Xhsz8CkV370FuaQYAKCi6p5ruF7T9ML5ZEYjwM1dxIuYy/Dq3x4BuzvAf/7kuSyc9MG3GLIwdPQIenl7w7uSDLZu/QlpqKsZNmKTr0vQGpwPqoeK4J09dG7/oG3z7c7Rqe+RrnTA30A9NrBvgcko2PvnyFxw4fv5llSkUTgfUzqaNwfhszUpkZWbCyckZK9cEoatvN12XVaNpMx1Qp8F98uRJrFq1CrGxscjMzMS+ffsQEBBQ6eMZ3PSyMLipugkzj/vu3btwc3PDhg38pSAiqiydnuPu378/+vfvr8sSiIiEI9TFyZKSEpSUlKi2CwsLdVgNEZFuCDUdcNmyZZDJZKqXnZ2drksiInrphAruBQsWoKCgQPVKS0vTdUlERC+dUMFtZGQEc3NztVdtYSGrj5Qjy9CssYVO63BqbYurvy5Re0Qs6Y+cnBw0s7VGSnKyTuu4cP48WrVoirt37+q0jppKqOCuzeYG+uHgyfNIzcwFAKyeOxind8xDfnQQor57v1J9SOsa4rP5Q5B2dDluR6zBnrUT0cS6gdo+DcxMsGXJSGSdXIWsk6uwZclIyExNVO8nXM1AzIUUTB3es8o+G9Ucq1Ysw4BXBqJ5ixYAgNTUVAwOGAhLWX00tbHCrBnTUFpaWmEfJSUlmDl9KpraWMFSVh9v/HsQbty4obZPXl4eAkeNgNxSBrmlDIGjRiA/P1/1vrOLC7z+1RHrPw8CadJpcBcVFSE+Ph7x8fEAgOvXryM+Pp4PXH+MsVFdjArwQci+SFWbRCJB6E9R+P63M5XuZ9XcwRjU0xUjF2xD7zFBMDWRYu+6SahT5+HDf0KWjYarQ1O8NiUYr00JhqtDU2z5ZKRaP6H7ozBhiK/acSS+4uJibN+2BaMDxwEAFAoFXh/0Cu7evYsjx8MRuuM7/LhvL+bPnV1hP3NnzcD+n/YhdMd3OHI8HEVFRRj82qtQKBSqfUaPeBvnzsbjpwO/4qcDv+Lc2XiMHT1CrZ+Ro8bgq00b1Y6jB3Qa3DExMXB3d4e7uzsAYNasWXB3d8eiRYt0WVaN49+lPe4rFIg+d13VNnvl99i0+ySu38ip4MiHzE2NMTrAB+9/tg/HopNwNukGAj8MhXNrW/TybgfgwVJm/l2c8N7HOxB97jqiz13H5CX/xSvdXdSWPguLSISFrD58PdtU7QclnTr06/9gaGiITj4+AIDDYb8hMfEitm7/Fh3c3dGrdx8sX7kG27Z8/dQZXQUFBQjZtgXLV65Br9590MHdHVu3f4sLF87j6JHDAIBLiYn47dCvCN60GZ18fNDJxwdffPk1Dv5yAJeTklR99fXzR25ODk6dPFH9H14wOg3uHj16QKlUarxCQkJ0WVaN09WjNc5cfLF/hbg7NoO0riEORyaq2jJvFSDhzwx0crMHAHi72iP/zl/440KKap/fzycj/85f6OTWUtVWdl+B85fT0cW91QvVRDVL+KmT8PD0Um1HR0XCyckZtra2qra+fv4oKSlB3JnYJ/YRdyYWZWVl6PPIQgq2trZwcnJWLaQQHRUJmUyGjt7eqn28O3WCTCZTW2xBKpXCxdUNp7lepQae4xZAc1sLZN4qeKE+bCzNUVJahvw7xWrt2Tl3ILd8cJFXbmmOW7lFGsfeyi2C3Er9QnBGdj6a21q+UE1Us6SkJKNx44chfTMrC9Zy9SdINmzYEFKpFFlZT14UISsrC1KpFA0bqj8e2Foux82/j7l5MwuNrDUXr25kba3xOFjbJk10fqG0JmJwC8DYSIp7JferpW+JRIJHH1bzpEfXSCQAHmsvLilDPeO61VIT6ca94mIYGxurtT1p8YPnWRTh8WOe1i8eazcxNsFfxX9p9bNqAwa3AHLyi9DQvN4L9ZGVUwgjaV00MDNRa29kYYrsnAfnK2/mFML670fAPsqqoSlu5txRa2soq4fbeZqjcxKXpaUV8vIfPo9dbmOjGiX/Iy8vD2VlZZDLn7wogo2NDUpLS5GXp/5c91vZ2arRu1xug+ybNzWOvX3rFuSPLbaQl5cLK6tGz/V59BmDWwBnL91Au5Y2L9RHXGIqSsvuo3endqo2GytzOLWyRdTZBxc9o89dRwOzevByaq7a51/OzdHArB6izl5T68+plS3ik9SneJHY3NzdceniRdW2dycfJCRcQGbmw5WSDof9BiMjI7h7eD6xD3cPT9StWxdHHllIITMzEwkJF1QLKXh38kFBQQH++P131T6/R0ejoKBAY7GFhIQL6NDBvUo+nz5hcAsgLDIR7Vs2Vhstt7SzgmvbJpBbmcPEqC5c2zaBa9smqGtoAACwbSRD/A8fqkK4sOgeQn6MxPJZr6NHx7Zwc2iKrZ+MwoWrGTgafQkAkHT9Jg6dTsAXi4aho0sLdHRpgS8Wvo1fTpzHlZRs1c9u1tgCttYyHPv7ONIPffv64+LFBNVouU9fPzg6tsfY0SMQHxeHY0ePYMH8ORgzdrzq5rf09HS4ObdThbBMJsPoMWPx/rzZOHb0COLj4hA4ajicnV3Qq3cfAEA7R0f4+ffD5EnjER0VheioKEyeNB4DXnkVbR0cVPWkJCcjIz0dPf8+jh4S6iFTtVXC1QycSUzFYD8PbNl7GgCwcdE76Ob1cDpe9K4FAACHAYuQmpkLQ0MDONjbwOSROxznrd4LhaIc364YCxOjujj2exImTP8G5eUPz1+P+b/tWDPvDfwcPBkA8MuJ85i5fI9aPW/298LhyEtc5kzPOLu4wMPTC3v37Ma4CRNhYGCAH/b/ghlT30Ov7l1gYmKCN996G8tXrlYdc7+sDJeTklD8yHnolWuCYGBoiOHD3kRxcTF69uqNr7aEwMDAQLXPttAdmD1jGgYOeDD75JVXByFonfrjnXfv2ok+ff3QvHlzkDqugCMI/67tsWzmv+H5xqdPvID4skjrGuLCT4swakEIIh87faLPastCCr/+7yAWzJ+D2PgLqFNHd/8gLykpgbNjG2z/Zic6d+miszpeJm0WUuCIWxCHwi+itZ01mljLcONmvs7qaNbYAiu2HKpVoV2b9Os/AFevXEF6erpOn76ZmpKC+e9/UGtCW1sccRNVQm0ZcZPuCLN0GRERaY/BTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIIx1HUBL0KpVD74r6JUx5WQvissLNR1CaTn7vz9Z+yfXKuIRFmZvWqoGzduwM7OTtdlEBFVmbS0NDRt2rTCfYQO7vLycmRkZMDMzAwSiUTX5QihsLAQdnZ2SEtLg7m5ua7LIT3FP2faUyqVuHPnDmxtbVGnTsVnsYU+VVKnTp1n/s1ET2Zubs5fKKp2/HOmHZlMVqn9eHGSiEgwDG4iIsEwuGsZIyMjLF68GEZGRrouhfQY/5xVL6EvThIR1UYccRMRCYbBTUQkGAY3EZFgGNxERIJhcNcywcHBsLe3h7GxMTw9PXHq1Cldl0R65OTJkxg4cCBsbW0hkUjw448/6rokvcTgrkV27dqFGTNm4IMPPkBcXBx8fX3Rv39/pKam6ro00hN3796Fm5sbNmzYoOtS9BqnA9Yi3t7e8PDwwMaNG1Vtjo6OCAgIwLJly3RYGekjiUSCffv2ISAgQNel6B2OuGuJ0tJSxMbGws/PT63dz88PEREROqqKiJ4Hg7uWuH37NhQKBeRyuVq7XC5HVlaWjqoioufB4K5lHn/8rVKp5CNxiQTD4K4lrKysYGBgoDG6zs7O1hiFE1HNxuCuJaRSKTw9PREWFqbWHhYWhs6dO+uoKiJ6HkIvpEDamTVrFkaMGAEvLy/4+Pjgq6++QmpqKiZNmqTr0khPFBUV4erVq6rt69evIz4+HhYWFmjWrJkOK9MvnA5YywQHB2PlypXIzMyEs7MzgoKC0K1bN12XRXri+PHj6Nmzp0b7qFGjEBIS8vIL0lMMbiIiwfAcNxGRYBjcRESCYXATEQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU16o0WLFli7dq1qW1crsPznP/9Bhw4dnvr+8ePHIZFIkJ+fX+k+e/TogRkzZrxQXSEhIWjQoMEL9UE1A4Ob9FZmZib69+9fqX2fFbZENQmfVUI1SmlpKaRSaZX0ZWNjUyX9ENU0HHFTtenRowemTJmCKVOmoEGDBrC0tMSHH36IR5+y0KJFC3zyyScYPXo0ZDIZxo8fDwCIiIhAt27dYGJiAjs7O0ybNg13795VHZednY2BAwfCxMQE9vb22LFjh8bPf/xUyY0bN/DWW2/BwsIC9evXh5eXF6KjoxESEoKPPvoIZ8+ehUQigUQiUT1Xo6CgABMmTIC1tTXMzc3Rq1cvnD17Vu3nLF++HHK5HGZmZhg7dizu3bun1feUk5ODYcOGoWnTpqhXrx5cXFywc+dOjf3u379f4XdZWlqKefPmoUmTJqhfvz68vb1x/PhxrWohMTC4qVpt374dhoaGiI6Oxrp16xAUFITNmzer7bNq1So4OzsjNjYWCxcuxPnz5+Hv74/XX38d586dw65duxAeHo4pU6aojhk9ejSSk5Nx9OhRfP/99wgODkZ2dvZT6ygqKkL37t2RkZGB/fv34+zZs5g3bx7Ky8sxdOhQzJ49G05OTsjMzERmZiaGDh0KpVKJV155BVlZWTh48CBiY2Ph4eGB3r17Izc3FwCwe/duLF68GEuXLkVMTAwaN26M4OBgrb6je/fuwdPTEwcOHMCFCxcwYcIEjBgxAtHR0Vp9l2PGjMHp06fx3Xff4dy5cxgyZAj69euHK1euaFUPCUBJVE26d++udHR0VJaXl6va5s+fr3R0dFRtN2/eXBkQEKB23IgRI5QTJkxQazt16pSyTp06yuLiYmVSUpISgDIqKkr1fmJiohKAMigoSNUGQLlv3z6lUqlUbtq0SWlmZqbMycl5Yq2LFy9Wurm5qbUdOXJEaW5urrx3755ae6tWrZSbNm1SKpVKpY+Pj3LSpElq73t7e2v09ahjx44pASjz8vKeus+AAQOUs2fPVm0/67u8evWqUiKRKNPT09X66d27t3LBggVKpVKp3LZtm1Imkz31Z5I4eI6bqlWnTp3Ulkbz8fHBmjVroFAoYGBgAADw8vJSOyY2NhZXr15VO/2hVCpRXl6O69ev4/LlyzA0NFQ7rl27dhXOmIiPj4e7uzssLCwqXXtsbCyKiopgaWmp1l5cXIw///wTAJCYmKjxPHMfHx8cO3as0j9HoVBg+fLl2LVrF9LT01FSUoKSkhLUr19fbb+KvsszZ85AqVSibdu2aseUlJRo1E/iY3CTzj0eUOXl5Zg4cSKmTZumsW+zZs2QlJQEQHP9zIqYmJhoXVd5eTkaN278xPPEVTmtbs2aNQgKCsLatWvh4uKC+vXrY8aMGSgtLdWqVgMDA8TGxqr+QvyHqalpldVKNQODm6pVVFSUxnabNm00wuVRHh4eSEhIQOvWrZ/4vqOjI+7fv4+YmBh07NgRAJCUlFThvGhXV1ds3rwZubm5Txx1S6VSKBQKjTqysrJgaGiIFi1aPLWWqKgojBw5Uu0zauPUqVN47bXXMHz4cAAPQvjKlStwdHRU26+i79Ld3R0KhQLZ2dnw9fXV6ueTeHhxkqpVWloaZs2ahaSkJOzcuRPr16/H9OnTKzxm/vz5iIyMxOTJkxEfH48rV65g//79mDp1KgDAwcEB/fr1w/jx4xEdHY3Y2FiMGzeuwlH1sGHDYGNjg4CAAJw+fRrXrl3D3r17ERkZCeDB7JZ/ltm6ffs2SkpK0KdPH/j4+CAgIACHDh1CcnIyIiIi8OGHHyImJgYAMH36dGzduhVbt27F5cuXsXjxYiQkJGj1HbVu3RphYWGIiIhAYmIiJk6cqLGo87O+y7Zt2+Kdd97ByJEj8cMPP+D69ev4448/sGLFChw8eFCreqjmY3BTtRo5ciSKi4vRsWNHTJ48GVOnTsWECRMqPMbV1RUnTpzAlStX4OvrC3d3dyxcuBCNGzdW7bNt2zbY2dmhe/fueP3111VT9p5GKpXit99+g7W1NQYMGAAXFxcsX75cNfIfPHgw+vXrh549e6JRo0bYuXMnJBIJDh48iG7duiEwMBBt27bFW2+9heTkZMjlcgDA0KFDsWjRIsyfPx+enp5ISUnBu+++q9V3tHDhQnh4eMDf3x89evRQ/QWj7Xe5bds2jBw5ErNnz4aDgwMGDRqE6Oho2NnZaVUP1XxcuoyqTY8ePdChQwe129CJ6MVxxE1EJBgGNxGRYHiqhIhIMBxxExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJ5v8BCopgfEX+iNkAAAAASUVORK5CYII=",
1360
- "text/plain": [
1361
- "<Figure size 400x400 with 1 Axes>"
1362
- ]
1363
- },
1364
- "metadata": {},
1365
- "output_type": "display_data"
1366
- }
1367
- ],
1368
- "source": [
1369
- "evaluation_score_output, evaluation_counts_output = evaluate_models(input_model)\n",
1370
- "\n",
1371
- "# check if the model has already been evaluated and if not, append the results to the dataframe\n",
1372
- "\n",
1373
- "evaluation_score_df = pd.concat([evaluation_score_output, evaluation_score_df], ignore_index=True) \n",
1374
- "display(pd.DataFrame(evaluation_score_output))\n",
1375
- "\n",
1376
- "evaluation_count_df = pd.concat([evaluation_counts_output, evaluation_count_df], ignore_index=True) \n",
1377
- "display(pd.DataFrame(evaluation_counts_output))\n",
1378
- "\n",
1379
- "from mlxtend.plotting import plot_confusion_matrix\n",
1380
- "\n",
1381
- "# select the model index and filter the row from evaluation_count_df dataframe\n",
1382
- "model_index = 0\n",
1383
- "\n",
1384
- "selected_model = evaluation_count_df[evaluation_count_df.index == model_index]\n",
1385
- "\n",
1386
- "# create a np.array with selected_model values\n",
1387
- "\n",
1388
- "\n",
1389
- "conf_matrix = np.array([[selected_model['True Negatives'].values[0], selected_model['False Positives'].values[0]],\n",
1390
- " [selected_model['False Negatives'].values[0], selected_model['True Positives'].values[0]]])\n",
1391
- "\n",
1392
- "#change the size of the graph\n",
1393
- "\n",
1394
- "plt.rcParams['figure.figsize'] = [4, 4]\n",
1395
- "\n",
1396
- "fig, ax = plot_confusion_matrix(\n",
1397
- " conf_mat=conf_matrix,\n",
1398
- " show_absolute=True,\n",
1399
- " show_normed=True\n",
1400
- ")"
1401
- ]
1402
- },
1403
- {
1404
- "attachments": {},
1405
- "cell_type": "markdown",
1406
- "metadata": {},
1407
- "source": [
1408
- "#### **Plot Evaluation**"
1409
- ]
1410
- }
1411
- ],
1412
- "metadata": {
1413
- "kernelspec": {
1414
- "display_name": "base",
1415
- "language": "python",
1416
- "name": "python3"
1417
- },
1418
- "language_info": {
1419
- "codemirror_mode": {
1420
- "name": "ipython",
1421
- "version": 3
1422
- },
1423
- "file_extension": ".py",
1424
- "mimetype": "text/x-python",
1425
- "name": "python",
1426
- "nbconvert_exporter": "python",
1427
- "pygments_lexer": "ipython3",
1428
- "version": "3.9.16"
1429
- },
1430
- "orig_nbformat": 4
1431
- },
1432
- "nbformat": 4,
1433
- "nbformat_minor": 2
1434
- }