Delete P2 - Secom Notebook - Mercury.ipynb
Browse files- P2 - Secom Notebook - Mercury.ipynb +0 -1434
P2 - Secom Notebook - Mercury.ipynb
DELETED
@@ -1,1434 +0,0 @@
|
|
1 |
-
{
|
2 |
-
"cells": [
|
3 |
-
{
|
4 |
-
"attachments": {},
|
5 |
-
"cell_type": "markdown",
|
6 |
-
"metadata": {
|
7 |
-
"slideshow": {
|
8 |
-
"slide_type": "skip"
|
9 |
-
}
|
10 |
-
},
|
11 |
-
"source": [
|
12 |
-
"# **Classifying products in Semiconductor Industry**"
|
13 |
-
]
|
14 |
-
},
|
15 |
-
{
|
16 |
-
"attachments": {},
|
17 |
-
"cell_type": "markdown",
|
18 |
-
"metadata": {
|
19 |
-
"slideshow": {
|
20 |
-
"slide_type": "skip"
|
21 |
-
}
|
22 |
-
},
|
23 |
-
"source": [
|
24 |
-
"#### **Import the data**"
|
25 |
-
]
|
26 |
-
},
|
27 |
-
{
|
28 |
-
"cell_type": "code",
|
29 |
-
"execution_count": 2,
|
30 |
-
"metadata": {
|
31 |
-
"slideshow": {
|
32 |
-
"slide_type": "skip"
|
33 |
-
}
|
34 |
-
},
|
35 |
-
"outputs": [],
|
36 |
-
"source": [
|
37 |
-
"# import pandas for data manipulation\n",
|
38 |
-
"# import numpy for numerical computation\n",
|
39 |
-
"# import seaborn for data visualization\n",
|
40 |
-
"# import matplotlib for data visualization\n",
|
41 |
-
"# import stats for statistical analysis\n",
|
42 |
-
"# import train_test_split for splitting data into training and testing sets\n",
|
43 |
-
"\n",
|
44 |
-
"\n",
|
45 |
-
"import pandas as pd\n",
|
46 |
-
"import numpy as np\n",
|
47 |
-
"import seaborn as sns\n",
|
48 |
-
"import matplotlib.pyplot as plt\n",
|
49 |
-
"from scipy import stats\n",
|
50 |
-
"from sklearn.model_selection import train_test_split\n",
|
51 |
-
"import mercury as mr"
|
52 |
-
]
|
53 |
-
},
|
54 |
-
{
|
55 |
-
"cell_type": "code",
|
56 |
-
"execution_count": 3,
|
57 |
-
"metadata": {
|
58 |
-
"slideshow": {
|
59 |
-
"slide_type": "skip"
|
60 |
-
}
|
61 |
-
},
|
62 |
-
"outputs": [
|
63 |
-
{
|
64 |
-
"data": {
|
65 |
-
"application/mercury+json": {
|
66 |
-
"allow_download": true,
|
67 |
-
"code_uid": "App.0.40.24.1-rande8c4e67c",
|
68 |
-
"continuous_update": false,
|
69 |
-
"description": "Recumpute everything dynamically",
|
70 |
-
"full_screen": true,
|
71 |
-
"model_id": "mercury-app",
|
72 |
-
"notify": "{}",
|
73 |
-
"output": "app",
|
74 |
-
"schedule": "",
|
75 |
-
"show_code": false,
|
76 |
-
"show_prompt": false,
|
77 |
-
"show_sidebar": true,
|
78 |
-
"static_notebook": false,
|
79 |
-
"title": "Secom Web App Demo",
|
80 |
-
"widget": "App"
|
81 |
-
},
|
82 |
-
"text/html": [
|
83 |
-
"<h3>Mercury Application</h3><small>This output won't appear in the web app.</small>"
|
84 |
-
],
|
85 |
-
"text/plain": [
|
86 |
-
"mercury.App"
|
87 |
-
]
|
88 |
-
},
|
89 |
-
"metadata": {},
|
90 |
-
"output_type": "display_data"
|
91 |
-
}
|
92 |
-
],
|
93 |
-
"source": [
|
94 |
-
"app = mr.App(title=\"Secom Web App Demo\", description=\"Recumpute everything dynamically\", continuous_update=False)"
|
95 |
-
]
|
96 |
-
},
|
97 |
-
{
|
98 |
-
"cell_type": "code",
|
99 |
-
"execution_count": 4,
|
100 |
-
"metadata": {
|
101 |
-
"slideshow": {
|
102 |
-
"slide_type": "skip"
|
103 |
-
}
|
104 |
-
},
|
105 |
-
"outputs": [],
|
106 |
-
"source": [
|
107 |
-
"# Read the features data from the the url of csv into pandas dataframes and rename the columns to F1, F2, F3, etc.\n",
|
108 |
-
"# Read the labels data from the url of csv into pandas dataframes and rename the columns to pass/fail and date/time\n",
|
109 |
-
"\n",
|
110 |
-
"#url_data = 'https://archive.ics.uci.edu/ml/machine-learning-databases/secom/secom.data'\n",
|
111 |
-
"#url_labels = 'https://archive.ics.uci.edu/ml/machine-learning-databases/secom/secom_labels.data'\n",
|
112 |
-
"\n",
|
113 |
-
"url_data = '..\\Dataset\\secom_data.csv'\n",
|
114 |
-
"url_labels = '..\\Dataset\\secom_labels.csv'\n",
|
115 |
-
"\n",
|
116 |
-
"features = pd.read_csv(url_data, delimiter=' ', header=None)\n",
|
117 |
-
"labels = pd.read_csv(url_labels, delimiter=' ', names=['pass/fail', 'date_time'])\n",
|
118 |
-
"\n",
|
119 |
-
"prefix = 'F'\n",
|
120 |
-
"new_column_names = [prefix + str(i) for i in range(1, len(features.columns)+1)]\n",
|
121 |
-
"features.columns = new_column_names\n",
|
122 |
-
"\n",
|
123 |
-
"labels['pass/fail'] = labels['pass/fail'].replace({-1: 0, 1: 1})\n"
|
124 |
-
]
|
125 |
-
},
|
126 |
-
{
|
127 |
-
"attachments": {},
|
128 |
-
"cell_type": "markdown",
|
129 |
-
"metadata": {
|
130 |
-
"slideshow": {
|
131 |
-
"slide_type": "skip"
|
132 |
-
}
|
133 |
-
},
|
134 |
-
"source": [
|
135 |
-
"#### **Split the data**"
|
136 |
-
]
|
137 |
-
},
|
138 |
-
{
|
139 |
-
"cell_type": "code",
|
140 |
-
"execution_count": 5,
|
141 |
-
"metadata": {
|
142 |
-
"slideshow": {
|
143 |
-
"slide_type": "skip"
|
144 |
-
}
|
145 |
-
},
|
146 |
-
"outputs": [
|
147 |
-
{
|
148 |
-
"name": "stdout",
|
149 |
-
"output_type": "stream",
|
150 |
-
"text": [
|
151 |
-
"Dropped date/time column from labels dataframe\n"
|
152 |
-
]
|
153 |
-
}
|
154 |
-
],
|
155 |
-
"source": [
|
156 |
-
"# if there is a date/time column, drop it from the features and labels dataframes, else continue\n",
|
157 |
-
"\n",
|
158 |
-
"if 'date_time' in labels.columns:\n",
|
159 |
-
" labels = labels.drop(['date_time'], axis=1)\n",
|
160 |
-
" print('Dropped date/time column from labels dataframe')\n",
|
161 |
-
"\n",
|
162 |
-
"\n",
|
163 |
-
"# Split the dataset and the labels into training and testing sets\n",
|
164 |
-
"# use stratify to ensure that the training and testing sets have the same percentage of pass and fail labels\n",
|
165 |
-
"# use random_state to ensure that the same random split is generated each time the code is run\n",
|
166 |
-
"\n",
|
167 |
-
"\n",
|
168 |
-
"X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size=0.25, stratify=labels, random_state=13)"
|
169 |
-
]
|
170 |
-
},
|
171 |
-
{
|
172 |
-
"attachments": {},
|
173 |
-
"cell_type": "markdown",
|
174 |
-
"metadata": {
|
175 |
-
"slideshow": {
|
176 |
-
"slide_type": "skip"
|
177 |
-
}
|
178 |
-
},
|
179 |
-
"source": [
|
180 |
-
"### **Functions**"
|
181 |
-
]
|
182 |
-
},
|
183 |
-
{
|
184 |
-
"attachments": {},
|
185 |
-
"cell_type": "markdown",
|
186 |
-
"metadata": {
|
187 |
-
"slideshow": {
|
188 |
-
"slide_type": "skip"
|
189 |
-
}
|
190 |
-
},
|
191 |
-
"source": [
|
192 |
-
"#### **Feature Removal**"
|
193 |
-
]
|
194 |
-
},
|
195 |
-
{
|
196 |
-
"cell_type": "code",
|
197 |
-
"execution_count": 6,
|
198 |
-
"metadata": {
|
199 |
-
"slideshow": {
|
200 |
-
"slide_type": "skip"
|
201 |
-
}
|
202 |
-
},
|
203 |
-
"outputs": [],
|
204 |
-
"source": [
|
205 |
-
"def columns_to_drop(df,drop_duplicates='yes', missing_values_threshold=100, variance_threshold=0, \n",
|
206 |
-
" correlation_threshold=1.1):\n",
|
207 |
-
" \n",
|
208 |
-
" print('Shape of the dataframe is: ', df.shape)\n",
|
209 |
-
"\n",
|
210 |
-
" # Drop duplicated columns\n",
|
211 |
-
" if drop_duplicates == 'yes':\n",
|
212 |
-
" new_column_names = df.columns\n",
|
213 |
-
" df = df.T.drop_duplicates().T\n",
|
214 |
-
" print('the number of columns to be dropped due to duplications is: ', len(new_column_names) - len(df.columns))\n",
|
215 |
-
" drop_duplicated = list(set(new_column_names) - set(df.columns))\n",
|
216 |
-
"\n",
|
217 |
-
" elif drop_duplicates == 'no':\n",
|
218 |
-
" df = df.T.T\n",
|
219 |
-
" print('No columns were dropped due to duplications') \n",
|
220 |
-
"\n",
|
221 |
-
" # Print the percentage of columns in df with missing values more than or equal to threshold\n",
|
222 |
-
" print('the number of columns to be dropped due to missing values is: ', len(df.isnull().mean()[df.isnull().mean() > missing_values_threshold/100].index))\n",
|
223 |
-
" \n",
|
224 |
-
" # Print into a list the columns to be dropped due to missing values\n",
|
225 |
-
" drop_missing = list(df.isnull().mean()[df.isnull().mean() > missing_values_threshold/100].index)\n",
|
226 |
-
"\n",
|
227 |
-
" # Drop columns with more than or equal to threshold missing values from df\n",
|
228 |
-
" df.drop(drop_missing, axis=1, inplace=True)\n",
|
229 |
-
" \n",
|
230 |
-
" # Print the number of columns in df with variance less than threshold\n",
|
231 |
-
" print('the number of columns to be dropped due to low variance is: ', len(df.var()[df.var() <= variance_threshold].index))\n",
|
232 |
-
"\n",
|
233 |
-
" # Print into a list the columns to be dropped due to low variance\n",
|
234 |
-
" drop_variance = list(df.var()[df.var() <= variance_threshold].index)\n",
|
235 |
-
"\n",
|
236 |
-
" # Drop columns with more than or equal to threshold variance from df\n",
|
237 |
-
" df.drop(drop_variance, axis=1, inplace=True)\n",
|
238 |
-
"\n",
|
239 |
-
" # Print the number of columns in df with more than or equal to threshold correlation\n",
|
240 |
-
" \n",
|
241 |
-
" # Create correlation matrix and round it to 4 decimal places\n",
|
242 |
-
" corr_matrix = df.corr().abs().round(4)\n",
|
243 |
-
" upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool))\n",
|
244 |
-
" to_drop = [column for column in upper.columns if any(upper[column] >= correlation_threshold)]\n",
|
245 |
-
" print('the number of columns to be dropped due to high correlation is: ', len(to_drop))\n",
|
246 |
-
"\n",
|
247 |
-
" # Print into a list the columns to be dropped due to high correlation\n",
|
248 |
-
" drop_correlation = [column for column in upper.columns if any(upper[column] >= correlation_threshold)]\n",
|
249 |
-
"\n",
|
250 |
-
" # Drop columns with more than or equal to threshold correlation from df\n",
|
251 |
-
" df.drop(to_drop, axis=1, inplace=True)\n",
|
252 |
-
" \n",
|
253 |
-
" if drop_duplicates == 'yes':\n",
|
254 |
-
" dropped = (drop_duplicated+drop_missing+drop_variance+drop_correlation)\n",
|
255 |
-
"\n",
|
256 |
-
" elif drop_duplicates =='no':\n",
|
257 |
-
" dropped = (drop_missing+drop_variance+drop_correlation)\n",
|
258 |
-
" \n",
|
259 |
-
" print('Total number of columns to be dropped is: ', len(dropped))\n",
|
260 |
-
" print('New shape of the dataframe is: ', df.shape)\n",
|
261 |
-
"\n",
|
262 |
-
" global drop_duplicates_var\n",
|
263 |
-
" drop_duplicates_var = drop_duplicates\n",
|
264 |
-
" \n",
|
265 |
-
" global missing_values_threshold_var\n",
|
266 |
-
" missing_values_threshold_var = missing_values_threshold\n",
|
267 |
-
"\n",
|
268 |
-
" global variance_threshold_var\n",
|
269 |
-
" variance_threshold_var = variance_threshold\n",
|
270 |
-
"\n",
|
271 |
-
" global correlation_threshold_var\n",
|
272 |
-
" correlation_threshold_var = correlation_threshold\n",
|
273 |
-
" \n",
|
274 |
-
" print(type(dropped))\n",
|
275 |
-
" return dropped"
|
276 |
-
]
|
277 |
-
},
|
278 |
-
{
|
279 |
-
"attachments": {},
|
280 |
-
"cell_type": "markdown",
|
281 |
-
"metadata": {
|
282 |
-
"slideshow": {
|
283 |
-
"slide_type": "skip"
|
284 |
-
}
|
285 |
-
},
|
286 |
-
"source": [
|
287 |
-
"#### **Outlier Removal**"
|
288 |
-
]
|
289 |
-
},
|
290 |
-
{
|
291 |
-
"cell_type": "code",
|
292 |
-
"execution_count": 7,
|
293 |
-
"metadata": {
|
294 |
-
"slideshow": {
|
295 |
-
"slide_type": "skip"
|
296 |
-
}
|
297 |
-
},
|
298 |
-
"outputs": [],
|
299 |
-
"source": [
|
300 |
-
"def outlier_removal(z_df, z_threshold=4):\n",
|
301 |
-
" \n",
|
302 |
-
" global outlier_var\n",
|
303 |
-
"\n",
|
304 |
-
" if z_threshold == 'none':\n",
|
305 |
-
" print('No outliers were removed')\n",
|
306 |
-
" outlier_var = 'none'\n",
|
307 |
-
" return z_df\n",
|
308 |
-
" \n",
|
309 |
-
" else:\n",
|
310 |
-
" print('The z-score threshold is:', z_threshold)\n",
|
311 |
-
"\n",
|
312 |
-
" z_df_copy = z_df.copy()\n",
|
313 |
-
"\n",
|
314 |
-
" z_scores = np.abs(stats.zscore(z_df_copy))\n",
|
315 |
-
"\n",
|
316 |
-
" # Identify the outliers in the dataset using the z-score method\n",
|
317 |
-
" outliers_mask = z_scores > z_threshold\n",
|
318 |
-
" z_df_copy[outliers_mask] = np.nan\n",
|
319 |
-
"\n",
|
320 |
-
" outliers_count = np.count_nonzero(outliers_mask)\n",
|
321 |
-
" print('The number of outliers in the whole dataset is / was:', outliers_count)\n",
|
322 |
-
"\n",
|
323 |
-
" outlier_var = z_threshold\n",
|
324 |
-
"\n",
|
325 |
-
" print(type(z_df_copy))\n",
|
326 |
-
" return z_df_copy"
|
327 |
-
]
|
328 |
-
},
|
329 |
-
{
|
330 |
-
"attachments": {},
|
331 |
-
"cell_type": "markdown",
|
332 |
-
"metadata": {
|
333 |
-
"slideshow": {
|
334 |
-
"slide_type": "skip"
|
335 |
-
}
|
336 |
-
},
|
337 |
-
"source": [
|
338 |
-
"#### **Scaling Methods**"
|
339 |
-
]
|
340 |
-
},
|
341 |
-
{
|
342 |
-
"cell_type": "code",
|
343 |
-
"execution_count": 8,
|
344 |
-
"metadata": {
|
345 |
-
"slideshow": {
|
346 |
-
"slide_type": "skip"
|
347 |
-
}
|
348 |
-
},
|
349 |
-
"outputs": [],
|
350 |
-
"source": [
|
351 |
-
"# define a function to scale the dataframe using different scaling models\n",
|
352 |
-
"\n",
|
353 |
-
"def scale_dataframe(scale_model,df_fit, df_transform):\n",
|
354 |
-
" \n",
|
355 |
-
" global scale_model_var\n",
|
356 |
-
"\n",
|
357 |
-
" if scale_model == 'robust':\n",
|
358 |
-
" from sklearn.preprocessing import RobustScaler\n",
|
359 |
-
" scaler = RobustScaler()\n",
|
360 |
-
" scaler.fit(df_fit)\n",
|
361 |
-
" df_scaled = scaler.transform(df_transform)\n",
|
362 |
-
" df_scaled = pd.DataFrame(df_scaled, columns=df_transform.columns)\n",
|
363 |
-
" print('The dataframe has been scaled using the robust scaling model')\n",
|
364 |
-
" scale_model_var = 'robust'\n",
|
365 |
-
" return df_scaled\n",
|
366 |
-
" \n",
|
367 |
-
" elif scale_model == 'standard':\n",
|
368 |
-
" from sklearn.preprocessing import StandardScaler\n",
|
369 |
-
" scaler = StandardScaler()\n",
|
370 |
-
" scaler.fit(df_fit)\n",
|
371 |
-
" df_scaled = scaler.transform(df_transform)\n",
|
372 |
-
" df_scaled = pd.DataFrame(df_scaled, columns=df_transform.columns)\n",
|
373 |
-
" print('The dataframe has been scaled using the standard scaling model')\n",
|
374 |
-
" scale_model_var = 'standard'\n",
|
375 |
-
" return df_scaled\n",
|
376 |
-
" \n",
|
377 |
-
" elif scale_model == 'normal':\n",
|
378 |
-
" from sklearn.preprocessing import Normalizer\n",
|
379 |
-
" scaler = Normalizer()\n",
|
380 |
-
" scaler.fit(df_fit)\n",
|
381 |
-
" df_scaled = scaler.transform(df_transform)\n",
|
382 |
-
" df_scaled = pd.DataFrame(df_scaled, columns=df_transform.columns)\n",
|
383 |
-
" print('The dataframe has been scaled using the normal scaling model')\n",
|
384 |
-
" scale_model_var = 'normal'\n",
|
385 |
-
" return df_scaled\n",
|
386 |
-
" \n",
|
387 |
-
" elif scale_model == 'minmax':\n",
|
388 |
-
" from sklearn.preprocessing import MinMaxScaler\n",
|
389 |
-
" scaler = MinMaxScaler()\n",
|
390 |
-
" scaler.fit(df_fit)\n",
|
391 |
-
" df_scaled = scaler.transform(df_transform)\n",
|
392 |
-
" df_scaled = pd.DataFrame(df_scaled, columns=df_transform.columns)\n",
|
393 |
-
" print('The dataframe has been scaled using the minmax scaling model')\n",
|
394 |
-
" scale_model_var = 'minmax'\n",
|
395 |
-
" return df_scaled\n",
|
396 |
-
" \n",
|
397 |
-
" elif scale_model == 'none':\n",
|
398 |
-
" print('The dataframe has not been scaled')\n",
|
399 |
-
" scale_model_var = 'none'\n",
|
400 |
-
" return df_transform\n",
|
401 |
-
" \n",
|
402 |
-
" else:\n",
|
403 |
-
" print('Please choose a valid scaling model: robust, standard, normal, or minmax')\n",
|
404 |
-
" return None"
|
405 |
-
]
|
406 |
-
},
|
407 |
-
{
|
408 |
-
"attachments": {},
|
409 |
-
"cell_type": "markdown",
|
410 |
-
"metadata": {
|
411 |
-
"slideshow": {
|
412 |
-
"slide_type": "skip"
|
413 |
-
}
|
414 |
-
},
|
415 |
-
"source": [
|
416 |
-
"#### **Missing Value Imputation**"
|
417 |
-
]
|
418 |
-
},
|
419 |
-
{
|
420 |
-
"cell_type": "code",
|
421 |
-
"execution_count": 9,
|
422 |
-
"metadata": {
|
423 |
-
"slideshow": {
|
424 |
-
"slide_type": "skip"
|
425 |
-
}
|
426 |
-
},
|
427 |
-
"outputs": [],
|
428 |
-
"source": [
|
429 |
-
"# define a function to impute missing values using different imputation models\n",
|
430 |
-
"\n",
|
431 |
-
"def impute_missing_values(imputation, df_fit, df_transform, n_neighbors=5):\n",
|
432 |
-
"\n",
|
433 |
-
" print('Number of missing values before imputation: ', df_transform.isnull().sum().sum())\n",
|
434 |
-
"\n",
|
435 |
-
" global imputation_var\n",
|
436 |
-
"\n",
|
437 |
-
" if imputation == 'knn':\n",
|
438 |
-
"\n",
|
439 |
-
" from sklearn.impute import KNNImputer\n",
|
440 |
-
" imputer = KNNImputer(n_neighbors=n_neighbors)\n",
|
441 |
-
" imputer.fit(df_fit)\n",
|
442 |
-
" df_imputed = imputer.transform(df_transform)\n",
|
443 |
-
" df_imputed = pd.DataFrame(df_imputed, columns=df_transform.columns)\n",
|
444 |
-
" print('Number of missing values after imputation: ', df_imputed.isnull().sum().sum())\n",
|
445 |
-
" imputation_var = 'knn'\n",
|
446 |
-
" return df_imputed\n",
|
447 |
-
" \n",
|
448 |
-
" elif imputation == 'mean':\n",
|
449 |
-
"\n",
|
450 |
-
" from sklearn.impute import SimpleImputer\n",
|
451 |
-
" imputer = SimpleImputer(strategy='mean')\n",
|
452 |
-
" imputer.fit(df_fit)\n",
|
453 |
-
" df_imputed = imputer.transform(df_transform)\n",
|
454 |
-
" df_imputed = pd.DataFrame(df_imputed, columns=df_transform.columns)\n",
|
455 |
-
" print('Number of missing values after imputation: ', df_imputed.isnull().sum().sum())\n",
|
456 |
-
" imputation_var = 'mean'\n",
|
457 |
-
" return df_imputed\n",
|
458 |
-
" \n",
|
459 |
-
" elif imputation == 'median':\n",
|
460 |
-
"\n",
|
461 |
-
" from sklearn.impute import SimpleImputer\n",
|
462 |
-
" imputer = SimpleImputer(strategy='median')\n",
|
463 |
-
" imputer.fit(df_fit)\n",
|
464 |
-
" df_imputed = imputer.transform(df_transform)\n",
|
465 |
-
" df_imputed = pd.DataFrame(df_imputed, columns=df_transform.columns)\n",
|
466 |
-
" print('Number of missing values after imputation: ', df_imputed.isnull().sum().sum())\n",
|
467 |
-
" imputation_var = 'median'\n",
|
468 |
-
" return df_imputed\n",
|
469 |
-
" \n",
|
470 |
-
" elif imputation == 'most_frequent':\n",
|
471 |
-
" \n",
|
472 |
-
" from sklearn.impute import SimpleImputer\n",
|
473 |
-
" imputer = SimpleImputer(strategy='most_frequent')\n",
|
474 |
-
" imputer.fit(df_fit)\n",
|
475 |
-
" df_imputed = imputer.transform(df_transform)\n",
|
476 |
-
" df_imputed = pd.DataFrame(df_imputed, columns=df_transform.columns)\n",
|
477 |
-
" print('Number of missing values after imputation: ', df_imputed.isnull().sum().sum())\n",
|
478 |
-
" imputation_var = 'most_frequent'\n",
|
479 |
-
" return df_imputed\n",
|
480 |
-
" \n",
|
481 |
-
" else:\n",
|
482 |
-
" print('Please choose an imputation model from the following: knn, mean, median, most_frequent')\n",
|
483 |
-
" df_imputed = df_transform.copy()\n",
|
484 |
-
" return df_imputed\n"
|
485 |
-
]
|
486 |
-
},
|
487 |
-
{
|
488 |
-
"attachments": {},
|
489 |
-
"cell_type": "markdown",
|
490 |
-
"metadata": {
|
491 |
-
"slideshow": {
|
492 |
-
"slide_type": "skip"
|
493 |
-
}
|
494 |
-
},
|
495 |
-
"source": [
|
496 |
-
"#### **Imbalance Treatment**"
|
497 |
-
]
|
498 |
-
},
|
499 |
-
{
|
500 |
-
"cell_type": "code",
|
501 |
-
"execution_count": 10,
|
502 |
-
"metadata": {
|
503 |
-
"slideshow": {
|
504 |
-
"slide_type": "skip"
|
505 |
-
}
|
506 |
-
},
|
507 |
-
"outputs": [],
|
508 |
-
"source": [
|
509 |
-
"#define a function to oversample and understamble the imbalance in the training set\n",
|
510 |
-
"\n",
|
511 |
-
"def imbalance_treatment(method, X_train, y_train):\n",
|
512 |
-
"\n",
|
513 |
-
" global imbalance_var\n",
|
514 |
-
"\n",
|
515 |
-
" if method == 'smote': \n",
|
516 |
-
" from imblearn.over_sampling import SMOTE\n",
|
517 |
-
" sm = SMOTE(random_state=42)\n",
|
518 |
-
" X_train_res, y_train_res = sm.fit_resample(X_train, y_train)\n",
|
519 |
-
" print('Shape of the training set after oversampling with SMOTE: ', X_train_res.shape)\n",
|
520 |
-
" print('Value counts of the target variable after oversampling with SMOTE: \\n', y_train_res.value_counts())\n",
|
521 |
-
" imbalance_var = 'smote'\n",
|
522 |
-
" return X_train_res, y_train_res\n",
|
523 |
-
" \n",
|
524 |
-
" if method == 'undersampling':\n",
|
525 |
-
" from imblearn.under_sampling import RandomUnderSampler\n",
|
526 |
-
" rus = RandomUnderSampler(random_state=42)\n",
|
527 |
-
" X_train_res, y_train_res = rus.fit_resample(X_train, y_train)\n",
|
528 |
-
" print('Shape of the training set after undersampling with RandomUnderSampler: ', X_train_res.shape)\n",
|
529 |
-
" print('Value counts of the target variable after undersampling with RandomUnderSampler: \\n', y_train_res.value_counts())\n",
|
530 |
-
" imbalance_var = 'random_undersampling'\n",
|
531 |
-
" return X_train_res, y_train_res\n",
|
532 |
-
" \n",
|
533 |
-
" if method == 'rose':\n",
|
534 |
-
" from imblearn.over_sampling import RandomOverSampler\n",
|
535 |
-
" ros = RandomOverSampler(random_state=42)\n",
|
536 |
-
" X_train_res, y_train_res = ros.fit_resample(X_train, y_train)\n",
|
537 |
-
" print('Shape of the training set after oversampling with RandomOverSampler: ', X_train_res.shape)\n",
|
538 |
-
" print('Value counts of the target variable after oversampling with RandomOverSampler: \\n', y_train_res.value_counts())\n",
|
539 |
-
" imbalance_var = 'rose'\n",
|
540 |
-
" return X_train_res, y_train_res\n",
|
541 |
-
" \n",
|
542 |
-
" \n",
|
543 |
-
" if method == 'none':\n",
|
544 |
-
" X_train_res = X_train\n",
|
545 |
-
" y_train_res = y_train\n",
|
546 |
-
" print('Shape of the training set after no resampling: ', X_train_res.shape)\n",
|
547 |
-
" print('Value counts of the target variable after no resampling: \\n', y_train_res.value_counts())\n",
|
548 |
-
" imbalance_var = 'none'\n",
|
549 |
-
" return X_train_res, y_train_res\n",
|
550 |
-
" \n",
|
551 |
-
" else:\n",
|
552 |
-
" print('Please choose a valid resampling method: smote, rose, undersampling or none')\n",
|
553 |
-
" X_train_res = X_train\n",
|
554 |
-
" y_train_res = y_train\n",
|
555 |
-
" return X_train_res, y_train_res"
|
556 |
-
]
|
557 |
-
},
|
558 |
-
{
|
559 |
-
"attachments": {},
|
560 |
-
"cell_type": "markdown",
|
561 |
-
"metadata": {
|
562 |
-
"slideshow": {
|
563 |
-
"slide_type": "skip"
|
564 |
-
}
|
565 |
-
},
|
566 |
-
"source": [
|
567 |
-
"#### **Training Models**"
|
568 |
-
]
|
569 |
-
},
|
570 |
-
{
|
571 |
-
"cell_type": "code",
|
572 |
-
"execution_count": 11,
|
573 |
-
"metadata": {
|
574 |
-
"slideshow": {
|
575 |
-
"slide_type": "skip"
|
576 |
-
}
|
577 |
-
},
|
578 |
-
"outputs": [],
|
579 |
-
"source": [
|
580 |
-
"# define a function where you can choose the model you want to use to train the data\n",
|
581 |
-
"\n",
|
582 |
-
"def train_model(model, X_train, y_train, X_test, y_test):\n",
|
583 |
-
"\n",
|
584 |
-
" global model_var\n",
|
585 |
-
"\n",
|
586 |
-
" if model == 'random_forest':\n",
|
587 |
-
" from sklearn.ensemble import RandomForestClassifier\n",
|
588 |
-
" rfc = RandomForestClassifier(n_estimators=100, random_state=13)\n",
|
589 |
-
" rfc.fit(X_train, y_train)\n",
|
590 |
-
" y_pred = rfc.predict(X_test)\n",
|
591 |
-
" model_var = 'random_forest'\n",
|
592 |
-
" return y_pred\n",
|
593 |
-
"\n",
|
594 |
-
" if model == 'logistic_regression':\n",
|
595 |
-
" from sklearn.linear_model import LogisticRegression\n",
|
596 |
-
" lr = LogisticRegression()\n",
|
597 |
-
" lr.fit(X_train, y_train)\n",
|
598 |
-
" y_pred = lr.predict(X_test)\n",
|
599 |
-
" model_var = 'logistic_regression'\n",
|
600 |
-
" return y_pred\n",
|
601 |
-
" \n",
|
602 |
-
" if model == 'knn':\n",
|
603 |
-
" from sklearn.neighbors import KNeighborsClassifier\n",
|
604 |
-
" knn = KNeighborsClassifier(n_neighbors=5)\n",
|
605 |
-
" knn.fit(X_train, y_train)\n",
|
606 |
-
" y_pred = knn.predict(X_test)\n",
|
607 |
-
" model_var = 'knn'\n",
|
608 |
-
" return y_pred\n",
|
609 |
-
" \n",
|
610 |
-
" if model == 'svm':\n",
|
611 |
-
" from sklearn.svm import SVC\n",
|
612 |
-
" svm = SVC()\n",
|
613 |
-
" svm.fit(X_train, y_train)\n",
|
614 |
-
" y_pred = svm.predict(X_test)\n",
|
615 |
-
" model_var = 'svm'\n",
|
616 |
-
" return y_pred\n",
|
617 |
-
" \n",
|
618 |
-
" if model == 'naive_bayes':\n",
|
619 |
-
" from sklearn.naive_bayes import GaussianNB\n",
|
620 |
-
" nb = GaussianNB()\n",
|
621 |
-
" nb.fit(X_train, y_train)\n",
|
622 |
-
" y_pred = nb.predict(X_test)\n",
|
623 |
-
" model_var = 'naive_bayes'\n",
|
624 |
-
" return y_pred\n",
|
625 |
-
" \n",
|
626 |
-
" if model == 'decision_tree':\n",
|
627 |
-
" from sklearn.tree import DecisionTreeClassifier\n",
|
628 |
-
" dt = DecisionTreeClassifier()\n",
|
629 |
-
" dt.fit(X_train, y_train)\n",
|
630 |
-
" y_pred = dt.predict(X_test)\n",
|
631 |
-
" model_var = 'decision_tree'\n",
|
632 |
-
" return y_pred\n",
|
633 |
-
" \n",
|
634 |
-
" if model == 'xgboost':\n",
|
635 |
-
" from xgboost import XGBClassifier\n",
|
636 |
-
" xgb = XGBClassifier()\n",
|
637 |
-
" xgb.fit(X_train, y_train)\n",
|
638 |
-
" y_pred = xgb.predict(X_test)\n",
|
639 |
-
" model_var = 'xgboost'\n",
|
640 |
-
" return y_pred\n",
|
641 |
-
" \n",
|
642 |
-
" else:\n",
|
643 |
-
" print('Please choose a model from the following: random_forest, logistic_regression, knn, svm, naive_bayes, decision_tree, xgboost')\n",
|
644 |
-
" return None"
|
645 |
-
]
|
646 |
-
},
|
647 |
-
{
|
648 |
-
"attachments": {},
|
649 |
-
"cell_type": "markdown",
|
650 |
-
"metadata": {
|
651 |
-
"slideshow": {
|
652 |
-
"slide_type": "skip"
|
653 |
-
}
|
654 |
-
},
|
655 |
-
"source": [
|
656 |
-
"#### **Evaluation Function**"
|
657 |
-
]
|
658 |
-
},
|
659 |
-
{
|
660 |
-
"cell_type": "code",
|
661 |
-
"execution_count": 12,
|
662 |
-
"metadata": {
|
663 |
-
"slideshow": {
|
664 |
-
"slide_type": "skip"
|
665 |
-
}
|
666 |
-
},
|
667 |
-
"outputs": [],
|
668 |
-
"source": [
|
669 |
-
"#define a function that prints the strings below\n",
|
670 |
-
"\n",
|
671 |
-
"from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, f1_score\n",
|
672 |
-
"\n",
|
673 |
-
"def evaluate_models(model='all'):\n",
|
674 |
-
" print('Have the duplicates been removed?', drop_duplicates_var)\n",
|
675 |
-
" print('What is the missing values threshold %?', missing_values_threshold_var)\n",
|
676 |
-
" print('What is the variance threshold?', variance_threshold_var)\n",
|
677 |
-
" print('What is the correlation threshold?', correlation_threshold_var)\n",
|
678 |
-
" print('What is the outlier removal threshold?', outlier_var)\n",
|
679 |
-
" print('What is the scaling method?', scale_model_var)\n",
|
680 |
-
" print('What is the imputation method?', imputation_var) \n",
|
681 |
-
" print('What is the imbalance treatment?', imbalance_var)\n",
|
682 |
-
"\n",
|
683 |
-
" all_models = ['random_forest', 'logistic_regression', 'knn', 'svm', 'naive_bayes', 'decision_tree', 'xgboost']\n",
|
684 |
-
" evaluation_score_append = []\n",
|
685 |
-
" evaluation_count_append = []\n",
|
686 |
-
" \n",
|
687 |
-
" for selected_model in all_models:\n",
|
688 |
-
" \n",
|
689 |
-
" if model == 'all' or model == selected_model:\n",
|
690 |
-
"\n",
|
691 |
-
" evaluation_score = []\n",
|
692 |
-
" evaluation_count = []\n",
|
693 |
-
"\n",
|
694 |
-
" y_pred = globals()['y_pred_' + selected_model] # Get the prediction variable dynamically\n",
|
695 |
-
"\n",
|
696 |
-
" def namestr(obj, namespace):\n",
|
697 |
-
" return [name for name in namespace if namespace[name] is obj]\n",
|
698 |
-
"\n",
|
699 |
-
" model_name = namestr(y_pred, globals())[0]\n",
|
700 |
-
" model_name = model_name.replace('y_pred_', '') \n",
|
701 |
-
"\n",
|
702 |
-
" cm = confusion_matrix(y_test, y_pred)\n",
|
703 |
-
"\n",
|
704 |
-
" # create a dataframe with the results for each model\n",
|
705 |
-
"\n",
|
706 |
-
" evaluation_score.append(model_name)\n",
|
707 |
-
" evaluation_score.append(round(accuracy_score(y_test, y_pred), 2))\n",
|
708 |
-
" evaluation_score.append(round(precision_score(y_test, y_pred, zero_division=0), 2))\n",
|
709 |
-
" evaluation_score.append(round(recall_score(y_test, y_pred), 2))\n",
|
710 |
-
" evaluation_score.append(round(f1_score(y_test, y_pred), 2))\n",
|
711 |
-
" evaluation_score_append.append(evaluation_score)\n",
|
712 |
-
"\n",
|
713 |
-
"\n",
|
714 |
-
" # create a dataframe with the true positives, true negatives, false positives and false negatives for each model\n",
|
715 |
-
"\n",
|
716 |
-
" evaluation_count.append(model_name)\n",
|
717 |
-
" evaluation_count.append(cm[0][0])\n",
|
718 |
-
" evaluation_count.append(cm[0][1])\n",
|
719 |
-
" evaluation_count.append(cm[1][0])\n",
|
720 |
-
" evaluation_count.append(cm[1][1])\n",
|
721 |
-
" evaluation_count_append.append(evaluation_count)\n",
|
722 |
-
"\n",
|
723 |
-
" \n",
|
724 |
-
" evaluation_score_append = pd.DataFrame(evaluation_score_append, \n",
|
725 |
-
" columns=['Model', 'Accuracy', 'Precision', 'Recall', 'F1-score'])\n",
|
726 |
-
" \n",
|
727 |
-
" \n",
|
728 |
-
"\n",
|
729 |
-
" evaluation_count_append = pd.DataFrame(evaluation_count_append,\n",
|
730 |
-
" columns=['Model', 'True Negatives', 'False Positives', 'False Negatives', 'True Positives'])\n",
|
731 |
-
" \n",
|
732 |
-
" \n",
|
733 |
-
" return evaluation_score_append, evaluation_count_append"
|
734 |
-
]
|
735 |
-
},
|
736 |
-
{
|
737 |
-
"attachments": {},
|
738 |
-
"cell_type": "markdown",
|
739 |
-
"metadata": {
|
740 |
-
"slideshow": {
|
741 |
-
"slide_type": "skip"
|
742 |
-
}
|
743 |
-
},
|
744 |
-
"source": [
|
745 |
-
"### **Input Variables**"
|
746 |
-
]
|
747 |
-
},
|
748 |
-
{
|
749 |
-
"cell_type": "code",
|
750 |
-
"execution_count": 14,
|
751 |
-
"metadata": {
|
752 |
-
"slideshow": {
|
753 |
-
"slide_type": "skip"
|
754 |
-
}
|
755 |
-
},
|
756 |
-
"outputs": [
|
757 |
-
{
|
758 |
-
"data": {
|
759 |
-
"application/mercury+json": {
|
760 |
-
"choices": [
|
761 |
-
"yes",
|
762 |
-
"no"
|
763 |
-
],
|
764 |
-
"code_uid": "Select.0.40.16.25-rand036599f5",
|
765 |
-
"disabled": false,
|
766 |
-
"hidden": false,
|
767 |
-
"label": "Drop Duplicates",
|
768 |
-
"model_id": "5fecbac257a74b428ee00725045f2f1a",
|
769 |
-
"url_key": "",
|
770 |
-
"value": "yes",
|
771 |
-
"widget": "Select"
|
772 |
-
},
|
773 |
-
"application/vnd.jupyter.widget-view+json": {
|
774 |
-
"model_id": "5fecbac257a74b428ee00725045f2f1a",
|
775 |
-
"version_major": 2,
|
776 |
-
"version_minor": 0
|
777 |
-
},
|
778 |
-
"text/plain": [
|
779 |
-
"mercury.Select"
|
780 |
-
]
|
781 |
-
},
|
782 |
-
"metadata": {},
|
783 |
-
"output_type": "display_data"
|
784 |
-
},
|
785 |
-
{
|
786 |
-
"data": {
|
787 |
-
"application/mercury+json": {
|
788 |
-
"code_uid": "Slider.0.40.26.28-rand8662cf24",
|
789 |
-
"disabled": false,
|
790 |
-
"hidden": false,
|
791 |
-
"label": "Missing Value Threeshold",
|
792 |
-
"max": 100,
|
793 |
-
"min": 0,
|
794 |
-
"model_id": "6a2670f9135442b0bc97dc794af3af46",
|
795 |
-
"step": 1,
|
796 |
-
"url_key": "",
|
797 |
-
"value": 80,
|
798 |
-
"widget": "Slider"
|
799 |
-
},
|
800 |
-
"application/vnd.jupyter.widget-view+json": {
|
801 |
-
"model_id": "6a2670f9135442b0bc97dc794af3af46",
|
802 |
-
"version_major": 2,
|
803 |
-
"version_minor": 0
|
804 |
-
},
|
805 |
-
"text/plain": [
|
806 |
-
"mercury.Slider"
|
807 |
-
]
|
808 |
-
},
|
809 |
-
"metadata": {},
|
810 |
-
"output_type": "display_data"
|
811 |
-
},
|
812 |
-
{
|
813 |
-
"data": {
|
814 |
-
"application/mercury+json": {
|
815 |
-
"choices": [
|
816 |
-
0,
|
817 |
-
0.01,
|
818 |
-
0.05,
|
819 |
-
0.1
|
820 |
-
],
|
821 |
-
"code_uid": "Select.0.40.16.31-rand1afeeedb",
|
822 |
-
"disabled": false,
|
823 |
-
"hidden": false,
|
824 |
-
"label": "Variance Threshold",
|
825 |
-
"model_id": "59ec4772499d416088166b4dba0a473d",
|
826 |
-
"url_key": "",
|
827 |
-
"value": 0,
|
828 |
-
"widget": "Select"
|
829 |
-
},
|
830 |
-
"application/vnd.jupyter.widget-view+json": {
|
831 |
-
"model_id": "59ec4772499d416088166b4dba0a473d",
|
832 |
-
"version_major": 2,
|
833 |
-
"version_minor": 0
|
834 |
-
},
|
835 |
-
"text/plain": [
|
836 |
-
"mercury.Select"
|
837 |
-
]
|
838 |
-
},
|
839 |
-
"metadata": {},
|
840 |
-
"output_type": "display_data"
|
841 |
-
},
|
842 |
-
{
|
843 |
-
"data": {
|
844 |
-
"application/mercury+json": {
|
845 |
-
"choices": [
|
846 |
-
1,
|
847 |
-
0.95,
|
848 |
-
0.9,
|
849 |
-
0.8
|
850 |
-
],
|
851 |
-
"code_uid": "Select.0.40.16.34-rand09f1eb56",
|
852 |
-
"disabled": false,
|
853 |
-
"hidden": false,
|
854 |
-
"label": "Correlation Threshold",
|
855 |
-
"model_id": "cdf52ecc5c7247f3bf67809ca9a76e06",
|
856 |
-
"url_key": "",
|
857 |
-
"value": 1,
|
858 |
-
"widget": "Select"
|
859 |
-
},
|
860 |
-
"application/vnd.jupyter.widget-view+json": {
|
861 |
-
"model_id": "cdf52ecc5c7247f3bf67809ca9a76e06",
|
862 |
-
"version_major": 2,
|
863 |
-
"version_minor": 0
|
864 |
-
},
|
865 |
-
"text/plain": [
|
866 |
-
"mercury.Select"
|
867 |
-
]
|
868 |
-
},
|
869 |
-
"metadata": {},
|
870 |
-
"output_type": "display_data"
|
871 |
-
},
|
872 |
-
{
|
873 |
-
"data": {
|
874 |
-
"application/mercury+json": {
|
875 |
-
"choices": [
|
876 |
-
"none",
|
877 |
-
3,
|
878 |
-
4,
|
879 |
-
5
|
880 |
-
],
|
881 |
-
"code_uid": "Select.0.40.16.38-rand12ce2c73",
|
882 |
-
"disabled": false,
|
883 |
-
"hidden": false,
|
884 |
-
"label": "Outlier Removal Threshold",
|
885 |
-
"model_id": "2bb20270437540978d58f2a176876560",
|
886 |
-
"url_key": "",
|
887 |
-
"value": "none",
|
888 |
-
"widget": "Select"
|
889 |
-
},
|
890 |
-
"application/vnd.jupyter.widget-view+json": {
|
891 |
-
"model_id": "2bb20270437540978d58f2a176876560",
|
892 |
-
"version_major": 2,
|
893 |
-
"version_minor": 0
|
894 |
-
},
|
895 |
-
"text/plain": [
|
896 |
-
"mercury.Select"
|
897 |
-
]
|
898 |
-
},
|
899 |
-
"metadata": {},
|
900 |
-
"output_type": "display_data"
|
901 |
-
},
|
902 |
-
{
|
903 |
-
"data": {
|
904 |
-
"application/mercury+json": {
|
905 |
-
"choices": [
|
906 |
-
"none",
|
907 |
-
"normal",
|
908 |
-
"standard",
|
909 |
-
"minmax",
|
910 |
-
"robust"
|
911 |
-
],
|
912 |
-
"code_uid": "Select.0.40.16.46-rand3811f110",
|
913 |
-
"disabled": false,
|
914 |
-
"hidden": false,
|
915 |
-
"label": "Scaling Variables",
|
916 |
-
"model_id": "e42256d4973d4777b895e2d8dbf32294",
|
917 |
-
"url_key": "",
|
918 |
-
"value": "none",
|
919 |
-
"widget": "Select"
|
920 |
-
},
|
921 |
-
"application/vnd.jupyter.widget-view+json": {
|
922 |
-
"model_id": "e42256d4973d4777b895e2d8dbf32294",
|
923 |
-
"version_major": 2,
|
924 |
-
"version_minor": 0
|
925 |
-
},
|
926 |
-
"text/plain": [
|
927 |
-
"mercury.Select"
|
928 |
-
]
|
929 |
-
},
|
930 |
-
"metadata": {},
|
931 |
-
"output_type": "display_data"
|
932 |
-
},
|
933 |
-
{
|
934 |
-
"data": {
|
935 |
-
"application/mercury+json": {
|
936 |
-
"choices": [
|
937 |
-
"mean",
|
938 |
-
"median",
|
939 |
-
"knn",
|
940 |
-
"most_frequent"
|
941 |
-
],
|
942 |
-
"code_uid": "Select.0.40.16.50-rande797a66e",
|
943 |
-
"disabled": false,
|
944 |
-
"hidden": false,
|
945 |
-
"label": "Imputation Methods",
|
946 |
-
"model_id": "f0776e7846b54620b4a297e68b02c1d9",
|
947 |
-
"url_key": "",
|
948 |
-
"value": "mean",
|
949 |
-
"widget": "Select"
|
950 |
-
},
|
951 |
-
"application/vnd.jupyter.widget-view+json": {
|
952 |
-
"model_id": "f0776e7846b54620b4a297e68b02c1d9",
|
953 |
-
"version_major": 2,
|
954 |
-
"version_minor": 0
|
955 |
-
},
|
956 |
-
"text/plain": [
|
957 |
-
"mercury.Select"
|
958 |
-
]
|
959 |
-
},
|
960 |
-
"metadata": {},
|
961 |
-
"output_type": "display_data"
|
962 |
-
},
|
963 |
-
{
|
964 |
-
"data": {
|
965 |
-
"application/mercury+json": {
|
966 |
-
"choices": [
|
967 |
-
"none",
|
968 |
-
"smote",
|
969 |
-
"undersampling",
|
970 |
-
"rose"
|
971 |
-
],
|
972 |
-
"code_uid": "Select.0.40.16.55-randec8ea8f6",
|
973 |
-
"disabled": false,
|
974 |
-
"hidden": false,
|
975 |
-
"label": "Imbalance Treatment",
|
976 |
-
"model_id": "e314e975c8e347aabc4e43958d9fa498",
|
977 |
-
"url_key": "",
|
978 |
-
"value": "none",
|
979 |
-
"widget": "Select"
|
980 |
-
},
|
981 |
-
"application/vnd.jupyter.widget-view+json": {
|
982 |
-
"model_id": "e314e975c8e347aabc4e43958d9fa498",
|
983 |
-
"version_major": 2,
|
984 |
-
"version_minor": 0
|
985 |
-
},
|
986 |
-
"text/plain": [
|
987 |
-
"mercury.Select"
|
988 |
-
]
|
989 |
-
},
|
990 |
-
"metadata": {},
|
991 |
-
"output_type": "display_data"
|
992 |
-
},
|
993 |
-
{
|
994 |
-
"data": {
|
995 |
-
"application/mercury+json": {
|
996 |
-
"choices": [
|
997 |
-
"random_forest",
|
998 |
-
"logistic_regression",
|
999 |
-
"knn",
|
1000 |
-
"svm",
|
1001 |
-
"naive_bayes",
|
1002 |
-
"decision_tree",
|
1003 |
-
"xgboost"
|
1004 |
-
],
|
1005 |
-
"code_uid": "Select.0.40.16.60-rand7c34da2c",
|
1006 |
-
"disabled": false,
|
1007 |
-
"hidden": false,
|
1008 |
-
"label": "Model Selection",
|
1009 |
-
"model_id": "589c61ee60be41f9b72132986d3ea249",
|
1010 |
-
"url_key": "",
|
1011 |
-
"value": "random_forest",
|
1012 |
-
"widget": "Select"
|
1013 |
-
},
|
1014 |
-
"application/vnd.jupyter.widget-view+json": {
|
1015 |
-
"model_id": "589c61ee60be41f9b72132986d3ea249",
|
1016 |
-
"version_major": 2,
|
1017 |
-
"version_minor": 0
|
1018 |
-
},
|
1019 |
-
"text/plain": [
|
1020 |
-
"mercury.Select"
|
1021 |
-
]
|
1022 |
-
},
|
1023 |
-
"metadata": {},
|
1024 |
-
"output_type": "display_data"
|
1025 |
-
}
|
1026 |
-
],
|
1027 |
-
"source": [
|
1028 |
-
"\n",
|
1029 |
-
"evaluation_score_df = pd.DataFrame(columns=['Model', 'Accuracy', 'Precision', 'Recall', 'F1-score', 'model_variables'])\n",
|
1030 |
-
"evaluation_count_df = pd.DataFrame(columns=['Model', 'True Negatives', 'False Positives', 'False Negatives', 'True Positives', 'model_variables'])\n",
|
1031 |
-
"\n",
|
1032 |
-
"#############################################################################################################\n",
|
1033 |
-
"# reset the dataframe containing all results, evaluation_score_df and evaluation_count_df\n",
|
1034 |
-
"\n",
|
1035 |
-
"reset_results = 'no' # 'yes' or 'no'\n",
|
1036 |
-
"\n",
|
1037 |
-
"#############################################################################################################\n",
|
1038 |
-
"\n",
|
1039 |
-
"if reset_results == 'yes':\n",
|
1040 |
-
" evaluation_score_df = pd.DataFrame(columns=['Model', 'Accuracy', 'Precision', 'Recall', 'F1-score', 'model_variables'])\n",
|
1041 |
-
" evaluation_count_df = pd.DataFrame(columns=['Model', 'True Negatives', 'False Positives', 'False Negatives', 'True Positives', 'model_variables'])\n",
|
1042 |
-
" \n",
|
1043 |
-
"\n",
|
1044 |
-
"#############################################################################################################\n",
|
1045 |
-
"\n",
|
1046 |
-
"# input train and test sets\n",
|
1047 |
-
"input_train_set = X_train\n",
|
1048 |
-
"input_test_set = X_test\n",
|
1049 |
-
"\n",
|
1050 |
-
"\n",
|
1051 |
-
"\n",
|
1052 |
-
"# input feature removal variables\n",
|
1053 |
-
"input_drop_duplicates = mr.Select(label=\"Drop Duplicates\", value=\"yes\", choices=[\"yes\", \"no\"]) # 'yes' or 'no'\n",
|
1054 |
-
"input_drop_duplicates = str(input_drop_duplicates.value)\n",
|
1055 |
-
"\n",
|
1056 |
-
"input_missing_values_threshold = mr.Slider(label=\"Missing Value Threeshold\", value=80, min=0, max=100) # 0-100 (removes columns with more missing values than the threshold)\n",
|
1057 |
-
"input_missing_values_threshold = int(input_missing_values_threshold.value)\n",
|
1058 |
-
"\n",
|
1059 |
-
"input_variance_threshold = mr.Select(label=\"Variance Threshold\", value=0, choices=[0, 0.01, 0.05, 0.1]) # \n",
|
1060 |
-
"input_variance_threshold = float(input_variance_threshold.value)\n",
|
1061 |
-
"\n",
|
1062 |
-
"input_correlation_threshold = mr.Select(label=\"Correlation Threshold\", value=1, choices=[1, 0.95, 0.9, 0.8]) # \n",
|
1063 |
-
"input_correlation_threshold = float(input_correlation_threshold.value)\n",
|
1064 |
-
"\n",
|
1065 |
-
"# input outlier removal variables\n",
|
1066 |
-
"input_outlier_removal_threshold = mr.Select(label=\"Outlier Removal Threshold\", value=\"none\", choices=['none', 3, 4, 5]) # 'none' or zscore from 0 to 100\n",
|
1067 |
-
"\n",
|
1068 |
-
"if input_outlier_removal_threshold.value != 'none':\n",
|
1069 |
-
" input_outlier_removal_threshold = int(input_outlier_removal_threshold.value)\n",
|
1070 |
-
"elif input_outlier_removal_threshold.value == 'none':\n",
|
1071 |
-
" input_outlier_removal_threshold = str(input_outlier_removal_threshold.value)\n",
|
1072 |
-
"\n",
|
1073 |
-
"# input scaling variables\n",
|
1074 |
-
"input_scale_model = mr.Select(label=\"Scaling Variables\", value=\"none\", choices=['none', 'normal', 'standard', 'minmax', 'robust']) # 'none', 'normal', 'standard', 'minmax', 'robust'\n",
|
1075 |
-
"input_scale_model = str(input_scale_model.value)\n",
|
1076 |
-
"\n",
|
1077 |
-
"# input imputation variables\n",
|
1078 |
-
"input_imputation_method = mr.Select(label=\"Imputation Methods\", value=\"mean\", choices=['mean', 'median', 'knn', 'most_frequent']) # 'mean', 'median', 'knn', 'most_frequent'\n",
|
1079 |
-
"input_n_neighbors = 5 # only for knn imputation\n",
|
1080 |
-
"input_imputation_method = str(input_imputation_method.value)\n",
|
1081 |
-
"\n",
|
1082 |
-
"# input imbalance treatment variables\n",
|
1083 |
-
"input_imbalance_treatment = mr.Select(label=\"Imbalance Treatment\", value=\"none\", choices=['none', 'smote', 'undersampling', 'rose']) # 'none', 'smote', 'undersampling', 'rose'\n",
|
1084 |
-
"input_imbalance_treatment = str(input_imbalance_treatment.value)\n",
|
1085 |
-
"\n",
|
1086 |
-
"\n",
|
1087 |
-
"# input model\n",
|
1088 |
-
"input_model = mr.Select(label=\"Model Selection\", value=\"random_forest\", choices=['random_forest', 'logistic_regression', 'knn', 'svm', 'naive_bayes','decision_tree','xgboost']) # 'all', 'random_forest', 'logistic_regression', 'knn', \n",
|
1089 |
-
" # 'svm', 'naive_bayes', # 'decision_tree', 'xgboost'\n",
|
1090 |
-
"input_model = str(input_model.value)\n"
|
1091 |
-
]
|
1092 |
-
},
|
1093 |
-
{
|
1094 |
-
"attachments": {},
|
1095 |
-
"cell_type": "markdown",
|
1096 |
-
"metadata": {
|
1097 |
-
"slideshow": {
|
1098 |
-
"slide_type": "skip"
|
1099 |
-
}
|
1100 |
-
},
|
1101 |
-
"source": [
|
1102 |
-
"### **Transform Data**"
|
1103 |
-
]
|
1104 |
-
},
|
1105 |
-
{
|
1106 |
-
"attachments": {},
|
1107 |
-
"cell_type": "markdown",
|
1108 |
-
"metadata": {
|
1109 |
-
"slideshow": {
|
1110 |
-
"slide_type": "skip"
|
1111 |
-
}
|
1112 |
-
},
|
1113 |
-
"source": [
|
1114 |
-
"#### **Remove Features**"
|
1115 |
-
]
|
1116 |
-
},
|
1117 |
-
{
|
1118 |
-
"cell_type": "code",
|
1119 |
-
"execution_count": 15,
|
1120 |
-
"metadata": {
|
1121 |
-
"slideshow": {
|
1122 |
-
"slide_type": "skip"
|
1123 |
-
}
|
1124 |
-
},
|
1125 |
-
"outputs": [
|
1126 |
-
{
|
1127 |
-
"name": "stdout",
|
1128 |
-
"output_type": "stream",
|
1129 |
-
"text": [
|
1130 |
-
"Shape of the dataframe is: (1175, 590)\n",
|
1131 |
-
"the number of columns to be dropped due to duplications is: 104\n",
|
1132 |
-
"the number of columns to be dropped due to missing values is: 8\n",
|
1133 |
-
"the number of columns to be dropped due to low variance is: 12\n",
|
1134 |
-
"the number of columns to be dropped due to high correlation is: 21\n",
|
1135 |
-
"Total number of columns to be dropped is: 145\n",
|
1136 |
-
"New shape of the dataframe is: (1175, 445)\n",
|
1137 |
-
"<class 'list'>\n",
|
1138 |
-
"No outliers were removed\n",
|
1139 |
-
"The dataframe has not been scaled\n",
|
1140 |
-
"The dataframe has not been scaled\n",
|
1141 |
-
"Number of missing values before imputation: 19977\n",
|
1142 |
-
"Number of missing values after imputation: 0\n",
|
1143 |
-
"Number of missing values before imputation: 6954\n",
|
1144 |
-
"Number of missing values after imputation: 0\n",
|
1145 |
-
"Shape of the training set after no resampling: (1175, 445)\n",
|
1146 |
-
"Value counts of the target variable after no resampling: \n",
|
1147 |
-
" pass/fail\n",
|
1148 |
-
"0 1097\n",
|
1149 |
-
"1 78\n",
|
1150 |
-
"dtype: int64\n"
|
1151 |
-
]
|
1152 |
-
}
|
1153 |
-
],
|
1154 |
-
"source": [
|
1155 |
-
"# remove features using the function list_columns_to_drop\n",
|
1156 |
-
"\n",
|
1157 |
-
"dropped = columns_to_drop(input_train_set, \n",
|
1158 |
-
" input_drop_duplicates, input_missing_values_threshold, \n",
|
1159 |
-
" input_variance_threshold, input_correlation_threshold)\n",
|
1160 |
-
"\n",
|
1161 |
-
"# drop the columns from the training and testing sets and save the new sets as new variables\n",
|
1162 |
-
"\n",
|
1163 |
-
"X_train2 = input_train_set.drop(dropped, axis=1)\n",
|
1164 |
-
"X_test2 = input_test_set.drop(dropped, axis=1)\n",
|
1165 |
-
"\n",
|
1166 |
-
"X_train_dropped_outliers = outlier_removal(X_train2, input_outlier_removal_threshold)\n",
|
1167 |
-
"\n",
|
1168 |
-
"\n",
|
1169 |
-
"X_train_scaled = scale_dataframe(input_scale_model, X_train_dropped_outliers, X_train_dropped_outliers)\n",
|
1170 |
-
"X_test_scaled = scale_dataframe(input_scale_model, X_train_dropped_outliers, X_test2)\n",
|
1171 |
-
"\n",
|
1172 |
-
"# impute the missing values in the training and testing sets using the function impute_missing_values\n",
|
1173 |
-
"\n",
|
1174 |
-
"X_train_imputed = impute_missing_values(input_imputation_method,X_train_scaled, X_train_scaled, input_n_neighbors)\n",
|
1175 |
-
"X_test_imputed = impute_missing_values(input_imputation_method,X_train_scaled, X_test_scaled, input_n_neighbors)\n",
|
1176 |
-
"\n",
|
1177 |
-
"# treat imbalance in the training set using the function oversample\n",
|
1178 |
-
"\n",
|
1179 |
-
"X_train_res, y_train_res = imbalance_treatment(input_imbalance_treatment, X_train_imputed, y_train)\n",
|
1180 |
-
"\n"
|
1181 |
-
]
|
1182 |
-
},
|
1183 |
-
{
|
1184 |
-
"attachments": {},
|
1185 |
-
"cell_type": "markdown",
|
1186 |
-
"metadata": {
|
1187 |
-
"slideshow": {
|
1188 |
-
"slide_type": "skip"
|
1189 |
-
}
|
1190 |
-
},
|
1191 |
-
"source": [
|
1192 |
-
"### **Model Training**"
|
1193 |
-
]
|
1194 |
-
},
|
1195 |
-
{
|
1196 |
-
"cell_type": "code",
|
1197 |
-
"execution_count": 16,
|
1198 |
-
"metadata": {
|
1199 |
-
"slideshow": {
|
1200 |
-
"slide_type": "skip"
|
1201 |
-
}
|
1202 |
-
},
|
1203 |
-
"outputs": [],
|
1204 |
-
"source": [
|
1205 |
-
"# disable warnings\n",
|
1206 |
-
"\n",
|
1207 |
-
"import warnings\n",
|
1208 |
-
"warnings.filterwarnings('ignore')\n",
|
1209 |
-
"\n",
|
1210 |
-
"# train the model using the function train_model and save the predictions as new variables\n",
|
1211 |
-
"\n",
|
1212 |
-
"y_pred_random_forest = train_model('random_forest', X_train_res, y_train_res, X_test_imputed, y_test)\n",
|
1213 |
-
"y_pred_logistic_regression = train_model('logistic_regression', X_train_res, y_train_res, X_test_imputed, y_test)\n",
|
1214 |
-
"y_pred_knn = train_model('knn', X_train_res, y_train_res, X_test_imputed, y_test)\n",
|
1215 |
-
"y_pred_svm = train_model('svm', X_train_res, y_train_res, X_test_imputed, y_test)\n",
|
1216 |
-
"y_pred_naive_bayes = train_model('naive_bayes', X_train_res, y_train_res, X_test_imputed, y_test)\n",
|
1217 |
-
"y_pred_decision_tree = train_model('decision_tree', X_train_res, y_train_res, X_test_imputed, y_test)\n",
|
1218 |
-
"y_pred_xgboost = train_model('xgboost', X_train_res, y_train_res, X_test_imputed, y_test)"
|
1219 |
-
]
|
1220 |
-
},
|
1221 |
-
{
|
1222 |
-
"attachments": {},
|
1223 |
-
"cell_type": "markdown",
|
1224 |
-
"metadata": {
|
1225 |
-
"slideshow": {
|
1226 |
-
"slide_type": "skip"
|
1227 |
-
}
|
1228 |
-
},
|
1229 |
-
"source": [
|
1230 |
-
"#### **Evaluate and Save**"
|
1231 |
-
]
|
1232 |
-
},
|
1233 |
-
{
|
1234 |
-
"cell_type": "code",
|
1235 |
-
"execution_count": 17,
|
1236 |
-
"metadata": {
|
1237 |
-
"slideshow": {
|
1238 |
-
"slide_type": "slide"
|
1239 |
-
}
|
1240 |
-
},
|
1241 |
-
"outputs": [
|
1242 |
-
{
|
1243 |
-
"name": "stdout",
|
1244 |
-
"output_type": "stream",
|
1245 |
-
"text": [
|
1246 |
-
"Have the duplicates been removed? yes\n",
|
1247 |
-
"What is the missing values threshold %? 80\n",
|
1248 |
-
"What is the variance threshold? 0.0\n",
|
1249 |
-
"What is the correlation threshold? 1.0\n",
|
1250 |
-
"What is the outlier removal threshold? none\n",
|
1251 |
-
"What is the scaling method? none\n",
|
1252 |
-
"What is the imputation method? mean\n",
|
1253 |
-
"What is the imbalance treatment? none\n"
|
1254 |
-
]
|
1255 |
-
},
|
1256 |
-
{
|
1257 |
-
"data": {
|
1258 |
-
"text/html": [
|
1259 |
-
"<div>\n",
|
1260 |
-
"<style scoped>\n",
|
1261 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
1262 |
-
" vertical-align: middle;\n",
|
1263 |
-
" }\n",
|
1264 |
-
"\n",
|
1265 |
-
" .dataframe tbody tr th {\n",
|
1266 |
-
" vertical-align: top;\n",
|
1267 |
-
" }\n",
|
1268 |
-
"\n",
|
1269 |
-
" .dataframe thead th {\n",
|
1270 |
-
" text-align: right;\n",
|
1271 |
-
" }\n",
|
1272 |
-
"</style>\n",
|
1273 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
1274 |
-
" <thead>\n",
|
1275 |
-
" <tr style=\"text-align: right;\">\n",
|
1276 |
-
" <th></th>\n",
|
1277 |
-
" <th>Model</th>\n",
|
1278 |
-
" <th>Accuracy</th>\n",
|
1279 |
-
" <th>Precision</th>\n",
|
1280 |
-
" <th>Recall</th>\n",
|
1281 |
-
" <th>F1-score</th>\n",
|
1282 |
-
" </tr>\n",
|
1283 |
-
" </thead>\n",
|
1284 |
-
" <tbody>\n",
|
1285 |
-
" <tr>\n",
|
1286 |
-
" <th>0</th>\n",
|
1287 |
-
" <td>random_forest</td>\n",
|
1288 |
-
" <td>0.93</td>\n",
|
1289 |
-
" <td>0.0</td>\n",
|
1290 |
-
" <td>0.0</td>\n",
|
1291 |
-
" <td>0.0</td>\n",
|
1292 |
-
" </tr>\n",
|
1293 |
-
" </tbody>\n",
|
1294 |
-
"</table>\n",
|
1295 |
-
"</div>"
|
1296 |
-
],
|
1297 |
-
"text/plain": [
|
1298 |
-
" Model Accuracy Precision Recall F1-score\n",
|
1299 |
-
"0 random_forest 0.93 0.0 0.0 0.0"
|
1300 |
-
]
|
1301 |
-
},
|
1302 |
-
"metadata": {},
|
1303 |
-
"output_type": "display_data"
|
1304 |
-
},
|
1305 |
-
{
|
1306 |
-
"data": {
|
1307 |
-
"text/html": [
|
1308 |
-
"<div>\n",
|
1309 |
-
"<style scoped>\n",
|
1310 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
1311 |
-
" vertical-align: middle;\n",
|
1312 |
-
" }\n",
|
1313 |
-
"\n",
|
1314 |
-
" .dataframe tbody tr th {\n",
|
1315 |
-
" vertical-align: top;\n",
|
1316 |
-
" }\n",
|
1317 |
-
"\n",
|
1318 |
-
" .dataframe thead th {\n",
|
1319 |
-
" text-align: right;\n",
|
1320 |
-
" }\n",
|
1321 |
-
"</style>\n",
|
1322 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
1323 |
-
" <thead>\n",
|
1324 |
-
" <tr style=\"text-align: right;\">\n",
|
1325 |
-
" <th></th>\n",
|
1326 |
-
" <th>Model</th>\n",
|
1327 |
-
" <th>True Negatives</th>\n",
|
1328 |
-
" <th>False Positives</th>\n",
|
1329 |
-
" <th>False Negatives</th>\n",
|
1330 |
-
" <th>True Positives</th>\n",
|
1331 |
-
" </tr>\n",
|
1332 |
-
" </thead>\n",
|
1333 |
-
" <tbody>\n",
|
1334 |
-
" <tr>\n",
|
1335 |
-
" <th>0</th>\n",
|
1336 |
-
" <td>random_forest</td>\n",
|
1337 |
-
" <td>366</td>\n",
|
1338 |
-
" <td>0</td>\n",
|
1339 |
-
" <td>26</td>\n",
|
1340 |
-
" <td>0</td>\n",
|
1341 |
-
" </tr>\n",
|
1342 |
-
" </tbody>\n",
|
1343 |
-
"</table>\n",
|
1344 |
-
"</div>"
|
1345 |
-
],
|
1346 |
-
"text/plain": [
|
1347 |
-
" Model True Negatives False Positives False Negatives \\\n",
|
1348 |
-
"0 random_forest 366 0 26 \n",
|
1349 |
-
"\n",
|
1350 |
-
" True Positives \n",
|
1351 |
-
"0 0 "
|
1352 |
-
]
|
1353 |
-
},
|
1354 |
-
"metadata": {},
|
1355 |
-
"output_type": "display_data"
|
1356 |
-
},
|
1357 |
-
{
|
1358 |
-
"data": {
|
1359 |
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAW4AAAFzCAYAAAAe6uPKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAtCElEQVR4nO3deVxUVf8H8M8IDqDAKCCDKCpuiGyyPCIq7oJaGk9mZrniWu57/kp9ysw9TA2zXJDyMTWzzHwy3EWWAsEFETVlkUWUVQwBh/n9YY2Oo8goOJzh83695lX3zL2H78xLPh7vPfceiVKpVIKIiIRRR9cFEBGRdhjcRESCYXATEQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU1EJBhDXRfwIsrLy5GRkQEzMzNIJBJdl0NE9NyUSiXu3LkDW1tb1KlT8Zha6ODOyMiAnZ2drssgIqoyaWlpaNq0aYX7CB3cZmZmAABp+1GQGEh1XA3ps9Tjq3VdAum5O4WFaG1vp8q1iggd3P+cHpEYSBncVK3Mzc11XQLVEpU57cuLk0REgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3Hpg/JCu+H3XAtw8tQo3T63C8e2z4delvdo+DvZy7Fk7EVknVyE7fDVObJ8NO5uGavt4u9rjf5um4nbEGmSeXIlDX0+HsVHdl/lRSE9s2hiMdm3s0cDUGJ07eiI8/JSuS9IrhrougF5c+s18LFz/E/5MvQ0AGD7QG3uCJqDTW8uReC0L9k2tcGTrLGz/MQKfbPwFBUXFaGdvg3slZao+vF3t8dOG97B622+YtWIPSu8r4Nq2CcrLlbr6WCSoPbt3Ye7sGfh8fTB8OnfB5q83IeDV/jhz7iKaNWum6/L0gkSpVAr7m1lYWAiZTAYjl/GQGEh1XU6Nkn58Bf5v7Y/Y/mMkQpePQVmZAmMXhj51/xPbZ+NI9CV8HPzLS6xSHHl/bNB1CcLw7ewNd3cPrPtio6qtg4sjBg4KwJKly3RYWc1WWFgIuaUMBQUFMDc3r3BfnirRM3XqSDDE3xP1TaSIPncdEokE/bo64UpqNvZ/MRkpR5bhZOgcDOzhqjqmUUNTdHS1x63cIhwLmYXkw5/it83T0blDSx1+EhJRaWkp4s7EondfP7X23n38EBUZoaOq9A+DW084tbbFrdNrUBC9Fus+GIqhs7/GpWtZsLYwhVl9Y8wZ0xdhERcx8N0N2H/sLL5bMw5dPVsDAOybWgEAPpg4AFt/iMBrk4MRn5iGg5umolWzRrr8WCSY27dvQ6FQwNpartYul8tx82aWjqrSPzzHrScuJ9+E91vL0MCsHgJ6d8DXH4+A37jPUXCnGABw4Ph5rN9xDABw7nI6vN1aYvwbXREeexV16kgAAFv2huOb/VEAgLNJN9CjowNGveaDRev36+ZDkbAkEonatlKp1Gij58cRt54ou6/AtbTbOHMxFYvW78f5y+mYPKwHbucVoaxMgcRrmWr7J13LUs0qybxVCABIvKY+Ikq6nqUx84SoIlZWVjAwMNAYXWdnZ2uMwun5Mbj1lAQSGEkNUXZfgdiLKWjbXP2Xpk1za6Rm5gEAUjJykJGdj7YtrNX2ad3cGqmZuS+tZhKfVCqFu4cnjh4OU2s/eiQMnXw666gq/cNTJXrgoykD8dvpi0jLyoNZfWMM8fdEN682GDQ5GAAQtP0wvlkRiPAzV3Ei5jL8OrfHgG7O8B//uaqPoO2H8eGkV3D+cjrOJt3A8IHecGghx9tzt+jqY5Ggps2YhbGjR8DD0wvenXywZfNXSEtNxbgJk3Rdmt5gcOsBa0szbPlkJGyszFFQdA8XrqRj0ORgHI2+BADYf+wcpi79DnMD/bBm3hu4nJKNYXM3IyL+mqqPDf89DmOjulg5ezAayurh/OV0vPruBly/cVtXH4sENeTNocjNycGnSz9GVmYmnJyc8ePPB9G8eXNdl6Y3dD6POzg4GKtWrUJmZiacnJywdu1a+Pr6VupYzuOml4XzuKm6CTOPe9euXZgxYwY++OADxMXFwdfXF/3790dqaqouyyIiqtF0GtyfffYZxo4di3HjxsHR0RFr166FnZ0dNm7c+OyDiYhqKZ0Fd2lpKWJjY+Hnp36HlZ+fHyIinnyHVUlJCQoLC9VeRES1jc6C+587rORyzTussrKefIfVsmXLIJPJVC87O7uXUSoRUY2i83nc2txhtWDBAhQUFKheaWlpL6NEIqIaRWfB/c8dVo+PrrOzszVG4f8wMjKCubm52qu2sJDVR8qRZWjW2EKndTi1tsXVX5egnjFn8eijnJwcNLO1Rkpysk7ruHD+PFq1aIq7d+/qtI6aSmfBLZVK4enpibAw9TuswsLC0Lkz77B63NxAPxw8eV51J+PquYNxesc85EcHIeq79yvVh7SuIT6bPwRpR5fjdsQa7Fk7EU2sG6jt08DMBFuWjETWyVXIOrkKW5aMhMzURPV+wtUMxFxIwdThPavss1HNsWrFMgx4ZSCat2gBAEhNTcXggIGwlNVHUxsrzJoxDaWlpRX2UVJSgpnTp6KpjRUsZfXxxr8H4caNG2r75OXlIXDUCMgtZZBbyhA4agTy8/NV7zu7uMDrXx2x/vOgqv6IekGnp0pmzZqFzZs3Y+vWrUhMTMTMmTORmpqKSZN4h9WjjI3qYlSAD0L2RaraJBIJQn+Kwve/nal0P6vmDsagnq4YuWAbeo8JgqmJFHvXTVI9ZAoAQpaNhqtDU7w2JRivTQmGq0NTbPlkpFo/ofujMGGIr9pxJL7i4mJs37YFowPHAQAUCgVeH/QK7t69iyPHwxG64zv8uG8v5s+dXWE/c2fNwP6f9iF0x3c4cjwcRUVFGPzaq1AoFKp9Ro94G+fOxuOnA7/ipwO/4tzZeIwdPUKtn5GjxuCrTRvVjqMHdHrn5NChQ5GTk4OPP/4YmZmZcHZ2xsGDvMPqcf5d2uO+QoHoc9dVbbNXfg8AsGo4AM5tmjyzD3NTY4wO8MHYD0NxLDoJABD4YSiu/G8Jenm3w+HIRDjYy+HfxQndRqzCHxdSAACTl/wXJ0LnoE1za1xJyQYAhEUkwkJWH76ebXDij8tV/XFJRw79+j8YGhqik48PAOBw2G9ITLyIKwfTYGtrCwBYvnINJowdjY+WLH3iqcqCggKEbNuCLSHfoFfvPgCArdu/RRt7Oxw9chh9/fxxKTERvx36FSfCo9DR2xsA8MWXX6OHrw8uJyWhrYMDAKCvnz9yc3Jw6uQJ9OjZ62V8BcLQ+cXJ9957D8nJySgpKUFsbCy6deum65JqnK4erXHm4ovdlOTu2AzSuoY4HJmoasu8VYCEPzPQyc0ewIPly/Lv/KUKbQD4/Xwy8u/8hU5uDxdVKLuvwPnL6eji3uqFaqKaJfzUSXh4eqm2o6Mi4eTkrApt4EGYlpSUIO5M7BP7iDsTi7KyMvR5ZCEFW1tbODk5qxZSiI6KhEwmU4U2AHh36gSZTKa22IJUKoWLqxtOc71KDToPbnq25rYWyLxV8EJ92Fiao6S0DPl/P5/7H9k5dyC3fDByklua41Zukcaxt3KLILdSH11lZOejua3lC9VENUtKSjIaN34Y0jezsmD92ESBhg0bQiqVPnXKblZWFqRSKRo2VH8csLVcjpt/H3PzZhYaWVtrHNvI2lrjcbC2TZro/EJpTcTgFoCxkRT3Su5XS98SiQSPPqzmSY+ukUgAPNZeXFKGesZcAV6f3CsuhrGxsVrbk6bmPs+iCI8f87R+8Vi7ibEJ/ir+S6ufVRswuAWQk1+Ehub1XqiPrJxCGEnrooGZiVp7IwtTZOc8uAP1Zk4hrC3NNI61amiKmzl31Noayurhdp7m6JzEZWlphbz8PNW23MZGNUr+R15eHsrKyp46ZdfGxgalpaXIy8tTa7+Vna0avcvlNsi+eVPj2Nu3bkH+2GILeXm5sLLi8nmPY3AL4OylG2jX0uaF+ohLTEVp2X307tRO1WZjZQ6nVraIOvvgomf0uetoYFYPXk4PLw7/y7k5GpjVQ9TZa2r9ObWyRXyS+hQvEpubuzsuXbyo2vbu5IOEhAvIzHy4etLhsN9gZGQEdw/PJ/bh7uGJunXr4sgjCylkZmYiIeGCaiEF704+KCgowB+//67a5/foaBQUFGgstpCQcAEdOrhXyefTJwxuAYRFJqJ9y8Zqo+WWdlZwbdsEcitzmBjVhWvbJnBt2wR1DQ0AALaNZIj/4UNVCBcW3UPIj5FYPut19OjYFm4OTbH1k1G4cDVD9dzupOs3ceh0Ar5YNAwdXVqgo0sLfLHwbfxy4rxqRgkANGtsAVtrGY79fRzph759/XHxYoJqtNynrx8cHdtj7OgRiI+Lw7GjR7Bg/hyMGTteNaMkPT0dbs7tVCEsk8kwesxYvD9vNo4dPYL4uDgEjhoOZ2cX1SyTdo6O8PPvh8mTxiM6KgrRUVGYPGk8BrzyqmpGCQCkJCcjIz0dPf8+jh7iQgoCSLiagTOJqRjs54Ete08DADYuegfdvNqo9onetQAA4DBgEVIzc2FoaAAHexuYPHKH47zVe6FQlOPbFWNhYlQXx35PwoTp36C8/OH56zH/tx1r5r2Bn4MnAwB+OXEeM5fvUavnzf5eOBx5SbX0GekHZxcXeHh6Ye+e3Rg3YSIMDAzww/5fMGPqe+jVvQtMTEzw5ltvY/nK1apj7peV4XJSEoofOQ+9ck0QDAwNMXzYmyguLkbPXr3x1ZYQGBgYqPbZFroDs2dMw8ABD2afvPLqIAStU3/m+e5dO9Gnrx+nBz+BzhdSeBG1aSEF/67tsWzmv+H5xqdPvID4skjrGuLCT4swakEIIh87faLPastCCr/+7yAWzJ+D2PgLqFNHd/8gLykpgbNjG2z/Zic6d+miszpeJm0WUuCIWxCHwi+itZ01mljLcONmvs7qaNbYAiu2HKpVoV2b9Os/AFevXEF6erpOn76ZmpKC+e9/UGtCW1sccRNVQm0ZcZPuCLN0GRERaY/BTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCcawMjvt37+/0h0OGjTouYshIqJnq1RwBwQEVKoziUQChULxIvUQEdEzVCq4y8vLq7sOIiKqpBc6x33v3r2qqoOIiCpJ6+BWKBRYsmQJmjRpAlNTU1y7dg0AsHDhQmzZsqXKCyQiInVaB/fSpUsREhKClStXQiqVqtpdXFywefPmKi2OiIg0aR3coaGh+Oqrr/DOO+/AwMBA1e7q6opLly5VaXFERKRJ6+BOT09H69atNdrLy8tRVlZWJUUREdHTaR3cTk5OOHXqlEb7nj174O7uXiVFERHR01VqOuCjFi9ejBEjRiA9PR3l5eX44YcfkJSUhNDQUBw4cKA6aiQiokdoPeIeOHAgdu3ahYMHD0IikWDRokVITEzEzz//jL59+1ZHjURE9AitR9wA4O/vD39//6quhYiIKuG5ghsAYmJikJiYCIlEAkdHR3h6elZlXURE9BRaB/eNGzcwbNgwnD59Gg0aNAAA5Ofno3Pnzti5cyfs7OyqukYiInqE1ue4AwMDUVZWhsTEROTm5iI3NxeJiYlQKpUYO3ZsddRIRESP0HrEferUKURERMDBwUHV5uDggPXr16NLly5VWhwREWnSesTdrFmzJ95oc//+fTRp0qRKiiIioqfTOrhXrlyJqVOnIiYmBkqlEsCDC5XTp0/H6tWrq7xAIiJSV6lTJQ0bNoREIlFt3717F97e3jA0fHD4/fv3YWhoiMDAwEovukBERM+nUsG9du3aai6DiIgqq1LBPWrUqOqug4iIKum5b8ABgOLiYo0Llebm5i9UEBERVUzri5N3797FlClTYG1tDVNTUzRs2FDtRURE1Uvr4J43bx6OHj2K4OBgGBkZYfPmzfjoo49ga2uL0NDQ6qiRiIgeofWpkp9//hmhoaHo0aMHAgMD4evri9atW6N58+bYsWMH3nnnneqok4iI/qb1iDs3Nxf29vYAHpzPzs3NBQB07doVJ0+erNrqiIhIg9bB3bJlSyQnJwMA2rdvj927dwN4MBL/56FTRERUfbQO7jFjxuDs2bMAgAULFqjOdc+cORNz586t8gKJiEid1ue4Z86cqfr/nj174tKlS4iJiUGrVq3g5uZWpcUREZGmF5rHDTx46FSzZs2qohYiIqqESgX3unXrKt3htGnTnrsYIiJ6tkoFd1BQUKU6k0gkDG4iompWqeC+fv16dddBRESVpPWsEiIi0i0GNxGRYBjcRESCYXATEQmGwU1EJJjnCu5Tp05h+PDh8PHxQXp6OgDgm2++QXh4eJUWR0REmrQO7r1798Lf3x8mJiaIi4tDSUkJAODOnTv49NNPq7xAIiJSp3Vwf/LJJ/jyyy/x9ddfo27duqr2zp0748yZM1VaHBERadI6uJOSktCtWzeNdnNzc+Tn51dFTUREVAGtg7tx48a4evWqRnt4eDhatmxZJUUREdHTaR3cEydOxPTp0xEdHQ2JRIKMjAzs2LEDc+bMwXvvvVcdNRIR0SO0fqzrvHnzUFBQgJ49e+LevXvo1q0bjIyMMGfOHEyZMqU6aiQiokdIlEql8nkO/Ouvv3Dx4kWUl5ejffv2MDU1reranqmwsBAymQxGLuMhMZC+9J9PtUfeHxt0XQLpucLCQsgtZSgoKIC5uXmF+z73Qgr16tWDl5fX8x5ORETPSevg7tmzJyQSyVPfP3r06AsVREREFdM6uDt06KC2XVZWhvj4eFy4cAGjRo2qqrqIiOgptA7up62G85///AdFRUUvXBAREVWsyh4yNXz4cGzdurWquiMioqeosuCOjIyEsbFxVXVHRERPofWpktdff11tW6lUIjMzEzExMVi4cGGVFUZERE+mdXDLZDK17Tp16sDBwQEff/wx/Pz8qqwwIiJ6Mq2CW6FQYPTo0XBxcYGFhUV11URERBXQ6hy3gYEB/P39UVBQUF31EBHRM2h9cdLFxQXXrl2rjlqIiKgStA7upUuXYs6cOThw4AAyMzNRWFio9iIiouql9cXJfv36AQAGDRqkduu7UqmERCKBQqGouuqIiEiD1sF97Nix6qiDiIgqSevgtre3h52dncaDppRKJdLS0qqsMCIiejKtz3Hb29vj1q1bGu25ubmwt7evkqKIiOjptA7uf85lP66oqIi3vBMRvQSVPlUya9YsAIBEIsHChQtRr1491XsKhQLR0dEaj3wlIqKqV+ngjouLA/BgxH3+/HlIpQ+XCpNKpXBzc8OcOXOqvkIiIlJT6eD+ZzbJmDFj8Pnnnz9zTTQiIqoeWs8q2bZtW3XUQURElVRlz+MmIqKXg8FNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFw66E5gX4I/3YussNXI+XIMuz+bDzaNLfW2M/BXo49ayci6+QqZIevxonts2Fn01AHFZO+2bQxGO3a2KOBqTE6d/REePgpXZekVxjcesjXozW+3HUS3UeuxqvvboCBgQEObJyCesZS1T72Ta1wZOssXL6eBf/xn6Pj0GVY9vWvuFdSpsPKSR/s2b0Lc2fPwPz3P0DUH3Ho3NUXAa/2R2pqqq5L0xsSpVKp1HURz6uwsBAymQxGLuMhMZA++4BayqqhKdKOLkefsUE4feZPAEDo8jEoK1Ng7MJQHVcnhrw/Nui6BGH4dvaGu7sH1n2xUdXWwcURAwcFYMnSZTqsrGYrLCyE3FKGgoICmJubV7gvR9y1gLmpMQAgr+AvAIBEIkG/rk64kpqN/V9MRsqRZTgZOgcDe7jqskzSA6WlpYg7E4veff3U2nv38UNUZISOqtI/DO5aYMXswTh95iou/pkJALC2MIVZfWPMGdMXYREXMfDdDdh/7Cy+WzMOXT1b67haEtnt27ehUChgbS1Xa5fL5bh5M0tHVekfQ10XQNUr6P034dLGFr3HBKna6tR58Pf1gePnsX7HMQDAucvp8HZrifFvdEV47FWd1Er6QyKRqG0rlUqNNnp+HHHrsc/mD8Gr3V3gP34d0rPzVe2384pQVqZA4rVMtf2TrmVxVgm9ECsrKxgYGGiMrrOzszVG4fT8GNx6Kmj+ELzWyw39Jq5DSkaO2ntl9xWIvZiCts3Vf5HaNLdGambeyyyT9IxUKoW7hyeOHg5Taz96JAydfDrrqCr9w1MlemjtgjcxtL8Xhsz8CkV370FuaQYAKCi6p5ruF7T9ML5ZEYjwM1dxIuYy/Dq3x4BuzvAf/7kuSyc9MG3GLIwdPQIenl7w7uSDLZu/QlpqKsZNmKTr0vQGpwPqoeK4J09dG7/oG3z7c7Rqe+RrnTA30A9NrBvgcko2PvnyFxw4fv5llSkUTgfUzqaNwfhszUpkZWbCyckZK9cEoatvN12XVaNpMx1Qp8F98uRJrFq1CrGxscjMzMS+ffsQEBBQ6eMZ3PSyMLipugkzj/vu3btwc3PDhg38pSAiqiydnuPu378/+vfvr8sSiIiEI9TFyZKSEpSUlKi2CwsLdVgNEZFuCDUdcNmyZZDJZKqXnZ2drksiInrphAruBQsWoKCgQPVKS0vTdUlERC+dUMFtZGQEc3NztVdtYSGrj5Qjy9CssYVO63BqbYurvy5Re0Qs6Y+cnBw0s7VGSnKyTuu4cP48WrVoirt37+q0jppKqOCuzeYG+uHgyfNIzcwFAKyeOxind8xDfnQQor57v1J9SOsa4rP5Q5B2dDluR6zBnrUT0cS6gdo+DcxMsGXJSGSdXIWsk6uwZclIyExNVO8nXM1AzIUUTB3es8o+G9Ucq1Ysw4BXBqJ5ixYAgNTUVAwOGAhLWX00tbHCrBnTUFpaWmEfJSUlmDl9KpraWMFSVh9v/HsQbty4obZPXl4eAkeNgNxSBrmlDIGjRiA/P1/1vrOLC7z+1RHrPw8CadJpcBcVFSE+Ph7x8fEAgOvXryM+Pp4PXH+MsVFdjArwQci+SFWbRCJB6E9R+P63M5XuZ9XcwRjU0xUjF2xD7zFBMDWRYu+6SahT5+HDf0KWjYarQ1O8NiUYr00JhqtDU2z5ZKRaP6H7ozBhiK/acSS+4uJibN+2BaMDxwEAFAoFXh/0Cu7evYsjx8MRuuM7/LhvL+bPnV1hP3NnzcD+n/YhdMd3OHI8HEVFRRj82qtQKBSqfUaPeBvnzsbjpwO/4qcDv+Lc2XiMHT1CrZ+Ro8bgq00b1Y6jB3Qa3DExMXB3d4e7uzsAYNasWXB3d8eiRYt0WVaN49+lPe4rFIg+d13VNnvl99i0+ySu38ip4MiHzE2NMTrAB+9/tg/HopNwNukGAj8MhXNrW/TybgfgwVJm/l2c8N7HOxB97jqiz13H5CX/xSvdXdSWPguLSISFrD58PdtU7QclnTr06/9gaGiITj4+AIDDYb8hMfEitm7/Fh3c3dGrdx8sX7kG27Z8/dQZXQUFBQjZtgXLV65Br9590MHdHVu3f4sLF87j6JHDAIBLiYn47dCvCN60GZ18fNDJxwdffPk1Dv5yAJeTklR99fXzR25ODk6dPFH9H14wOg3uHj16QKlUarxCQkJ0WVaN09WjNc5cfLF/hbg7NoO0riEORyaq2jJvFSDhzwx0crMHAHi72iP/zl/440KKap/fzycj/85f6OTWUtVWdl+B85fT0cW91QvVRDVL+KmT8PD0Um1HR0XCyckZtra2qra+fv4oKSlB3JnYJ/YRdyYWZWVl6PPIQgq2trZwcnJWLaQQHRUJmUyGjt7eqn28O3WCTCZTW2xBKpXCxdUNp7lepQae4xZAc1sLZN4qeKE+bCzNUVJahvw7xWrt2Tl3ILd8cJFXbmmOW7lFGsfeyi2C3Er9QnBGdj6a21q+UE1Us6SkJKNx44chfTMrC9Zy9SdINmzYEFKpFFlZT14UISsrC1KpFA0bqj8e2Foux82/j7l5MwuNrDUXr25kba3xOFjbJk10fqG0JmJwC8DYSIp7JferpW+JRIJHH1bzpEfXSCQAHmsvLilDPeO61VIT6ca94mIYGxurtT1p8YPnWRTh8WOe1i8eazcxNsFfxX9p9bNqAwa3AHLyi9DQvN4L9ZGVUwgjaV00MDNRa29kYYrsnAfnK2/mFML670fAPsqqoSlu5txRa2soq4fbeZqjcxKXpaUV8vIfPo9dbmOjGiX/Iy8vD2VlZZDLn7wogo2NDUpLS5GXp/5c91vZ2arRu1xug+ybNzWOvX3rFuSPLbaQl5cLK6tGz/V59BmDWwBnL91Au5Y2L9RHXGIqSsvuo3endqo2GytzOLWyRdTZBxc9o89dRwOzevByaq7a51/OzdHArB6izl5T68+plS3ik9SneJHY3NzdceniRdW2dycfJCRcQGbmw5WSDof9BiMjI7h7eD6xD3cPT9StWxdHHllIITMzEwkJF1QLKXh38kFBQQH++P131T6/R0ejoKBAY7GFhIQL6NDBvUo+nz5hcAsgLDIR7Vs2Vhstt7SzgmvbJpBbmcPEqC5c2zaBa9smqGtoAACwbSRD/A8fqkK4sOgeQn6MxPJZr6NHx7Zwc2iKrZ+MwoWrGTgafQkAkHT9Jg6dTsAXi4aho0sLdHRpgS8Wvo1fTpzHlZRs1c9u1tgCttYyHPv7ONIPffv64+LFBNVouU9fPzg6tsfY0SMQHxeHY0ePYMH8ORgzdrzq5rf09HS4ObdThbBMJsPoMWPx/rzZOHb0COLj4hA4ajicnV3Qq3cfAEA7R0f4+ffD5EnjER0VheioKEyeNB4DXnkVbR0cVPWkJCcjIz0dPf8+jh4S6iFTtVXC1QycSUzFYD8PbNl7GgCwcdE76Ob1cDpe9K4FAACHAYuQmpkLQ0MDONjbwOSROxznrd4LhaIc364YCxOjujj2exImTP8G5eUPz1+P+b/tWDPvDfwcPBkA8MuJ85i5fI9aPW/298LhyEtc5kzPOLu4wMPTC3v37Ma4CRNhYGCAH/b/ghlT30Ov7l1gYmKCN996G8tXrlYdc7+sDJeTklD8yHnolWuCYGBoiOHD3kRxcTF69uqNr7aEwMDAQLXPttAdmD1jGgYOeDD75JVXByFonfrjnXfv2ok+ff3QvHlzkDqugCMI/67tsWzmv+H5xqdPvID4skjrGuLCT4swakEIIh87faLPastCCr/+7yAWzJ+D2PgLqFNHd/8gLykpgbNjG2z/Zic6d+miszpeJm0WUuCIWxCHwi+itZ01mljLcONmvs7qaNbYAiu2HKpVoV2b9Os/AFevXEF6erpOn76ZmpKC+e9/UGtCW1sccRNVQm0ZcZPuCLN0GRERaY/BTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIJhcBMRCYbBTUQkGAY3EZFgGNxERIIx1HUBL0KpVD74r6JUx5WQvissLNR1CaTn7vz9Z+yfXKuIRFmZvWqoGzduwM7OTtdlEBFVmbS0NDRt2rTCfYQO7vLycmRkZMDMzAwSiUTX5QihsLAQdnZ2SEtLg7m5ua7LIT3FP2faUyqVuHPnDmxtbVGnTsVnsYU+VVKnTp1n/s1ET2Zubs5fKKp2/HOmHZlMVqn9eHGSiEgwDG4iIsEwuGsZIyMjLF68GEZGRrouhfQY/5xVL6EvThIR1UYccRMRCYbBTUQkGAY3EZFgGNxERIJhcNcywcHBsLe3h7GxMTw9PXHq1Cldl0R65OTJkxg4cCBsbW0hkUjw448/6rokvcTgrkV27dqFGTNm4IMPPkBcXBx8fX3Rv39/pKam6ro00hN3796Fm5sbNmzYoOtS9BqnA9Yi3t7e8PDwwMaNG1Vtjo6OCAgIwLJly3RYGekjiUSCffv2ISAgQNel6B2OuGuJ0tJSxMbGws/PT63dz88PEREROqqKiJ4Hg7uWuH37NhQKBeRyuVq7XC5HVlaWjqoioufB4K5lHn/8rVKp5CNxiQTD4K4lrKysYGBgoDG6zs7O1hiFE1HNxuCuJaRSKTw9PREWFqbWHhYWhs6dO+uoKiJ6HkIvpEDamTVrFkaMGAEvLy/4+Pjgq6++QmpqKiZNmqTr0khPFBUV4erVq6rt69evIz4+HhYWFmjWrJkOK9MvnA5YywQHB2PlypXIzMyEs7MzgoKC0K1bN12XRXri+PHj6Nmzp0b7qFGjEBIS8vIL0lMMbiIiwfAcNxGRYBjcRESCYXATEQmGwU1EJBgGNxGRYBjcRESCYXATEQmGwU16o0WLFli7dq1qW1crsPznP/9Bhw4dnvr+8ePHIZFIkJ+fX+k+e/TogRkzZrxQXSEhIWjQoMEL9UE1A4Ob9FZmZib69+9fqX2fFbZENQmfVUI1SmlpKaRSaZX0ZWNjUyX9ENU0HHFTtenRowemTJmCKVOmoEGDBrC0tMSHH36IR5+y0KJFC3zyyScYPXo0ZDIZxo8fDwCIiIhAt27dYGJiAjs7O0ybNg13795VHZednY2BAwfCxMQE9vb22LFjh8bPf/xUyY0bN/DWW2/BwsIC9evXh5eXF6KjoxESEoKPPvoIZ8+ehUQigUQiUT1Xo6CgABMmTIC1tTXMzc3Rq1cvnD17Vu3nLF++HHK5HGZmZhg7dizu3bun1feUk5ODYcOGoWnTpqhXrx5cXFywc+dOjf3u379f4XdZWlqKefPmoUmTJqhfvz68vb1x/PhxrWohMTC4qVpt374dhoaGiI6Oxrp16xAUFITNmzer7bNq1So4OzsjNjYWCxcuxPnz5+Hv74/XX38d586dw65duxAeHo4pU6aojhk9ejSSk5Nx9OhRfP/99wgODkZ2dvZT6ygqKkL37t2RkZGB/fv34+zZs5g3bx7Ky8sxdOhQzJ49G05OTsjMzERmZiaGDh0KpVKJV155BVlZWTh48CBiY2Ph4eGB3r17Izc3FwCwe/duLF68GEuXLkVMTAwaN26M4OBgrb6je/fuwdPTEwcOHMCFCxcwYcIEjBgxAtHR0Vp9l2PGjMHp06fx3Xff4dy5cxgyZAj69euHK1euaFUPCUBJVE26d++udHR0VJaXl6va5s+fr3R0dFRtN2/eXBkQEKB23IgRI5QTJkxQazt16pSyTp06yuLiYmVSUpISgDIqKkr1fmJiohKAMigoSNUGQLlv3z6lUqlUbtq0SWlmZqbMycl5Yq2LFy9Wurm5qbUdOXJEaW5urrx3755ae6tWrZSbNm1SKpVKpY+Pj3LSpElq73t7e2v09ahjx44pASjz8vKeus+AAQOUs2fPVm0/67u8evWqUiKRKNPT09X66d27t3LBggVKpVKp3LZtm1Imkz31Z5I4eI6bqlWnTp3Ulkbz8fHBmjVroFAoYGBgAADw8vJSOyY2NhZXr15VO/2hVCpRXl6O69ev4/LlyzA0NFQ7rl27dhXOmIiPj4e7uzssLCwqXXtsbCyKiopgaWmp1l5cXIw///wTAJCYmKjxPHMfHx8cO3as0j9HoVBg+fLl2LVrF9LT01FSUoKSkhLUr19fbb+KvsszZ85AqVSibdu2aseUlJRo1E/iY3CTzj0eUOXl5Zg4cSKmTZumsW+zZs2QlJQEQHP9zIqYmJhoXVd5eTkaN278xPPEVTmtbs2aNQgKCsLatWvh4uKC+vXrY8aMGSgtLdWqVgMDA8TGxqr+QvyHqalpldVKNQODm6pVVFSUxnabNm00wuVRHh4eSEhIQOvWrZ/4vqOjI+7fv4+YmBh07NgRAJCUlFThvGhXV1ds3rwZubm5Txx1S6VSKBQKjTqysrJgaGiIFi1aPLWWqKgojBw5Uu0zauPUqVN47bXXMHz4cAAPQvjKlStwdHRU26+i79Ld3R0KhQLZ2dnw9fXV6ueTeHhxkqpVWloaZs2ahaSkJOzcuRPr16/H9OnTKzxm/vz5iIyMxOTJkxEfH48rV65g//79mDp1KgDAwcEB/fr1w/jx4xEdHY3Y2FiMGzeuwlH1sGHDYGNjg4CAAJw+fRrXrl3D3r17ERkZCeDB7JZ/ltm6ffs2SkpK0KdPH/j4+CAgIACHDh1CcnIyIiIi8OGHHyImJgYAMH36dGzduhVbt27F5cuXsXjxYiQkJGj1HbVu3RphYWGIiIhAYmIiJk6cqLGo87O+y7Zt2+Kdd97ByJEj8cMPP+D69ev4448/sGLFChw8eFCreqjmY3BTtRo5ciSKi4vRsWNHTJ48GVOnTsWECRMqPMbV1RUnTpzAlStX4OvrC3d3dyxcuBCNGzdW7bNt2zbY2dmhe/fueP3111VT9p5GKpXit99+g7W1NQYMGAAXFxcsX75cNfIfPHgw+vXrh549e6JRo0bYuXMnJBIJDh48iG7duiEwMBBt27bFW2+9heTkZMjlcgDA0KFDsWjRIsyfPx+enp5ISUnBu+++q9V3tHDhQnh4eMDf3x89evRQ/QWj7Xe5bds2jBw5ErNnz4aDgwMGDRqE6Oho2NnZaVUP1XxcuoyqTY8ePdChQwe129CJ6MVxxE1EJBgGNxGRYHiqhIhIMBxxExEJhsFNRCQYBjcRkWAY3EREgmFwExEJhsFNRCQYBjcRkWAY3EREgmFwExEJ5v8BCopgfEX+iNkAAAAASUVORK5CYII=",
|
1360 |
-
"text/plain": [
|
1361 |
-
"<Figure size 400x400 with 1 Axes>"
|
1362 |
-
]
|
1363 |
-
},
|
1364 |
-
"metadata": {},
|
1365 |
-
"output_type": "display_data"
|
1366 |
-
}
|
1367 |
-
],
|
1368 |
-
"source": [
|
1369 |
-
"evaluation_score_output, evaluation_counts_output = evaluate_models(input_model)\n",
|
1370 |
-
"\n",
|
1371 |
-
"# check if the model has already been evaluated and if not, append the results to the dataframe\n",
|
1372 |
-
"\n",
|
1373 |
-
"evaluation_score_df = pd.concat([evaluation_score_output, evaluation_score_df], ignore_index=True) \n",
|
1374 |
-
"display(pd.DataFrame(evaluation_score_output))\n",
|
1375 |
-
"\n",
|
1376 |
-
"evaluation_count_df = pd.concat([evaluation_counts_output, evaluation_count_df], ignore_index=True) \n",
|
1377 |
-
"display(pd.DataFrame(evaluation_counts_output))\n",
|
1378 |
-
"\n",
|
1379 |
-
"from mlxtend.plotting import plot_confusion_matrix\n",
|
1380 |
-
"\n",
|
1381 |
-
"# select the model index and filter the row from evaluation_count_df dataframe\n",
|
1382 |
-
"model_index = 0\n",
|
1383 |
-
"\n",
|
1384 |
-
"selected_model = evaluation_count_df[evaluation_count_df.index == model_index]\n",
|
1385 |
-
"\n",
|
1386 |
-
"# create a np.array with selected_model values\n",
|
1387 |
-
"\n",
|
1388 |
-
"\n",
|
1389 |
-
"conf_matrix = np.array([[selected_model['True Negatives'].values[0], selected_model['False Positives'].values[0]],\n",
|
1390 |
-
" [selected_model['False Negatives'].values[0], selected_model['True Positives'].values[0]]])\n",
|
1391 |
-
"\n",
|
1392 |
-
"#change the size of the graph\n",
|
1393 |
-
"\n",
|
1394 |
-
"plt.rcParams['figure.figsize'] = [4, 4]\n",
|
1395 |
-
"\n",
|
1396 |
-
"fig, ax = plot_confusion_matrix(\n",
|
1397 |
-
" conf_mat=conf_matrix,\n",
|
1398 |
-
" show_absolute=True,\n",
|
1399 |
-
" show_normed=True\n",
|
1400 |
-
")"
|
1401 |
-
]
|
1402 |
-
},
|
1403 |
-
{
|
1404 |
-
"attachments": {},
|
1405 |
-
"cell_type": "markdown",
|
1406 |
-
"metadata": {},
|
1407 |
-
"source": [
|
1408 |
-
"#### **Plot Evaluation**"
|
1409 |
-
]
|
1410 |
-
}
|
1411 |
-
],
|
1412 |
-
"metadata": {
|
1413 |
-
"kernelspec": {
|
1414 |
-
"display_name": "base",
|
1415 |
-
"language": "python",
|
1416 |
-
"name": "python3"
|
1417 |
-
},
|
1418 |
-
"language_info": {
|
1419 |
-
"codemirror_mode": {
|
1420 |
-
"name": "ipython",
|
1421 |
-
"version": 3
|
1422 |
-
},
|
1423 |
-
"file_extension": ".py",
|
1424 |
-
"mimetype": "text/x-python",
|
1425 |
-
"name": "python",
|
1426 |
-
"nbconvert_exporter": "python",
|
1427 |
-
"pygments_lexer": "ipython3",
|
1428 |
-
"version": "3.9.16"
|
1429 |
-
},
|
1430 |
-
"orig_nbformat": 4
|
1431 |
-
},
|
1432 |
-
"nbformat": 4,
|
1433 |
-
"nbformat_minor": 2
|
1434 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|