Upload P2 - Secom Notebook2 - Mercury.ipynb
Browse files- P2 - Secom Notebook2 - Mercury.ipynb +202 -321
P2 - Secom Notebook2 - Mercury.ipynb
CHANGED
@@ -26,7 +26,7 @@
|
|
26 |
},
|
27 |
{
|
28 |
"cell_type": "code",
|
29 |
-
"execution_count":
|
30 |
"metadata": {},
|
31 |
"outputs": [],
|
32 |
"source": [
|
@@ -53,14 +53,14 @@
|
|
53 |
},
|
54 |
{
|
55 |
"cell_type": "code",
|
56 |
-
"execution_count":
|
57 |
"metadata": {},
|
58 |
"outputs": [
|
59 |
{
|
60 |
"data": {
|
61 |
"application/mercury+json": {
|
62 |
"allow_download": true,
|
63 |
-
"code_uid": "App.0.40.24.1-
|
64 |
"continuous_update": false,
|
65 |
"description": "Recumpute everything dynamically",
|
66 |
"full_screen": true,
|
@@ -92,7 +92,7 @@
|
|
92 |
},
|
93 |
{
|
94 |
"cell_type": "code",
|
95 |
-
"execution_count":
|
96 |
"metadata": {},
|
97 |
"outputs": [],
|
98 |
"source": [
|
@@ -129,24 +129,24 @@
|
|
129 |
},
|
130 |
{
|
131 |
"cell_type": "code",
|
132 |
-
"execution_count":
|
133 |
"metadata": {},
|
134 |
"outputs": [
|
135 |
{
|
136 |
"data": {
|
137 |
"application/mercury+json": {
|
138 |
-
"code_uid": "Text.0.40.15.11-
|
139 |
"disabled": false,
|
140 |
"hidden": false,
|
141 |
"label": "Test Size Ratio",
|
142 |
-
"model_id": "
|
143 |
"rows": 1,
|
144 |
"url_key": "",
|
145 |
"value": "0.25",
|
146 |
"widget": "Text"
|
147 |
},
|
148 |
"application/vnd.jupyter.widget-view+json": {
|
149 |
-
"model_id": "
|
150 |
"version_major": 2,
|
151 |
"version_minor": 0
|
152 |
},
|
@@ -160,18 +160,18 @@
|
|
160 |
{
|
161 |
"data": {
|
162 |
"application/mercury+json": {
|
163 |
-
"code_uid": "Text.0.40.15.14-
|
164 |
"disabled": false,
|
165 |
"hidden": false,
|
166 |
"label": "Random State Integer",
|
167 |
-
"model_id": "
|
168 |
"rows": 1,
|
169 |
"url_key": "",
|
170 |
"value": "13",
|
171 |
"widget": "Text"
|
172 |
},
|
173 |
"application/vnd.jupyter.widget-view+json": {
|
174 |
-
"model_id": "
|
175 |
"version_major": 2,
|
176 |
"version_minor": 0
|
177 |
},
|
@@ -220,31 +220,37 @@
|
|
220 |
},
|
221 |
{
|
222 |
"cell_type": "code",
|
223 |
-
"execution_count":
|
224 |
"metadata": {},
|
225 |
"outputs": [],
|
226 |
"source": [
|
227 |
"def columns_to_drop(df,drop_duplicates='yes', missing_values_threshold=100, variance_threshold=0, \n",
|
228 |
" correlation_threshold=1.1):\n",
|
229 |
" \n",
|
230 |
-
"
|
231 |
-
"
|
|
|
|
|
|
|
|
|
|
|
232 |
" \n",
|
233 |
-
"
|
|
|
234 |
"\n",
|
235 |
" # Drop duplicated columns\n",
|
236 |
" if drop_duplicates == 'yes':\n",
|
237 |
" new_column_names = df.columns\n",
|
238 |
" df = df.T.drop_duplicates().T\n",
|
239 |
-
"
|
240 |
" drop_duplicated = list(set(new_column_names) - set(df.columns))\n",
|
241 |
"\n",
|
242 |
" elif drop_duplicates == 'no':\n",
|
243 |
" df = df.T.T\n",
|
244 |
-
"
|
245 |
"\n",
|
246 |
" # Print the percentage of columns in df with missing values more than or equal to threshold\n",
|
247 |
-
"
|
248 |
" \n",
|
249 |
" # Print into a list the columns to be dropped due to missing values\n",
|
250 |
" drop_missing = list(df.isnull().mean()[df.isnull().mean() > missing_values_threshold/100].index)\n",
|
@@ -253,7 +259,7 @@
|
|
253 |
" df.drop(drop_missing, axis=1, inplace=True)\n",
|
254 |
" \n",
|
255 |
" # Print the number of columns in df with variance less than threshold\n",
|
256 |
-
"
|
257 |
"\n",
|
258 |
" # Print into a list the columns to be dropped due to low variance\n",
|
259 |
" drop_variance = list(df.var()[df.var() <= variance_threshold].index)\n",
|
@@ -267,7 +273,7 @@
|
|
267 |
" corr_matrix = df.corr().abs().round(4)\n",
|
268 |
" upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool))\n",
|
269 |
" to_drop = [column for column in upper.columns if any(upper[column] >= correlation_threshold)]\n",
|
270 |
-
"
|
271 |
"\n",
|
272 |
" # Print into a list the columns to be dropped due to high correlation\n",
|
273 |
" drop_correlation = [column for column in upper.columns if any(upper[column] >= correlation_threshold)]\n",
|
@@ -281,8 +287,8 @@
|
|
281 |
" elif drop_duplicates =='no':\n",
|
282 |
" dropped = (drop_missing+drop_variance+drop_correlation)\n",
|
283 |
" \n",
|
284 |
-
"
|
285 |
-
"
|
286 |
"\n",
|
287 |
" global drop_duplicates_var\n",
|
288 |
" drop_duplicates_var = drop_duplicates\n",
|
@@ -314,24 +320,24 @@
|
|
314 |
},
|
315 |
{
|
316 |
"cell_type": "code",
|
317 |
-
"execution_count":
|
318 |
"metadata": {},
|
319 |
"outputs": [],
|
320 |
"source": [
|
321 |
"def outlier_removal(z_df, z_threshold=4):\n",
|
322 |
" \n",
|
323 |
" global outlier_var\n",
|
|
|
|
|
324 |
"\n",
|
325 |
-
" print('------------------------------------------')\n",
|
326 |
-
" print('OUTLIER REMOVAL')\n",
|
327 |
"\n",
|
328 |
" if z_threshold == 'none':\n",
|
329 |
-
"
|
330 |
" outlier_var = 'none'\n",
|
331 |
" return z_df\n",
|
332 |
" \n",
|
333 |
" else:\n",
|
334 |
-
"
|
335 |
"\n",
|
336 |
" z_df_copy = z_df.copy()\n",
|
337 |
"\n",
|
@@ -342,11 +348,10 @@
|
|
342 |
" z_df_copy[outliers_mask] = np.nan\n",
|
343 |
"\n",
|
344 |
" outliers_count = np.count_nonzero(outliers_mask)\n",
|
345 |
-
"
|
346 |
"\n",
|
347 |
" outlier_var = z_threshold\n",
|
348 |
"\n",
|
349 |
-
" print(type(z_df_copy))\n",
|
350 |
" return z_df_copy"
|
351 |
]
|
352 |
},
|
@@ -364,7 +369,7 @@
|
|
364 |
},
|
365 |
{
|
366 |
"cell_type": "code",
|
367 |
-
"execution_count":
|
368 |
"metadata": {},
|
369 |
"outputs": [],
|
370 |
"source": [
|
@@ -373,9 +378,7 @@
|
|
373 |
"def scale_dataframe(scale_model,df_fit, df_transform):\n",
|
374 |
" \n",
|
375 |
" global scale_model_var\n",
|
376 |
-
"\n",
|
377 |
-
" print('------------------------------------------')\n",
|
378 |
-
" print('SCALING THE DATAFRAME')\n",
|
379 |
"\n",
|
380 |
" if scale_model == 'robust':\n",
|
381 |
" from sklearn.preprocessing import RobustScaler\n",
|
@@ -383,7 +386,7 @@
|
|
383 |
" scaler.fit(df_fit)\n",
|
384 |
" df_scaled = scaler.transform(df_transform)\n",
|
385 |
" df_scaled = pd.DataFrame(df_scaled, columns=df_transform.columns)\n",
|
386 |
-
"
|
387 |
" scale_model_var = 'robust'\n",
|
388 |
" return df_scaled\n",
|
389 |
" \n",
|
@@ -393,7 +396,7 @@
|
|
393 |
" scaler.fit(df_fit)\n",
|
394 |
" df_scaled = scaler.transform(df_transform)\n",
|
395 |
" df_scaled = pd.DataFrame(df_scaled, columns=df_transform.columns)\n",
|
396 |
-
"
|
397 |
" scale_model_var = 'standard'\n",
|
398 |
" return df_scaled\n",
|
399 |
" \n",
|
@@ -403,7 +406,7 @@
|
|
403 |
" scaler.fit(df_fit)\n",
|
404 |
" df_scaled = scaler.transform(df_transform)\n",
|
405 |
" df_scaled = pd.DataFrame(df_scaled, columns=df_transform.columns)\n",
|
406 |
-
"
|
407 |
" scale_model_var = 'normal'\n",
|
408 |
" return df_scaled\n",
|
409 |
" \n",
|
@@ -413,12 +416,12 @@
|
|
413 |
" scaler.fit(df_fit)\n",
|
414 |
" df_scaled = scaler.transform(df_transform)\n",
|
415 |
" df_scaled = pd.DataFrame(df_scaled, columns=df_transform.columns)\n",
|
416 |
-
"
|
417 |
" scale_model_var = 'minmax'\n",
|
418 |
" return df_scaled\n",
|
419 |
" \n",
|
420 |
" elif scale_model == 'none':\n",
|
421 |
-
"
|
422 |
" scale_model_var = 'none'\n",
|
423 |
" return df_transform\n",
|
424 |
" \n",
|
@@ -441,7 +444,7 @@
|
|
441 |
},
|
442 |
{
|
443 |
"cell_type": "code",
|
444 |
-
"execution_count":
|
445 |
"metadata": {},
|
446 |
"outputs": [],
|
447 |
"source": [
|
@@ -449,11 +452,14 @@
|
|
449 |
"\n",
|
450 |
"def impute_missing_values(imputation, df_fit, df_transform, n_neighbors=5):\n",
|
451 |
"\n",
|
452 |
-
" print('------------------------------------------')\n",
|
453 |
-
" print('IMPUTATION PROCESS')\n",
|
454 |
-
" print('Number of missing values before imputation: ', df_transform.isnull().sum().sum())\n",
|
455 |
-
"\n",
|
456 |
" global imputation_var\n",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
457 |
"\n",
|
458 |
" if imputation == 'knn':\n",
|
459 |
"\n",
|
@@ -462,8 +468,8 @@
|
|
462 |
" imputer.fit(df_fit)\n",
|
463 |
" df_imputed = imputer.transform(df_transform)\n",
|
464 |
" df_imputed = pd.DataFrame(df_imputed, columns=df_transform.columns)\n",
|
465 |
-
"
|
466 |
-
"
|
467 |
" imputation_var = 'knn'\n",
|
468 |
" return df_imputed\n",
|
469 |
" \n",
|
@@ -474,8 +480,8 @@
|
|
474 |
" imputer.fit(df_fit)\n",
|
475 |
" df_imputed = imputer.transform(df_transform)\n",
|
476 |
" df_imputed = pd.DataFrame(df_imputed, columns=df_transform.columns)\n",
|
477 |
-
"
|
478 |
-
"
|
479 |
" imputation_var = 'mean'\n",
|
480 |
" return df_imputed\n",
|
481 |
" \n",
|
@@ -486,8 +492,8 @@
|
|
486 |
" imputer.fit(df_fit)\n",
|
487 |
" df_imputed = imputer.transform(df_transform)\n",
|
488 |
" df_imputed = pd.DataFrame(df_imputed, columns=df_transform.columns)\n",
|
489 |
-
"
|
490 |
-
"
|
491 |
" imputation_var = 'median'\n",
|
492 |
" return df_imputed\n",
|
493 |
" \n",
|
@@ -498,8 +504,8 @@
|
|
498 |
" imputer.fit(df_fit)\n",
|
499 |
" df_imputed = imputer.transform(df_transform)\n",
|
500 |
" df_imputed = pd.DataFrame(df_imputed, columns=df_transform.columns)\n",
|
501 |
-
"
|
502 |
-
"
|
503 |
" imputation_var = 'most_frequent'\n",
|
504 |
" return df_imputed\n",
|
505 |
" \n",
|
@@ -523,7 +529,7 @@
|
|
523 |
},
|
524 |
{
|
525 |
"cell_type": "code",
|
526 |
-
"execution_count":
|
527 |
"metadata": {},
|
528 |
"outputs": [],
|
529 |
"source": [
|
@@ -531,14 +537,15 @@
|
|
531 |
"\n",
|
532 |
" global feature_selection_var\n",
|
533 |
" global selected_features\n",
|
|
|
|
|
|
|
534 |
"\n",
|
535 |
-
" print('------------------------------------------')\n",
|
536 |
-
" print('FEATURE SELECTION')\n",
|
537 |
"\n",
|
538 |
" # if method is boruta, run boruta feature selection and return the selected features and the training set with only the selected features\n",
|
539 |
"\n",
|
540 |
" if method == 'boruta':\n",
|
541 |
-
"
|
542 |
" from boruta import BorutaPy\n",
|
543 |
" from sklearn.ensemble import RandomForestClassifier\n",
|
544 |
" rf = RandomForestClassifier(n_estimators=100, n_jobs=-1)\n",
|
@@ -547,48 +554,48 @@
|
|
547 |
" selected_feature_indices = boruta_selector.support_\n",
|
548 |
" selected_columns = X_train.columns[selected_feature_indices]\n",
|
549 |
" X_train_filtered = X_train.iloc[:, selected_feature_indices]\n",
|
550 |
-
"
|
551 |
" return X_train_filtered, selected_columns\n",
|
552 |
" \n",
|
553 |
" if method == 'none':\n",
|
554 |
-
"
|
555 |
" X_train_filtered = X_train\n",
|
556 |
-
"
|
557 |
" feature_selection_var = 'none'\n",
|
558 |
" selected_features = X_train_filtered.columns\n",
|
559 |
" return X_train_filtered, selected_features \n",
|
560 |
" \n",
|
561 |
" if method == 'lasso':\n",
|
562 |
-
"
|
563 |
" from sklearn.linear_model import LassoCV\n",
|
564 |
" from sklearn.feature_selection import SelectFromModel\n",
|
565 |
" lasso = LassoCV().fit(X_train, y_train)\n",
|
566 |
" model = SelectFromModel(lasso, prefit=True)\n",
|
567 |
" X_train_filtered = model.transform(X_train)\n",
|
568 |
" selected_features = X_train.columns[model.get_support()]\n",
|
569 |
-
"
|
570 |
" feature_selection_var = 'lasso'\n",
|
571 |
" return X_train_filtered, selected_features\n",
|
572 |
" \n",
|
573 |
" if method == 'pca':\n",
|
574 |
-
"
|
575 |
" from sklearn.decomposition import PCA\n",
|
576 |
" pca = PCA(n_components=15)\n",
|
577 |
" X_train_pca = pca.fit_transform(X_train)\n",
|
578 |
" selected_features = X_train.columns[pca.explained_variance_ratio_.argsort()[::-1]][:15]\n",
|
579 |
-
"
|
580 |
" feature_selection_var = 'pca'\n",
|
581 |
" return X_train_pca, selected_features\n",
|
582 |
" \n",
|
583 |
" if method == 'rfe':\n",
|
584 |
-
"
|
585 |
" from sklearn.feature_selection import RFE\n",
|
586 |
" from sklearn.ensemble import RandomForestClassifier\n",
|
587 |
" rfe_selector = RFE(estimator=RandomForestClassifier(n_estimators=100, n_jobs=-1), n_features_to_select=15, step=10, verbose=0)\n",
|
588 |
" rfe_selector.fit(X_train, y_train)\n",
|
589 |
" selected_features = X_train.columns[rfe_selector.support_]\n",
|
590 |
" X_train_filtered = X_train.iloc[:, rfe_selector.support_]\n",
|
591 |
-
"
|
592 |
" feature_selection_var = 'rfe'\n",
|
593 |
" return X_train_filtered, selected_features\n",
|
594 |
" "
|
@@ -608,7 +615,7 @@
|
|
608 |
},
|
609 |
{
|
610 |
"cell_type": "code",
|
611 |
-
"execution_count":
|
612 |
"metadata": {},
|
613 |
"outputs": [],
|
614 |
"source": [
|
@@ -617,16 +624,15 @@
|
|
617 |
"def imbalance_treatment(method, X_train, y_train):\n",
|
618 |
"\n",
|
619 |
" global imbalance_var\n",
|
620 |
-
"\n",
|
621 |
-
"
|
622 |
-
" print('IMBALANCE TREATMENT')\n",
|
623 |
"\n",
|
624 |
" if method == 'smote': \n",
|
625 |
" from imblearn.over_sampling import SMOTE\n",
|
626 |
" sm = SMOTE(random_state=42)\n",
|
627 |
" X_train_res, y_train_res = sm.fit_resample(X_train, y_train)\n",
|
628 |
-
"
|
629 |
-
"
|
630 |
" imbalance_var = 'smote'\n",
|
631 |
" return X_train_res, y_train_res\n",
|
632 |
" \n",
|
@@ -634,8 +640,8 @@
|
|
634 |
" from imblearn.under_sampling import RandomUnderSampler\n",
|
635 |
" rus = RandomUnderSampler(random_state=42)\n",
|
636 |
" X_train_res, y_train_res = rus.fit_resample(X_train, y_train)\n",
|
637 |
-
"
|
638 |
-
"
|
639 |
" imbalance_var = 'undersampling'\n",
|
640 |
" return X_train_res, y_train_res\n",
|
641 |
" \n",
|
@@ -643,8 +649,8 @@
|
|
643 |
" from imblearn.over_sampling import RandomOverSampler\n",
|
644 |
" ros = RandomOverSampler(random_state=42)\n",
|
645 |
" X_train_res, y_train_res = ros.fit_resample(X_train, y_train)\n",
|
646 |
-
"
|
647 |
-
"
|
648 |
" imbalance_var = 'rose'\n",
|
649 |
" return X_train_res, y_train_res\n",
|
650 |
" \n",
|
@@ -652,8 +658,8 @@
|
|
652 |
" if method == 'none':\n",
|
653 |
" X_train_res = X_train\n",
|
654 |
" y_train_res = y_train\n",
|
655 |
-
"
|
656 |
-
"
|
657 |
" imbalance_var = 'none'\n",
|
658 |
" return X_train_res, y_train_res\n",
|
659 |
" \n",
|
@@ -678,7 +684,7 @@
|
|
678 |
},
|
679 |
{
|
680 |
"cell_type": "code",
|
681 |
-
"execution_count":
|
682 |
"metadata": {},
|
683 |
"outputs": [],
|
684 |
"source": [
|
@@ -751,7 +757,7 @@
|
|
751 |
},
|
752 |
{
|
753 |
"cell_type": "code",
|
754 |
-
"execution_count":
|
755 |
"metadata": {},
|
756 |
"outputs": [],
|
757 |
"source": [
|
@@ -773,7 +779,7 @@
|
|
773 |
},
|
774 |
{
|
775 |
"cell_type": "code",
|
776 |
-
"execution_count":
|
777 |
"metadata": {},
|
778 |
"outputs": [],
|
779 |
"source": [
|
@@ -876,24 +882,24 @@
|
|
876 |
},
|
877 |
{
|
878 |
"cell_type": "code",
|
879 |
-
"execution_count":
|
880 |
"metadata": {},
|
881 |
"outputs": [
|
882 |
{
|
883 |
"data": {
|
884 |
"application/mercury+json": {
|
885 |
-
"code_uid": "Text.0.40.15.8-
|
886 |
"disabled": false,
|
887 |
"hidden": false,
|
888 |
"label": "Missing Value Threeshold",
|
889 |
-
"model_id": "
|
890 |
"rows": 1,
|
891 |
"url_key": "",
|
892 |
"value": "50",
|
893 |
"widget": "Text"
|
894 |
},
|
895 |
"application/vnd.jupyter.widget-view+json": {
|
896 |
-
"model_id": "
|
897 |
"version_major": 2,
|
898 |
"version_minor": 0
|
899 |
},
|
@@ -907,18 +913,18 @@
|
|
907 |
{
|
908 |
"data": {
|
909 |
"application/mercury+json": {
|
910 |
-
"code_uid": "Text.0.40.15.11-
|
911 |
"disabled": false,
|
912 |
"hidden": false,
|
913 |
"label": "Variance Threshold",
|
914 |
-
"model_id": "
|
915 |
"rows": 1,
|
916 |
"url_key": "",
|
917 |
"value": "0.05",
|
918 |
"widget": "Text"
|
919 |
},
|
920 |
"application/vnd.jupyter.widget-view+json": {
|
921 |
-
"model_id": "
|
922 |
"version_major": 2,
|
923 |
"version_minor": 0
|
924 |
},
|
@@ -932,18 +938,18 @@
|
|
932 |
{
|
933 |
"data": {
|
934 |
"application/mercury+json": {
|
935 |
-
"code_uid": "Text.0.40.15.14-
|
936 |
"disabled": false,
|
937 |
"hidden": false,
|
938 |
"label": "Correlation Threshold",
|
939 |
-
"model_id": "
|
940 |
"rows": 1,
|
941 |
"url_key": "",
|
942 |
"value": "0.95",
|
943 |
"widget": "Text"
|
944 |
},
|
945 |
"application/vnd.jupyter.widget-view+json": {
|
946 |
-
"model_id": "
|
947 |
"version_major": 2,
|
948 |
"version_minor": 0
|
949 |
},
|
@@ -963,17 +969,17 @@
|
|
963 |
4,
|
964 |
5
|
965 |
],
|
966 |
-
"code_uid": "Select.0.40.16.18-
|
967 |
"disabled": false,
|
968 |
"hidden": false,
|
969 |
"label": "Outlier Removal Threshold",
|
970 |
-
"model_id": "
|
971 |
"url_key": "",
|
972 |
"value": 5,
|
973 |
"widget": "Select"
|
974 |
},
|
975 |
"application/vnd.jupyter.widget-view+json": {
|
976 |
-
"model_id": "
|
977 |
"version_major": 2,
|
978 |
"version_minor": 0
|
979 |
},
|
@@ -993,17 +999,17 @@
|
|
993 |
"minmax",
|
994 |
"robust"
|
995 |
],
|
996 |
-
"code_uid": "Select.0.40.16.25-
|
997 |
"disabled": false,
|
998 |
"hidden": false,
|
999 |
"label": "Scaling Variables",
|
1000 |
-
"model_id": "
|
1001 |
"url_key": "",
|
1002 |
"value": "standard",
|
1003 |
"widget": "Select"
|
1004 |
},
|
1005 |
"application/vnd.jupyter.widget-view+json": {
|
1006 |
-
"model_id": "
|
1007 |
"version_major": 2,
|
1008 |
"version_minor": 0
|
1009 |
},
|
@@ -1023,17 +1029,17 @@
|
|
1023 |
"knn",
|
1024 |
"most_frequent"
|
1025 |
],
|
1026 |
-
"code_uid": "Select.0.40.16.29-
|
1027 |
"disabled": false,
|
1028 |
"hidden": false,
|
1029 |
"label": "Imputation Methods",
|
1030 |
-
"model_id": "
|
1031 |
"url_key": "",
|
1032 |
"value": "median",
|
1033 |
"widget": "Select"
|
1034 |
},
|
1035 |
"application/vnd.jupyter.widget-view+json": {
|
1036 |
-
"model_id": "
|
1037 |
"version_major": 2,
|
1038 |
"version_minor": 0
|
1039 |
},
|
@@ -1054,17 +1060,17 @@
|
|
1054 |
"pca",
|
1055 |
"boruta"
|
1056 |
],
|
1057 |
-
"code_uid": "Select.0.40.16.34-
|
1058 |
"disabled": false,
|
1059 |
"hidden": false,
|
1060 |
"label": "Feature Selection",
|
1061 |
-
"model_id": "
|
1062 |
"url_key": "",
|
1063 |
"value": "lasso",
|
1064 |
"widget": "Select"
|
1065 |
},
|
1066 |
"application/vnd.jupyter.widget-view+json": {
|
1067 |
-
"model_id": "
|
1068 |
"version_major": 2,
|
1069 |
"version_minor": 0
|
1070 |
},
|
@@ -1084,17 +1090,17 @@
|
|
1084 |
"undersampling",
|
1085 |
"rose"
|
1086 |
],
|
1087 |
-
"code_uid": "Select.0.40.16.38-
|
1088 |
"disabled": false,
|
1089 |
"hidden": false,
|
1090 |
"label": "Imbalance Treatment",
|
1091 |
-
"model_id": "
|
1092 |
"url_key": "",
|
1093 |
"value": "smote",
|
1094 |
"widget": "Select"
|
1095 |
},
|
1096 |
"application/vnd.jupyter.widget-view+json": {
|
1097 |
-
"model_id": "
|
1098 |
"version_major": 2,
|
1099 |
"version_minor": 0
|
1100 |
},
|
@@ -1117,17 +1123,17 @@
|
|
1117 |
"decision_tree",
|
1118 |
"xgboost"
|
1119 |
],
|
1120 |
-
"code_uid": "Select.0.40.16.42-
|
1121 |
"disabled": false,
|
1122 |
"hidden": false,
|
1123 |
"label": "Model Selection",
|
1124 |
-
"model_id": "
|
1125 |
"url_key": "",
|
1126 |
"value": "random_forest",
|
1127 |
"widget": "Select"
|
1128 |
},
|
1129 |
"application/vnd.jupyter.widget-view+json": {
|
1130 |
-
"model_id": "
|
1131 |
"version_major": 2,
|
1132 |
"version_minor": 0
|
1133 |
},
|
@@ -1142,49 +1148,7 @@
|
|
1142 |
"name": "stdout",
|
1143 |
"output_type": "stream",
|
1144 |
"text": [
|
1145 |
-
"
|
1146 |
-
"FEATURE REMOVAL\n",
|
1147 |
-
"Shape of the dataframe is: (1175, 590)\n",
|
1148 |
-
"the number of columns dropped due to duplications is: 104\n",
|
1149 |
-
"the number of columns dropped due to missing values is: 28\n",
|
1150 |
-
"the number of columns dropped due to low variance is: 189\n",
|
1151 |
-
"the number of columns dropped due to high correlation is: 90\n",
|
1152 |
-
"Total number of columns to be dropped is: 411\n",
|
1153 |
-
"New shape of the dataframe is: (1175, 179)\n",
|
1154 |
-
"<class 'list'>\n",
|
1155 |
-
"------------------------------------------\n",
|
1156 |
-
"OUTLIER REMOVAL\n",
|
1157 |
-
"The z-score threshold is: 5\n",
|
1158 |
-
"The number of outliers removed from the dataset is: 163\n",
|
1159 |
-
"<class 'pandas.core.frame.DataFrame'>\n",
|
1160 |
-
"------------------------------------------\n",
|
1161 |
-
"SCALING THE DATAFRAME\n",
|
1162 |
-
"The dataframe has been scaled using the standard scaling model\n",
|
1163 |
-
"------------------------------------------\n",
|
1164 |
-
"SCALING THE DATAFRAME\n",
|
1165 |
-
"The dataframe has been scaled using the standard scaling model\n",
|
1166 |
-
"------------------------------------------\n",
|
1167 |
-
"IMPUTATION PROCESS\n",
|
1168 |
-
"Number of missing values before imputation: 3380\n",
|
1169 |
-
"median imputation has been applied\n",
|
1170 |
-
"Number of missing values after imputation: 0\n",
|
1171 |
-
"------------------------------------------\n",
|
1172 |
-
"IMPUTATION PROCESS\n",
|
1173 |
-
"Number of missing values before imputation: 1196\n",
|
1174 |
-
"median imputation has been applied\n",
|
1175 |
-
"Number of missing values after imputation: 0\n",
|
1176 |
-
"------------------------------------------\n",
|
1177 |
-
"FEATURE SELECTION\n",
|
1178 |
-
"Selected method is: lasso\n",
|
1179 |
-
"Shape of the training set after feature selection with LassoCV: (1175, 14)\n",
|
1180 |
-
"------------------------------------------\n",
|
1181 |
-
"IMBALANCE TREATMENT\n",
|
1182 |
-
"Shape of the training set after oversampling with SMOTE: (2194, 14)\n",
|
1183 |
-
"Value counts of the target variable after oversampling with SMOTE: \n",
|
1184 |
-
" pass/fail\n",
|
1185 |
-
"0 1097\n",
|
1186 |
-
"1 1097\n",
|
1187 |
-
"dtype: int64\n"
|
1188 |
]
|
1189 |
}
|
1190 |
],
|
@@ -1281,7 +1245,7 @@
|
|
1281 |
},
|
1282 |
{
|
1283 |
"cell_type": "code",
|
1284 |
-
"execution_count":
|
1285 |
"metadata": {},
|
1286 |
"outputs": [
|
1287 |
{
|
@@ -1290,165 +1254,6 @@
|
|
1290 |
"text": [
|
1291 |
"--------------------------------------------------\n"
|
1292 |
]
|
1293 |
-
},
|
1294 |
-
{
|
1295 |
-
"data": {
|
1296 |
-
"text/html": [
|
1297 |
-
"<div>\n",
|
1298 |
-
"<style scoped>\n",
|
1299 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
1300 |
-
" vertical-align: middle;\n",
|
1301 |
-
" }\n",
|
1302 |
-
"\n",
|
1303 |
-
" .dataframe tbody tr th {\n",
|
1304 |
-
" vertical-align: top;\n",
|
1305 |
-
" }\n",
|
1306 |
-
"\n",
|
1307 |
-
" .dataframe thead th {\n",
|
1308 |
-
" text-align: right;\n",
|
1309 |
-
" }\n",
|
1310 |
-
"</style>\n",
|
1311 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
1312 |
-
" <thead>\n",
|
1313 |
-
" <tr style=\"text-align: right;\">\n",
|
1314 |
-
" <th></th>\n",
|
1315 |
-
" <th>Model</th>\n",
|
1316 |
-
" <th>True Negatives</th>\n",
|
1317 |
-
" <th>False Positives</th>\n",
|
1318 |
-
" <th>False Negatives</th>\n",
|
1319 |
-
" <th>True Positives</th>\n",
|
1320 |
-
" <th>drop duplicates</th>\n",
|
1321 |
-
" <th>missing values th</th>\n",
|
1322 |
-
" <th>variance th</th>\n",
|
1323 |
-
" <th>correlation th</th>\n",
|
1324 |
-
" <th>outlier removal th</th>\n",
|
1325 |
-
" <th>scaling method</th>\n",
|
1326 |
-
" <th>imputation method</th>\n",
|
1327 |
-
" <th>feature selection</th>\n",
|
1328 |
-
" <th>imbalance treatment</th>\n",
|
1329 |
-
" <th>model_variables</th>\n",
|
1330 |
-
" </tr>\n",
|
1331 |
-
" </thead>\n",
|
1332 |
-
" <tbody>\n",
|
1333 |
-
" <tr>\n",
|
1334 |
-
" <th>0</th>\n",
|
1335 |
-
" <td>random_forest</td>\n",
|
1336 |
-
" <td>344</td>\n",
|
1337 |
-
" <td>22</td>\n",
|
1338 |
-
" <td>22</td>\n",
|
1339 |
-
" <td>4</td>\n",
|
1340 |
-
" <td>yes</td>\n",
|
1341 |
-
" <td>50</td>\n",
|
1342 |
-
" <td>0.05</td>\n",
|
1343 |
-
" <td>0.95</td>\n",
|
1344 |
-
" <td>5</td>\n",
|
1345 |
-
" <td>standard</td>\n",
|
1346 |
-
" <td>median</td>\n",
|
1347 |
-
" <td>lasso</td>\n",
|
1348 |
-
" <td>smote</td>\n",
|
1349 |
-
" <td>yes_50_0.05_0.95_5_standard_median_lasso_smote</td>\n",
|
1350 |
-
" </tr>\n",
|
1351 |
-
" </tbody>\n",
|
1352 |
-
"</table>\n",
|
1353 |
-
"</div>"
|
1354 |
-
],
|
1355 |
-
"text/plain": [
|
1356 |
-
" Model True Negatives False Positives False Negatives \\\n",
|
1357 |
-
"0 random_forest 344 22 22 \n",
|
1358 |
-
"\n",
|
1359 |
-
" True Positives drop duplicates missing values th variance th \\\n",
|
1360 |
-
"0 4 yes 50 0.05 \n",
|
1361 |
-
"\n",
|
1362 |
-
" correlation th outlier removal th scaling method imputation method \\\n",
|
1363 |
-
"0 0.95 5 standard median \n",
|
1364 |
-
"\n",
|
1365 |
-
" feature selection imbalance treatment \\\n",
|
1366 |
-
"0 lasso smote \n",
|
1367 |
-
"\n",
|
1368 |
-
" model_variables \n",
|
1369 |
-
"0 yes_50_0.05_0.95_5_standard_median_lasso_smote "
|
1370 |
-
]
|
1371 |
-
},
|
1372 |
-
"metadata": {},
|
1373 |
-
"output_type": "display_data"
|
1374 |
-
},
|
1375 |
-
{
|
1376 |
-
"data": {
|
1377 |
-
"text/html": [
|
1378 |
-
"<div>\n",
|
1379 |
-
"<style scoped>\n",
|
1380 |
-
" .dataframe tbody tr th:only-of-type {\n",
|
1381 |
-
" vertical-align: middle;\n",
|
1382 |
-
" }\n",
|
1383 |
-
"\n",
|
1384 |
-
" .dataframe tbody tr th {\n",
|
1385 |
-
" vertical-align: top;\n",
|
1386 |
-
" }\n",
|
1387 |
-
"\n",
|
1388 |
-
" .dataframe thead th {\n",
|
1389 |
-
" text-align: right;\n",
|
1390 |
-
" }\n",
|
1391 |
-
"</style>\n",
|
1392 |
-
"<table border=\"1\" class=\"dataframe\">\n",
|
1393 |
-
" <thead>\n",
|
1394 |
-
" <tr style=\"text-align: right;\">\n",
|
1395 |
-
" <th></th>\n",
|
1396 |
-
" <th>Model</th>\n",
|
1397 |
-
" <th>Accuracy</th>\n",
|
1398 |
-
" <th>Precision</th>\n",
|
1399 |
-
" <th>Recall</th>\n",
|
1400 |
-
" <th>F1-score</th>\n",
|
1401 |
-
" <th>drop duplicates</th>\n",
|
1402 |
-
" <th>missing values th</th>\n",
|
1403 |
-
" <th>variance th</th>\n",
|
1404 |
-
" <th>correlation th</th>\n",
|
1405 |
-
" <th>outlier removal th</th>\n",
|
1406 |
-
" <th>scaling method</th>\n",
|
1407 |
-
" <th>imputation method</th>\n",
|
1408 |
-
" <th>feature selection</th>\n",
|
1409 |
-
" <th>imbalance treatment</th>\n",
|
1410 |
-
" <th>model_variables</th>\n",
|
1411 |
-
" </tr>\n",
|
1412 |
-
" </thead>\n",
|
1413 |
-
" <tbody>\n",
|
1414 |
-
" <tr>\n",
|
1415 |
-
" <th>0</th>\n",
|
1416 |
-
" <td>random_forest</td>\n",
|
1417 |
-
" <td>0.89</td>\n",
|
1418 |
-
" <td>0.15</td>\n",
|
1419 |
-
" <td>0.15</td>\n",
|
1420 |
-
" <td>0.15</td>\n",
|
1421 |
-
" <td>yes</td>\n",
|
1422 |
-
" <td>50</td>\n",
|
1423 |
-
" <td>0.05</td>\n",
|
1424 |
-
" <td>0.95</td>\n",
|
1425 |
-
" <td>5</td>\n",
|
1426 |
-
" <td>standard</td>\n",
|
1427 |
-
" <td>median</td>\n",
|
1428 |
-
" <td>lasso</td>\n",
|
1429 |
-
" <td>smote</td>\n",
|
1430 |
-
" <td>yes_50_0.05_0.95_5_standard_median_lasso_smote</td>\n",
|
1431 |
-
" </tr>\n",
|
1432 |
-
" </tbody>\n",
|
1433 |
-
"</table>\n",
|
1434 |
-
"</div>"
|
1435 |
-
],
|
1436 |
-
"text/plain": [
|
1437 |
-
" Model Accuracy Precision Recall F1-score drop duplicates \\\n",
|
1438 |
-
"0 random_forest 0.89 0.15 0.15 0.15 yes \n",
|
1439 |
-
"\n",
|
1440 |
-
" missing values th variance th correlation th outlier removal th \\\n",
|
1441 |
-
"0 50 0.05 0.95 5 \n",
|
1442 |
-
"\n",
|
1443 |
-
" scaling method imputation method feature selection imbalance treatment \\\n",
|
1444 |
-
"0 standard median lasso smote \n",
|
1445 |
-
"\n",
|
1446 |
-
" model_variables \n",
|
1447 |
-
"0 yes_50_0.05_0.95_5_standard_median_lasso_smote "
|
1448 |
-
]
|
1449 |
-
},
|
1450 |
-
"metadata": {},
|
1451 |
-
"output_type": "display_data"
|
1452 |
}
|
1453 |
],
|
1454 |
"source": [
|
@@ -1458,23 +1263,15 @@
|
|
1458 |
{
|
1459 |
"attachments": {},
|
1460 |
"cell_type": "markdown",
|
1461 |
-
"metadata": {
|
1462 |
-
"slideshow": {
|
1463 |
-
"slide_type": "skip"
|
1464 |
-
}
|
1465 |
-
},
|
1466 |
"source": [
|
1467 |
"#### **Confusion Matrix**"
|
1468 |
]
|
1469 |
},
|
1470 |
{
|
1471 |
"cell_type": "code",
|
1472 |
-
"execution_count":
|
1473 |
-
"metadata": {
|
1474 |
-
"slideshow": {
|
1475 |
-
"slide_type": "slide"
|
1476 |
-
}
|
1477 |
-
},
|
1478 |
"outputs": [
|
1479 |
{
|
1480 |
"data": {
|
@@ -1548,6 +1345,90 @@
|
|
1548 |
"\n",
|
1549 |
"display(evaluation_score_output[['Accuracy', 'Precision', 'Recall', 'F1-score']])"
|
1550 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1551 |
}
|
1552 |
],
|
1553 |
"metadata": {
|
|
|
26 |
},
|
27 |
{
|
28 |
"cell_type": "code",
|
29 |
+
"execution_count": 357,
|
30 |
"metadata": {},
|
31 |
"outputs": [],
|
32 |
"source": [
|
|
|
53 |
},
|
54 |
{
|
55 |
"cell_type": "code",
|
56 |
+
"execution_count": 358,
|
57 |
"metadata": {},
|
58 |
"outputs": [
|
59 |
{
|
60 |
"data": {
|
61 |
"application/mercury+json": {
|
62 |
"allow_download": true,
|
63 |
+
"code_uid": "App.0.40.24.1-randd9fe9ae5",
|
64 |
"continuous_update": false,
|
65 |
"description": "Recumpute everything dynamically",
|
66 |
"full_screen": true,
|
|
|
92 |
},
|
93 |
{
|
94 |
"cell_type": "code",
|
95 |
+
"execution_count": 359,
|
96 |
"metadata": {},
|
97 |
"outputs": [],
|
98 |
"source": [
|
|
|
129 |
},
|
130 |
{
|
131 |
"cell_type": "code",
|
132 |
+
"execution_count": 360,
|
133 |
"metadata": {},
|
134 |
"outputs": [
|
135 |
{
|
136 |
"data": {
|
137 |
"application/mercury+json": {
|
138 |
+
"code_uid": "Text.0.40.15.11-randec98731b",
|
139 |
"disabled": false,
|
140 |
"hidden": false,
|
141 |
"label": "Test Size Ratio",
|
142 |
+
"model_id": "2157a02ec6544d86bd12bf1e3a15f65e",
|
143 |
"rows": 1,
|
144 |
"url_key": "",
|
145 |
"value": "0.25",
|
146 |
"widget": "Text"
|
147 |
},
|
148 |
"application/vnd.jupyter.widget-view+json": {
|
149 |
+
"model_id": "2157a02ec6544d86bd12bf1e3a15f65e",
|
150 |
"version_major": 2,
|
151 |
"version_minor": 0
|
152 |
},
|
|
|
160 |
{
|
161 |
"data": {
|
162 |
"application/mercury+json": {
|
163 |
+
"code_uid": "Text.0.40.15.14-randfa24ca10",
|
164 |
"disabled": false,
|
165 |
"hidden": false,
|
166 |
"label": "Random State Integer",
|
167 |
+
"model_id": "cdaf85c404494bae95a32286425b9034",
|
168 |
"rows": 1,
|
169 |
"url_key": "",
|
170 |
"value": "13",
|
171 |
"widget": "Text"
|
172 |
},
|
173 |
"application/vnd.jupyter.widget-view+json": {
|
174 |
+
"model_id": "cdaf85c404494bae95a32286425b9034",
|
175 |
"version_major": 2,
|
176 |
"version_minor": 0
|
177 |
},
|
|
|
220 |
},
|
221 |
{
|
222 |
"cell_type": "code",
|
223 |
+
"execution_count": 361,
|
224 |
"metadata": {},
|
225 |
"outputs": [],
|
226 |
"source": [
|
227 |
"def columns_to_drop(df,drop_duplicates='yes', missing_values_threshold=100, variance_threshold=0, \n",
|
228 |
" correlation_threshold=1.1):\n",
|
229 |
" \n",
|
230 |
+
" global feature_removal_report0\n",
|
231 |
+
" global feature_removal_report1\n",
|
232 |
+
" global feature_removal_report2\n",
|
233 |
+
" global feature_removal_report3\n",
|
234 |
+
" global feature_removal_report4\n",
|
235 |
+
" global feature_removal_report5\n",
|
236 |
+
" global feature_removal_report6\n",
|
237 |
" \n",
|
238 |
+
" \n",
|
239 |
+
" feature_removal_report0 = 'Shape of the dataframe is:' , df.shape\n",
|
240 |
"\n",
|
241 |
" # Drop duplicated columns\n",
|
242 |
" if drop_duplicates == 'yes':\n",
|
243 |
" new_column_names = df.columns\n",
|
244 |
" df = df.T.drop_duplicates().T\n",
|
245 |
+
" feature_removal_report1 = 'the number of columns dropped due to duplications is: ', len(new_column_names) - len(df.columns)\n",
|
246 |
" drop_duplicated = list(set(new_column_names) - set(df.columns))\n",
|
247 |
"\n",
|
248 |
" elif drop_duplicates == 'no':\n",
|
249 |
" df = df.T.T\n",
|
250 |
+
" feature_removal_report1 = 'No columns were dropped due to duplications' \n",
|
251 |
"\n",
|
252 |
" # Print the percentage of columns in df with missing values more than or equal to threshold\n",
|
253 |
+
" feature_removal_report2 = 'the number of columns dropped due to missing values is: ', len(df.isnull().mean()[df.isnull().mean() > missing_values_threshold/100].index)\n",
|
254 |
" \n",
|
255 |
" # Print into a list the columns to be dropped due to missing values\n",
|
256 |
" drop_missing = list(df.isnull().mean()[df.isnull().mean() > missing_values_threshold/100].index)\n",
|
|
|
259 |
" df.drop(drop_missing, axis=1, inplace=True)\n",
|
260 |
" \n",
|
261 |
" # Print the number of columns in df with variance less than threshold\n",
|
262 |
+
" feature_removal_report3 = 'the number of columns dropped due to low variance is: ', len(df.var()[df.var() <= variance_threshold].index)\n",
|
263 |
"\n",
|
264 |
" # Print into a list the columns to be dropped due to low variance\n",
|
265 |
" drop_variance = list(df.var()[df.var() <= variance_threshold].index)\n",
|
|
|
273 |
" corr_matrix = df.corr().abs().round(4)\n",
|
274 |
" upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool))\n",
|
275 |
" to_drop = [column for column in upper.columns if any(upper[column] >= correlation_threshold)]\n",
|
276 |
+
" feature_removal_report4 = 'the number of columns dropped due to high correlation is: ', len(to_drop)\n",
|
277 |
"\n",
|
278 |
" # Print into a list the columns to be dropped due to high correlation\n",
|
279 |
" drop_correlation = [column for column in upper.columns if any(upper[column] >= correlation_threshold)]\n",
|
|
|
287 |
" elif drop_duplicates =='no':\n",
|
288 |
" dropped = (drop_missing+drop_variance+drop_correlation)\n",
|
289 |
" \n",
|
290 |
+
" feature_removal_report5 = 'Total number of columns to be dropped is: ', len(dropped)\n",
|
291 |
+
" feature_removal_report6 = 'New shape of the dataframe is: ', df.shape\n",
|
292 |
"\n",
|
293 |
" global drop_duplicates_var\n",
|
294 |
" drop_duplicates_var = drop_duplicates\n",
|
|
|
320 |
},
|
321 |
{
|
322 |
"cell_type": "code",
|
323 |
+
"execution_count": 362,
|
324 |
"metadata": {},
|
325 |
"outputs": [],
|
326 |
"source": [
|
327 |
"def outlier_removal(z_df, z_threshold=4):\n",
|
328 |
" \n",
|
329 |
" global outlier_var\n",
|
330 |
+
" global outlier_removal_report0\n",
|
331 |
+
" global outlier_removal_report1\n",
|
332 |
"\n",
|
|
|
|
|
333 |
"\n",
|
334 |
" if z_threshold == 'none':\n",
|
335 |
+
" outlier_removal_report0 = 'No outliers were removed'\n",
|
336 |
" outlier_var = 'none'\n",
|
337 |
" return z_df\n",
|
338 |
" \n",
|
339 |
" else:\n",
|
340 |
+
" outlier_removal_report0 = 'The z-score threshold is:', z_threshold\n",
|
341 |
"\n",
|
342 |
" z_df_copy = z_df.copy()\n",
|
343 |
"\n",
|
|
|
348 |
" z_df_copy[outliers_mask] = np.nan\n",
|
349 |
"\n",
|
350 |
" outliers_count = np.count_nonzero(outliers_mask)\n",
|
351 |
+
" outlier_removal_report1 = 'The number of outliers removed from the dataset is:', outliers_count\n",
|
352 |
"\n",
|
353 |
" outlier_var = z_threshold\n",
|
354 |
"\n",
|
|
|
355 |
" return z_df_copy"
|
356 |
]
|
357 |
},
|
|
|
369 |
},
|
370 |
{
|
371 |
"cell_type": "code",
|
372 |
+
"execution_count": 363,
|
373 |
"metadata": {},
|
374 |
"outputs": [],
|
375 |
"source": [
|
|
|
378 |
"def scale_dataframe(scale_model,df_fit, df_transform):\n",
|
379 |
" \n",
|
380 |
" global scale_model_var\n",
|
381 |
+
" global scaling_report0\n",
|
|
|
|
|
382 |
"\n",
|
383 |
" if scale_model == 'robust':\n",
|
384 |
" from sklearn.preprocessing import RobustScaler\n",
|
|
|
386 |
" scaler.fit(df_fit)\n",
|
387 |
" df_scaled = scaler.transform(df_transform)\n",
|
388 |
" df_scaled = pd.DataFrame(df_scaled, columns=df_transform.columns)\n",
|
389 |
+
" scaling_report0 = 'The dataframe has been scaled using the robust scaling model'\n",
|
390 |
" scale_model_var = 'robust'\n",
|
391 |
" return df_scaled\n",
|
392 |
" \n",
|
|
|
396 |
" scaler.fit(df_fit)\n",
|
397 |
" df_scaled = scaler.transform(df_transform)\n",
|
398 |
" df_scaled = pd.DataFrame(df_scaled, columns=df_transform.columns)\n",
|
399 |
+
" scaling_report0 = 'The dataframe has been scaled using the standard scaling model'\n",
|
400 |
" scale_model_var = 'standard'\n",
|
401 |
" return df_scaled\n",
|
402 |
" \n",
|
|
|
406 |
" scaler.fit(df_fit)\n",
|
407 |
" df_scaled = scaler.transform(df_transform)\n",
|
408 |
" df_scaled = pd.DataFrame(df_scaled, columns=df_transform.columns)\n",
|
409 |
+
" scaling_report0 = 'The dataframe has been scaled using the normal scaling model'\n",
|
410 |
" scale_model_var = 'normal'\n",
|
411 |
" return df_scaled\n",
|
412 |
" \n",
|
|
|
416 |
" scaler.fit(df_fit)\n",
|
417 |
" df_scaled = scaler.transform(df_transform)\n",
|
418 |
" df_scaled = pd.DataFrame(df_scaled, columns=df_transform.columns)\n",
|
419 |
+
" scaling_report0 = 'The dataframe has been scaled using the minmax scaling model'\n",
|
420 |
" scale_model_var = 'minmax'\n",
|
421 |
" return df_scaled\n",
|
422 |
" \n",
|
423 |
" elif scale_model == 'none':\n",
|
424 |
+
" scaling_report0 = 'The dataframe has not been scaled'\n",
|
425 |
" scale_model_var = 'none'\n",
|
426 |
" return df_transform\n",
|
427 |
" \n",
|
|
|
444 |
},
|
445 |
{
|
446 |
"cell_type": "code",
|
447 |
+
"execution_count": 364,
|
448 |
"metadata": {},
|
449 |
"outputs": [],
|
450 |
"source": [
|
|
|
452 |
"\n",
|
453 |
"def impute_missing_values(imputation, df_fit, df_transform, n_neighbors=5):\n",
|
454 |
"\n",
|
|
|
|
|
|
|
|
|
455 |
" global imputation_var\n",
|
456 |
+
" global imputation_report0\n",
|
457 |
+
" global imputation_report1\n",
|
458 |
+
" global imputation_report2\n",
|
459 |
+
" global imputation_report3\n",
|
460 |
+
"\n",
|
461 |
+
" imputation_report0 = 'Number of missing values before imputation: ', df_transform.isnull().sum().sum()\n",
|
462 |
+
"\n",
|
463 |
"\n",
|
464 |
" if imputation == 'knn':\n",
|
465 |
"\n",
|
|
|
468 |
" imputer.fit(df_fit)\n",
|
469 |
" df_imputed = imputer.transform(df_transform)\n",
|
470 |
" df_imputed = pd.DataFrame(df_imputed, columns=df_transform.columns)\n",
|
471 |
+
" imputation_report1 = 'knn imputation has been applied' \n",
|
472 |
+
" imputation_report2 = 'Number of missing values after imputation: ', df_imputed.isnull().sum().sum()\n",
|
473 |
" imputation_var = 'knn'\n",
|
474 |
" return df_imputed\n",
|
475 |
" \n",
|
|
|
480 |
" imputer.fit(df_fit)\n",
|
481 |
" df_imputed = imputer.transform(df_transform)\n",
|
482 |
" df_imputed = pd.DataFrame(df_imputed, columns=df_transform.columns)\n",
|
483 |
+
" imputation_report1 = 'mean imputation has been applied'\n",
|
484 |
+
" imputation_report2 = 'Number of missing values after imputation: ', df_imputed.isnull().sum().sum()\n",
|
485 |
" imputation_var = 'mean'\n",
|
486 |
" return df_imputed\n",
|
487 |
" \n",
|
|
|
492 |
" imputer.fit(df_fit)\n",
|
493 |
" df_imputed = imputer.transform(df_transform)\n",
|
494 |
" df_imputed = pd.DataFrame(df_imputed, columns=df_transform.columns)\n",
|
495 |
+
" imputation_report1 = 'median imputation has been applied'\n",
|
496 |
+
" imputation_report2 = 'Number of missing values after imputation: ', df_imputed.isnull().sum().sum()\n",
|
497 |
" imputation_var = 'median'\n",
|
498 |
" return df_imputed\n",
|
499 |
" \n",
|
|
|
504 |
" imputer.fit(df_fit)\n",
|
505 |
" df_imputed = imputer.transform(df_transform)\n",
|
506 |
" df_imputed = pd.DataFrame(df_imputed, columns=df_transform.columns)\n",
|
507 |
+
" imputation_report1 = 'most frequent imputation has been applied'\n",
|
508 |
+
" imputation_report2 = 'Number of missing values after imputation: ', df_imputed.isnull().sum().sum()\n",
|
509 |
" imputation_var = 'most_frequent'\n",
|
510 |
" return df_imputed\n",
|
511 |
" \n",
|
|
|
529 |
},
|
530 |
{
|
531 |
"cell_type": "code",
|
532 |
+
"execution_count": 365,
|
533 |
"metadata": {},
|
534 |
"outputs": [],
|
535 |
"source": [
|
|
|
537 |
"\n",
|
538 |
" global feature_selection_var\n",
|
539 |
" global selected_features\n",
|
540 |
+
" \n",
|
541 |
+
" global feature_selection_report0\n",
|
542 |
+
" global feature_selection_report1\n",
|
543 |
"\n",
|
|
|
|
|
544 |
"\n",
|
545 |
" # if method is boruta, run boruta feature selection and return the selected features and the training set with only the selected features\n",
|
546 |
"\n",
|
547 |
" if method == 'boruta':\n",
|
548 |
+
" feature_selection_report0 = 'Selected method is: ', method\n",
|
549 |
" from boruta import BorutaPy\n",
|
550 |
" from sklearn.ensemble import RandomForestClassifier\n",
|
551 |
" rf = RandomForestClassifier(n_estimators=100, n_jobs=-1)\n",
|
|
|
554 |
" selected_feature_indices = boruta_selector.support_\n",
|
555 |
" selected_columns = X_train.columns[selected_feature_indices]\n",
|
556 |
" X_train_filtered = X_train.iloc[:, selected_feature_indices]\n",
|
557 |
+
" feature_selection_report1 = 'Shape of the training set after feature selection with Boruta: ', X_train_filtered.shape\n",
|
558 |
" return X_train_filtered, selected_columns\n",
|
559 |
" \n",
|
560 |
" if method == 'none':\n",
|
561 |
+
" feature_selection_report = 'No feature selection has been applied'\n",
|
562 |
" X_train_filtered = X_train\n",
|
563 |
+
" feature_selection_report = 'Shape of the training set after no feature selection: ', X_train_filtered.shape\n",
|
564 |
" feature_selection_var = 'none'\n",
|
565 |
" selected_features = X_train_filtered.columns\n",
|
566 |
" return X_train_filtered, selected_features \n",
|
567 |
" \n",
|
568 |
" if method == 'lasso':\n",
|
569 |
+
" feature_selection_report0 = 'Selected method is: ', method\n",
|
570 |
" from sklearn.linear_model import LassoCV\n",
|
571 |
" from sklearn.feature_selection import SelectFromModel\n",
|
572 |
" lasso = LassoCV().fit(X_train, y_train)\n",
|
573 |
" model = SelectFromModel(lasso, prefit=True)\n",
|
574 |
" X_train_filtered = model.transform(X_train)\n",
|
575 |
" selected_features = X_train.columns[model.get_support()]\n",
|
576 |
+
" feature_selection_report1 = 'Shape of the training set after feature selection with LassoCV: ', X_train_filtered.shape\n",
|
577 |
" feature_selection_var = 'lasso'\n",
|
578 |
" return X_train_filtered, selected_features\n",
|
579 |
" \n",
|
580 |
" if method == 'pca':\n",
|
581 |
+
" feature_selection_report0 = 'Selected method is: ', method\n",
|
582 |
" from sklearn.decomposition import PCA\n",
|
583 |
" pca = PCA(n_components=15)\n",
|
584 |
" X_train_pca = pca.fit_transform(X_train)\n",
|
585 |
" selected_features = X_train.columns[pca.explained_variance_ratio_.argsort()[::-1]][:15]\n",
|
586 |
+
" feature_selection_report1 = 'Shape of the training set after feature selection with PCA: ', X_train_pca.shape\n",
|
587 |
" feature_selection_var = 'pca'\n",
|
588 |
" return X_train_pca, selected_features\n",
|
589 |
" \n",
|
590 |
" if method == 'rfe':\n",
|
591 |
+
" feature_selection_report0 = 'Selected method is: ', method\n",
|
592 |
" from sklearn.feature_selection import RFE\n",
|
593 |
" from sklearn.ensemble import RandomForestClassifier\n",
|
594 |
" rfe_selector = RFE(estimator=RandomForestClassifier(n_estimators=100, n_jobs=-1), n_features_to_select=15, step=10, verbose=0)\n",
|
595 |
" rfe_selector.fit(X_train, y_train)\n",
|
596 |
" selected_features = X_train.columns[rfe_selector.support_]\n",
|
597 |
" X_train_filtered = X_train.iloc[:, rfe_selector.support_]\n",
|
598 |
+
" feature_selection_report1 = 'Shape of the training set after feature selection with RFE: ', X_train_filtered.shape\n",
|
599 |
" feature_selection_var = 'rfe'\n",
|
600 |
" return X_train_filtered, selected_features\n",
|
601 |
" "
|
|
|
615 |
},
|
616 |
{
|
617 |
"cell_type": "code",
|
618 |
+
"execution_count": 366,
|
619 |
"metadata": {},
|
620 |
"outputs": [],
|
621 |
"source": [
|
|
|
624 |
"def imbalance_treatment(method, X_train, y_train):\n",
|
625 |
"\n",
|
626 |
" global imbalance_var\n",
|
627 |
+
" global imbalance_report0\n",
|
628 |
+
" global imbalance_report1\n",
|
|
|
629 |
"\n",
|
630 |
" if method == 'smote': \n",
|
631 |
" from imblearn.over_sampling import SMOTE\n",
|
632 |
" sm = SMOTE(random_state=42)\n",
|
633 |
" X_train_res, y_train_res = sm.fit_resample(X_train, y_train)\n",
|
634 |
+
" imbalance_report0 = 'Shape of the training set after oversampling with SMOTE: ', X_train_res.shape\n",
|
635 |
+
" imbalance_report1 = 'Value counts of the target variable after oversampling with SMOTE: \\n', y_train_res.value_counts()\n",
|
636 |
" imbalance_var = 'smote'\n",
|
637 |
" return X_train_res, y_train_res\n",
|
638 |
" \n",
|
|
|
640 |
" from imblearn.under_sampling import RandomUnderSampler\n",
|
641 |
" rus = RandomUnderSampler(random_state=42)\n",
|
642 |
" X_train_res, y_train_res = rus.fit_resample(X_train, y_train)\n",
|
643 |
+
" imbalance_report0 = 'Shape of the training set after undersampling with RandomUnderSampler: ', X_train_res.shape\n",
|
644 |
+
" imbalance_report1 = 'Value counts of the target variable after undersampling with RandomUnderSampler: \\n', y_train_res.value_counts()\n",
|
645 |
" imbalance_var = 'undersampling'\n",
|
646 |
" return X_train_res, y_train_res\n",
|
647 |
" \n",
|
|
|
649 |
" from imblearn.over_sampling import RandomOverSampler\n",
|
650 |
" ros = RandomOverSampler(random_state=42)\n",
|
651 |
" X_train_res, y_train_res = ros.fit_resample(X_train, y_train)\n",
|
652 |
+
" imbalance_report0 = 'Shape of the training set after oversampling with RandomOverSampler: ', X_train_res.shape\n",
|
653 |
+
" imbalance_report1 = 'Value counts of the target variable after oversampling with RandomOverSampler: \\n', y_train_res.value_counts()\n",
|
654 |
" imbalance_var = 'rose'\n",
|
655 |
" return X_train_res, y_train_res\n",
|
656 |
" \n",
|
|
|
658 |
" if method == 'none':\n",
|
659 |
" X_train_res = X_train\n",
|
660 |
" y_train_res = y_train\n",
|
661 |
+
" imbalance_report0 = 'Shape of the training set after no resampling: ', X_train_res.shape\n",
|
662 |
+
" imbalance_report1 = 'Value counts of the target variable after no resampling: \\n', y_train_res.value_counts()\n",
|
663 |
" imbalance_var = 'none'\n",
|
664 |
" return X_train_res, y_train_res\n",
|
665 |
" \n",
|
|
|
684 |
},
|
685 |
{
|
686 |
"cell_type": "code",
|
687 |
+
"execution_count": 367,
|
688 |
"metadata": {},
|
689 |
"outputs": [],
|
690 |
"source": [
|
|
|
757 |
},
|
758 |
{
|
759 |
"cell_type": "code",
|
760 |
+
"execution_count": 368,
|
761 |
"metadata": {},
|
762 |
"outputs": [],
|
763 |
"source": [
|
|
|
779 |
},
|
780 |
{
|
781 |
"cell_type": "code",
|
782 |
+
"execution_count": 369,
|
783 |
"metadata": {},
|
784 |
"outputs": [],
|
785 |
"source": [
|
|
|
882 |
},
|
883 |
{
|
884 |
"cell_type": "code",
|
885 |
+
"execution_count": 370,
|
886 |
"metadata": {},
|
887 |
"outputs": [
|
888 |
{
|
889 |
"data": {
|
890 |
"application/mercury+json": {
|
891 |
+
"code_uid": "Text.0.40.15.8-rand4a43baec",
|
892 |
"disabled": false,
|
893 |
"hidden": false,
|
894 |
"label": "Missing Value Threeshold",
|
895 |
+
"model_id": "b2736e53364e4041b6ce10b9e1e1f7d8",
|
896 |
"rows": 1,
|
897 |
"url_key": "",
|
898 |
"value": "50",
|
899 |
"widget": "Text"
|
900 |
},
|
901 |
"application/vnd.jupyter.widget-view+json": {
|
902 |
+
"model_id": "b2736e53364e4041b6ce10b9e1e1f7d8",
|
903 |
"version_major": 2,
|
904 |
"version_minor": 0
|
905 |
},
|
|
|
913 |
{
|
914 |
"data": {
|
915 |
"application/mercury+json": {
|
916 |
+
"code_uid": "Text.0.40.15.11-rand6f838484",
|
917 |
"disabled": false,
|
918 |
"hidden": false,
|
919 |
"label": "Variance Threshold",
|
920 |
+
"model_id": "97419c4a49954b8490aa311870d010b9",
|
921 |
"rows": 1,
|
922 |
"url_key": "",
|
923 |
"value": "0.05",
|
924 |
"widget": "Text"
|
925 |
},
|
926 |
"application/vnd.jupyter.widget-view+json": {
|
927 |
+
"model_id": "97419c4a49954b8490aa311870d010b9",
|
928 |
"version_major": 2,
|
929 |
"version_minor": 0
|
930 |
},
|
|
|
938 |
{
|
939 |
"data": {
|
940 |
"application/mercury+json": {
|
941 |
+
"code_uid": "Text.0.40.15.14-rand6243cbfa",
|
942 |
"disabled": false,
|
943 |
"hidden": false,
|
944 |
"label": "Correlation Threshold",
|
945 |
+
"model_id": "e9f072dfb6a241bca69f960fa0aa06a1",
|
946 |
"rows": 1,
|
947 |
"url_key": "",
|
948 |
"value": "0.95",
|
949 |
"widget": "Text"
|
950 |
},
|
951 |
"application/vnd.jupyter.widget-view+json": {
|
952 |
+
"model_id": "e9f072dfb6a241bca69f960fa0aa06a1",
|
953 |
"version_major": 2,
|
954 |
"version_minor": 0
|
955 |
},
|
|
|
969 |
4,
|
970 |
5
|
971 |
],
|
972 |
+
"code_uid": "Select.0.40.16.18-randa184b437",
|
973 |
"disabled": false,
|
974 |
"hidden": false,
|
975 |
"label": "Outlier Removal Threshold",
|
976 |
+
"model_id": "0be493385a154210b3c7685a3bd1074f",
|
977 |
"url_key": "",
|
978 |
"value": 5,
|
979 |
"widget": "Select"
|
980 |
},
|
981 |
"application/vnd.jupyter.widget-view+json": {
|
982 |
+
"model_id": "0be493385a154210b3c7685a3bd1074f",
|
983 |
"version_major": 2,
|
984 |
"version_minor": 0
|
985 |
},
|
|
|
999 |
"minmax",
|
1000 |
"robust"
|
1001 |
],
|
1002 |
+
"code_uid": "Select.0.40.16.25-rand163d8992",
|
1003 |
"disabled": false,
|
1004 |
"hidden": false,
|
1005 |
"label": "Scaling Variables",
|
1006 |
+
"model_id": "985eab871677416f9c14ea528b0fd561",
|
1007 |
"url_key": "",
|
1008 |
"value": "standard",
|
1009 |
"widget": "Select"
|
1010 |
},
|
1011 |
"application/vnd.jupyter.widget-view+json": {
|
1012 |
+
"model_id": "985eab871677416f9c14ea528b0fd561",
|
1013 |
"version_major": 2,
|
1014 |
"version_minor": 0
|
1015 |
},
|
|
|
1029 |
"knn",
|
1030 |
"most_frequent"
|
1031 |
],
|
1032 |
+
"code_uid": "Select.0.40.16.29-randb76d7c1d",
|
1033 |
"disabled": false,
|
1034 |
"hidden": false,
|
1035 |
"label": "Imputation Methods",
|
1036 |
+
"model_id": "eef6b42e02914c98b7e7ed8d0a18df98",
|
1037 |
"url_key": "",
|
1038 |
"value": "median",
|
1039 |
"widget": "Select"
|
1040 |
},
|
1041 |
"application/vnd.jupyter.widget-view+json": {
|
1042 |
+
"model_id": "eef6b42e02914c98b7e7ed8d0a18df98",
|
1043 |
"version_major": 2,
|
1044 |
"version_minor": 0
|
1045 |
},
|
|
|
1060 |
"pca",
|
1061 |
"boruta"
|
1062 |
],
|
1063 |
+
"code_uid": "Select.0.40.16.34-rand254bd909",
|
1064 |
"disabled": false,
|
1065 |
"hidden": false,
|
1066 |
"label": "Feature Selection",
|
1067 |
+
"model_id": "f4fc58b330a24bfe8699e0602178b0e1",
|
1068 |
"url_key": "",
|
1069 |
"value": "lasso",
|
1070 |
"widget": "Select"
|
1071 |
},
|
1072 |
"application/vnd.jupyter.widget-view+json": {
|
1073 |
+
"model_id": "f4fc58b330a24bfe8699e0602178b0e1",
|
1074 |
"version_major": 2,
|
1075 |
"version_minor": 0
|
1076 |
},
|
|
|
1090 |
"undersampling",
|
1091 |
"rose"
|
1092 |
],
|
1093 |
+
"code_uid": "Select.0.40.16.38-rand75e4d938",
|
1094 |
"disabled": false,
|
1095 |
"hidden": false,
|
1096 |
"label": "Imbalance Treatment",
|
1097 |
+
"model_id": "965a81a69265473a830f8eec5e8ba2df",
|
1098 |
"url_key": "",
|
1099 |
"value": "smote",
|
1100 |
"widget": "Select"
|
1101 |
},
|
1102 |
"application/vnd.jupyter.widget-view+json": {
|
1103 |
+
"model_id": "965a81a69265473a830f8eec5e8ba2df",
|
1104 |
"version_major": 2,
|
1105 |
"version_minor": 0
|
1106 |
},
|
|
|
1123 |
"decision_tree",
|
1124 |
"xgboost"
|
1125 |
],
|
1126 |
+
"code_uid": "Select.0.40.16.42-rand1bbd78ac",
|
1127 |
"disabled": false,
|
1128 |
"hidden": false,
|
1129 |
"label": "Model Selection",
|
1130 |
+
"model_id": "0d1b1477e14b44b99d00dc89dffb70cb",
|
1131 |
"url_key": "",
|
1132 |
"value": "random_forest",
|
1133 |
"widget": "Select"
|
1134 |
},
|
1135 |
"application/vnd.jupyter.widget-view+json": {
|
1136 |
+
"model_id": "0d1b1477e14b44b99d00dc89dffb70cb",
|
1137 |
"version_major": 2,
|
1138 |
"version_minor": 0
|
1139 |
},
|
|
|
1148 |
"name": "stdout",
|
1149 |
"output_type": "stream",
|
1150 |
"text": [
|
1151 |
+
"<class 'list'>\n"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1152 |
]
|
1153 |
}
|
1154 |
],
|
|
|
1245 |
},
|
1246 |
{
|
1247 |
"cell_type": "code",
|
1248 |
+
"execution_count": 371,
|
1249 |
"metadata": {},
|
1250 |
"outputs": [
|
1251 |
{
|
|
|
1254 |
"text": [
|
1255 |
"--------------------------------------------------\n"
|
1256 |
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1257 |
}
|
1258 |
],
|
1259 |
"source": [
|
|
|
1263 |
{
|
1264 |
"attachments": {},
|
1265 |
"cell_type": "markdown",
|
1266 |
+
"metadata": {},
|
|
|
|
|
|
|
|
|
1267 |
"source": [
|
1268 |
"#### **Confusion Matrix**"
|
1269 |
]
|
1270 |
},
|
1271 |
{
|
1272 |
"cell_type": "code",
|
1273 |
+
"execution_count": 372,
|
1274 |
+
"metadata": {},
|
|
|
|
|
|
|
|
|
1275 |
"outputs": [
|
1276 |
{
|
1277 |
"data": {
|
|
|
1345 |
"\n",
|
1346 |
"display(evaluation_score_output[['Accuracy', 'Precision', 'Recall', 'F1-score']])"
|
1347 |
]
|
1348 |
+
},
|
1349 |
+
{
|
1350 |
+
"attachments": {},
|
1351 |
+
"cell_type": "markdown",
|
1352 |
+
"metadata": {},
|
1353 |
+
"source": [
|
1354 |
+
"### **Transformations Report**"
|
1355 |
+
]
|
1356 |
+
},
|
1357 |
+
{
|
1358 |
+
"cell_type": "code",
|
1359 |
+
"execution_count": 373,
|
1360 |
+
"metadata": {},
|
1361 |
+
"outputs": [
|
1362 |
+
{
|
1363 |
+
"name": "stdout",
|
1364 |
+
"output_type": "stream",
|
1365 |
+
"text": [
|
1366 |
+
"------------------------------------------\n",
|
1367 |
+
"FEATURE REMOVAL\n",
|
1368 |
+
"('Shape of the dataframe is:', (1175, 590))\n",
|
1369 |
+
"('the number of columns dropped due to duplications is: ', 104)\n",
|
1370 |
+
"('the number of columns dropped due to missing values is: ', 28)\n",
|
1371 |
+
"('the number of columns dropped due to low variance is: ', 189)\n",
|
1372 |
+
"('the number of columns dropped due to high correlation is: ', 90)\n",
|
1373 |
+
"('Total number of columns to be dropped is: ', 411)\n",
|
1374 |
+
"('New shape of the dataframe is: ', (1175, 179))\n",
|
1375 |
+
"------------------------------------------\n",
|
1376 |
+
"OUTLIER REMOVAL\n",
|
1377 |
+
"('The z-score threshold is:', 5)\n",
|
1378 |
+
"('The number of outliers removed from the dataset is:', 163)\n",
|
1379 |
+
"------------------------------------------\n",
|
1380 |
+
"SCALING\n",
|
1381 |
+
"The dataframe has been scaled using the standard scaling model\n",
|
1382 |
+
"------------------------------------------\n",
|
1383 |
+
"IMPUTATION\n",
|
1384 |
+
"('Number of missing values before imputation: ', 1196)\n",
|
1385 |
+
"median imputation has been applied\n",
|
1386 |
+
"('Number of missing values after imputation: ', 0)\n",
|
1387 |
+
"------------------------------------------\n",
|
1388 |
+
"FEATURE SELECTION\n",
|
1389 |
+
"('Selected method is: ', 'lasso')\n",
|
1390 |
+
"('Shape of the training set after feature selection with LassoCV: ', (1175, 14))\n",
|
1391 |
+
"------------------------------------------\n",
|
1392 |
+
"IMBALANCE TREATMENT\n",
|
1393 |
+
"('Shape of the training set after oversampling with SMOTE: ', (2194, 14))\n",
|
1394 |
+
"('Value counts of the target variable after oversampling with SMOTE: \\n', pass/fail\n",
|
1395 |
+
"0 1097\n",
|
1396 |
+
"1 1097\n",
|
1397 |
+
"dtype: int64)\n"
|
1398 |
+
]
|
1399 |
+
}
|
1400 |
+
],
|
1401 |
+
"source": [
|
1402 |
+
"print('------------------------------------------')\n",
|
1403 |
+
"print('FEATURE REMOVAL')\n",
|
1404 |
+
"print(feature_removal_report0)\n",
|
1405 |
+
"print(feature_removal_report1)\n",
|
1406 |
+
"print(feature_removal_report2)\n",
|
1407 |
+
"print(feature_removal_report3)\n",
|
1408 |
+
"print(feature_removal_report4)\n",
|
1409 |
+
"print(feature_removal_report5)\n",
|
1410 |
+
"print(feature_removal_report6)\n",
|
1411 |
+
"print('------------------------------------------')\n",
|
1412 |
+
"print('OUTLIER REMOVAL')\n",
|
1413 |
+
"print(outlier_removal_report0)\n",
|
1414 |
+
"print(outlier_removal_report1)\n",
|
1415 |
+
"print('------------------------------------------')\n",
|
1416 |
+
"print('SCALING')\n",
|
1417 |
+
"print(scaling_report0)\n",
|
1418 |
+
"print('------------------------------------------')\n",
|
1419 |
+
"print('IMPUTATION')\n",
|
1420 |
+
"print(imputation_report0)\n",
|
1421 |
+
"print(imputation_report1)\n",
|
1422 |
+
"print(imputation_report2)\n",
|
1423 |
+
"print('------------------------------------------')\n",
|
1424 |
+
"print('FEATURE SELECTION')\n",
|
1425 |
+
"print(feature_selection_report0)\n",
|
1426 |
+
"print(feature_selection_report1)\n",
|
1427 |
+
"print('------------------------------------------')\n",
|
1428 |
+
"print('IMBALANCE TREATMENT')\n",
|
1429 |
+
"print(imbalance_report0)\n",
|
1430 |
+
"print(imbalance_report1)"
|
1431 |
+
]
|
1432 |
}
|
1433 |
],
|
1434 |
"metadata": {
|