erjonb commited on
Commit
53df21f
·
1 Parent(s): e7327b5

Upload 4 files

Browse files
P2 - Secom Notebook - Mercury.ipynb ADDED
@@ -0,0 +1,1421 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "attachments": {},
5
+ "cell_type": "markdown",
6
+ "metadata": {
7
+ "slideshow": {
8
+ "slide_type": "skip"
9
+ }
10
+ },
11
+ "source": [
12
+ "# **Classifying products in Semiconductor Industry**"
13
+ ]
14
+ },
15
+ {
16
+ "attachments": {},
17
+ "cell_type": "markdown",
18
+ "metadata": {
19
+ "slideshow": {
20
+ "slide_type": "skip"
21
+ }
22
+ },
23
+ "source": [
24
+ "#### **Import the data**"
25
+ ]
26
+ },
27
+ {
28
+ "cell_type": "code",
29
+ "execution_count": 16,
30
+ "metadata": {
31
+ "slideshow": {
32
+ "slide_type": "skip"
33
+ }
34
+ },
35
+ "outputs": [],
36
+ "source": [
37
+ "# import pandas for data manipulation\n",
38
+ "# import numpy for numerical computation\n",
39
+ "# import seaborn for data visualization\n",
40
+ "# import matplotlib for data visualization\n",
41
+ "# import stats for statistical analysis\n",
42
+ "# import train_test_split for splitting data into training and testing sets\n",
43
+ "\n",
44
+ "\n",
45
+ "import pandas as pd\n",
46
+ "import numpy as np\n",
47
+ "import seaborn as sns\n",
48
+ "import matplotlib.pyplot as plt\n",
49
+ "from scipy import stats\n",
50
+ "from sklearn.model_selection import train_test_split\n",
51
+ "import mercury as mr"
52
+ ]
53
+ },
54
+ {
55
+ "cell_type": "code",
56
+ "execution_count": 17,
57
+ "metadata": {
58
+ "slideshow": {
59
+ "slide_type": "skip"
60
+ }
61
+ },
62
+ "outputs": [
63
+ {
64
+ "data": {
65
+ "application/mercury+json": {
66
+ "allow_download": true,
67
+ "code_uid": "App.0.40.24.1-rand5cfa33c2",
68
+ "continuous_update": false,
69
+ "description": "Recumpute everything dynamically",
70
+ "full_screen": true,
71
+ "model_id": "mercury-app",
72
+ "notify": "{}",
73
+ "output": "app",
74
+ "schedule": "",
75
+ "show_code": false,
76
+ "show_prompt": false,
77
+ "show_sidebar": true,
78
+ "static_notebook": false,
79
+ "title": "Secom Web App Demo",
80
+ "widget": "App"
81
+ },
82
+ "text/html": [
83
+ "<h3>Mercury Application</h3><small>This output won't appear in the web app.</small>"
84
+ ],
85
+ "text/plain": [
86
+ "mercury.App"
87
+ ]
88
+ },
89
+ "metadata": {},
90
+ "output_type": "display_data"
91
+ }
92
+ ],
93
+ "source": [
94
+ "app = mr.App(title=\"Secom Web App Demo\", description=\"Recumpute everything dynamically\", continuous_update=False)"
95
+ ]
96
+ },
97
+ {
98
+ "cell_type": "code",
99
+ "execution_count": 18,
100
+ "metadata": {
101
+ "slideshow": {
102
+ "slide_type": "skip"
103
+ }
104
+ },
105
+ "outputs": [],
106
+ "source": [
107
+ "# Read the features data from the the url of csv into pandas dataframes and rename the columns to F1, F2, F3, etc.\n",
108
+ "# Read the labels data from the url of csv into pandas dataframes and rename the columns to pass/fail and date/time\n",
109
+ "\n",
110
+ "#url_data = 'https://archive.ics.uci.edu/ml/machine-learning-databases/secom/secom.data'\n",
111
+ "#url_labels = 'https://archive.ics.uci.edu/ml/machine-learning-databases/secom/secom_labels.data'\n",
112
+ "\n",
113
+ "url_data = '..\\secom_data.csv'\n",
114
+ "url_labels = '..\\secom_labels.csv'\n",
115
+ "\n",
116
+ "features = pd.read_csv(url_data, delimiter=' ', header=None)\n",
117
+ "labels = pd.read_csv(url_labels, delimiter=' ', names=['pass/fail', 'date_time'])\n",
118
+ "\n",
119
+ "prefix = 'F'\n",
120
+ "new_column_names = [prefix + str(i) for i in range(1, len(features.columns)+1)]\n",
121
+ "features.columns = new_column_names\n",
122
+ "\n",
123
+ "labels['pass/fail'] = labels['pass/fail'].replace({-1: 0, 1: 1})\n"
124
+ ]
125
+ },
126
+ {
127
+ "attachments": {},
128
+ "cell_type": "markdown",
129
+ "metadata": {
130
+ "slideshow": {
131
+ "slide_type": "skip"
132
+ }
133
+ },
134
+ "source": [
135
+ "#### **Split the data**"
136
+ ]
137
+ },
138
+ {
139
+ "cell_type": "code",
140
+ "execution_count": 19,
141
+ "metadata": {
142
+ "slideshow": {
143
+ "slide_type": "skip"
144
+ }
145
+ },
146
+ "outputs": [
147
+ {
148
+ "name": "stdout",
149
+ "output_type": "stream",
150
+ "text": [
151
+ "Dropped date/time column from labels dataframe\n"
152
+ ]
153
+ }
154
+ ],
155
+ "source": [
156
+ "# if there is a date/time column, drop it from the features and labels dataframes, else continue\n",
157
+ "\n",
158
+ "if 'date_time' in labels.columns:\n",
159
+ " labels = labels.drop(['date_time'], axis=1)\n",
160
+ " print('Dropped date/time column from labels dataframe')\n",
161
+ "\n",
162
+ "\n",
163
+ "# Split the dataset and the labels into training and testing sets\n",
164
+ "# use stratify to ensure that the training and testing sets have the same percentage of pass and fail labels\n",
165
+ "# use random_state to ensure that the same random split is generated each time the code is run\n",
166
+ "\n",
167
+ "\n",
168
+ "X_train, X_test, y_train, y_test = train_test_split(features, labels, test_size=0.25, stratify=labels, random_state=13)"
169
+ ]
170
+ },
171
+ {
172
+ "attachments": {},
173
+ "cell_type": "markdown",
174
+ "metadata": {
175
+ "slideshow": {
176
+ "slide_type": "skip"
177
+ }
178
+ },
179
+ "source": [
180
+ "### **Functions**"
181
+ ]
182
+ },
183
+ {
184
+ "attachments": {},
185
+ "cell_type": "markdown",
186
+ "metadata": {
187
+ "slideshow": {
188
+ "slide_type": "skip"
189
+ }
190
+ },
191
+ "source": [
192
+ "#### **Feature Removal**"
193
+ ]
194
+ },
195
+ {
196
+ "cell_type": "code",
197
+ "execution_count": 20,
198
+ "metadata": {
199
+ "slideshow": {
200
+ "slide_type": "skip"
201
+ }
202
+ },
203
+ "outputs": [],
204
+ "source": [
205
+ "def columns_to_drop(df,drop_duplicates='yes', missing_values_threshold=100, variance_threshold=0, \n",
206
+ " correlation_threshold=1.1):\n",
207
+ " \n",
208
+ " print('Shape of the dataframe is: ', df.shape)\n",
209
+ "\n",
210
+ " # Drop duplicated columns\n",
211
+ " if drop_duplicates == 'yes':\n",
212
+ " new_column_names = df.columns\n",
213
+ " df = df.T.drop_duplicates().T\n",
214
+ " print('the number of columns to be dropped due to duplications is: ', len(new_column_names) - len(df.columns))\n",
215
+ " drop_duplicated = list(set(new_column_names) - set(df.columns))\n",
216
+ "\n",
217
+ " elif drop_duplicates == 'no':\n",
218
+ " df = df.T.T\n",
219
+ " print('No columns were dropped due to duplications') \n",
220
+ "\n",
221
+ " # Print the percentage of columns in df with missing values more than or equal to threshold\n",
222
+ " print('the number of columns to be dropped due to missing values is: ', len(df.isnull().mean()[df.isnull().mean() > missing_values_threshold/100].index))\n",
223
+ " \n",
224
+ " # Print into a list the columns to be dropped due to missing values\n",
225
+ " drop_missing = list(df.isnull().mean()[df.isnull().mean() > missing_values_threshold/100].index)\n",
226
+ "\n",
227
+ " # Drop columns with more than or equal to threshold missing values from df\n",
228
+ " df.drop(drop_missing, axis=1, inplace=True)\n",
229
+ " \n",
230
+ " # Print the number of columns in df with variance less than threshold\n",
231
+ " print('the number of columns to be dropped due to low variance is: ', len(df.var()[df.var() <= variance_threshold].index))\n",
232
+ "\n",
233
+ " # Print into a list the columns to be dropped due to low variance\n",
234
+ " drop_variance = list(df.var()[df.var() <= variance_threshold].index)\n",
235
+ "\n",
236
+ " # Drop columns with more than or equal to threshold variance from df\n",
237
+ " df.drop(drop_variance, axis=1, inplace=True)\n",
238
+ "\n",
239
+ " # Print the number of columns in df with more than or equal to threshold correlation\n",
240
+ " \n",
241
+ " # Create correlation matrix and round it to 4 decimal places\n",
242
+ " corr_matrix = df.corr().abs().round(4)\n",
243
+ " upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool))\n",
244
+ " to_drop = [column for column in upper.columns if any(upper[column] >= correlation_threshold)]\n",
245
+ " print('the number of columns to be dropped due to high correlation is: ', len(to_drop))\n",
246
+ "\n",
247
+ " # Print into a list the columns to be dropped due to high correlation\n",
248
+ " drop_correlation = [column for column in upper.columns if any(upper[column] >= correlation_threshold)]\n",
249
+ "\n",
250
+ " # Drop columns with more than or equal to threshold correlation from df\n",
251
+ " df.drop(to_drop, axis=1, inplace=True)\n",
252
+ " \n",
253
+ " if drop_duplicates == 'yes':\n",
254
+ " dropped = (drop_duplicated+drop_missing+drop_variance+drop_correlation)\n",
255
+ "\n",
256
+ " elif drop_duplicates =='no':\n",
257
+ " dropped = (drop_missing+drop_variance+drop_correlation)\n",
258
+ " \n",
259
+ " print('Total number of columns to be dropped is: ', len(dropped))\n",
260
+ " print('New shape of the dataframe is: ', df.shape)\n",
261
+ "\n",
262
+ " global drop_duplicates_var\n",
263
+ " drop_duplicates_var = drop_duplicates\n",
264
+ " \n",
265
+ " global missing_values_threshold_var\n",
266
+ " missing_values_threshold_var = missing_values_threshold\n",
267
+ "\n",
268
+ " global variance_threshold_var\n",
269
+ " variance_threshold_var = variance_threshold\n",
270
+ "\n",
271
+ " global correlation_threshold_var\n",
272
+ " correlation_threshold_var = correlation_threshold\n",
273
+ " \n",
274
+ " print(type(dropped))\n",
275
+ " return dropped"
276
+ ]
277
+ },
278
+ {
279
+ "attachments": {},
280
+ "cell_type": "markdown",
281
+ "metadata": {
282
+ "slideshow": {
283
+ "slide_type": "skip"
284
+ }
285
+ },
286
+ "source": [
287
+ "#### **Outlier Removal**"
288
+ ]
289
+ },
290
+ {
291
+ "cell_type": "code",
292
+ "execution_count": 21,
293
+ "metadata": {
294
+ "slideshow": {
295
+ "slide_type": "skip"
296
+ }
297
+ },
298
+ "outputs": [],
299
+ "source": [
300
+ "def outlier_removal(z_df, z_threshold=4):\n",
301
+ " \n",
302
+ " global outlier_var\n",
303
+ "\n",
304
+ " if z_threshold == 'none':\n",
305
+ " print('No outliers were removed')\n",
306
+ " outlier_var = 'none'\n",
307
+ " return z_df\n",
308
+ " \n",
309
+ " else:\n",
310
+ " print('The z-score threshold is:', z_threshold)\n",
311
+ "\n",
312
+ " z_df_copy = z_df.copy()\n",
313
+ "\n",
314
+ " z_scores = np.abs(stats.zscore(z_df_copy))\n",
315
+ "\n",
316
+ " # Identify the outliers in the dataset using the z-score method\n",
317
+ " outliers_mask = z_scores > z_threshold\n",
318
+ " z_df_copy[outliers_mask] = np.nan\n",
319
+ "\n",
320
+ " outliers_count = np.count_nonzero(outliers_mask)\n",
321
+ " print('The number of outliers in the whole dataset is / was:', outliers_count)\n",
322
+ "\n",
323
+ " outlier_var = z_threshold\n",
324
+ "\n",
325
+ " print(type(z_df_copy))\n",
326
+ " return z_df_copy"
327
+ ]
328
+ },
329
+ {
330
+ "attachments": {},
331
+ "cell_type": "markdown",
332
+ "metadata": {
333
+ "slideshow": {
334
+ "slide_type": "skip"
335
+ }
336
+ },
337
+ "source": [
338
+ "#### **Scaling Methods**"
339
+ ]
340
+ },
341
+ {
342
+ "cell_type": "code",
343
+ "execution_count": 22,
344
+ "metadata": {
345
+ "slideshow": {
346
+ "slide_type": "skip"
347
+ }
348
+ },
349
+ "outputs": [],
350
+ "source": [
351
+ "# define a function to scale the dataframe using different scaling models\n",
352
+ "\n",
353
+ "def scale_dataframe(scale_model,df_fit, df_transform):\n",
354
+ " \n",
355
+ " global scale_model_var\n",
356
+ "\n",
357
+ " if scale_model == 'robust':\n",
358
+ " from sklearn.preprocessing import RobustScaler\n",
359
+ " scaler = RobustScaler()\n",
360
+ " scaler.fit(df_fit)\n",
361
+ " df_scaled = scaler.transform(df_transform)\n",
362
+ " df_scaled = pd.DataFrame(df_scaled, columns=df_transform.columns)\n",
363
+ " print('The dataframe has been scaled using the robust scaling model')\n",
364
+ " scale_model_var = 'robust'\n",
365
+ " return df_scaled\n",
366
+ " \n",
367
+ " elif scale_model == 'standard':\n",
368
+ " from sklearn.preprocessing import StandardScaler\n",
369
+ " scaler = StandardScaler()\n",
370
+ " scaler.fit(df_fit)\n",
371
+ " df_scaled = scaler.transform(df_transform)\n",
372
+ " df_scaled = pd.DataFrame(df_scaled, columns=df_transform.columns)\n",
373
+ " print('The dataframe has been scaled using the standard scaling model')\n",
374
+ " scale_model_var = 'standard'\n",
375
+ " return df_scaled\n",
376
+ " \n",
377
+ " elif scale_model == 'normal':\n",
378
+ " from sklearn.preprocessing import Normalizer\n",
379
+ " scaler = Normalizer()\n",
380
+ " scaler.fit(df_fit)\n",
381
+ " df_scaled = scaler.transform(df_transform)\n",
382
+ " df_scaled = pd.DataFrame(df_scaled, columns=df_transform.columns)\n",
383
+ " print('The dataframe has been scaled using the normal scaling model')\n",
384
+ " scale_model_var = 'normal'\n",
385
+ " return df_scaled\n",
386
+ " \n",
387
+ " elif scale_model == 'minmax':\n",
388
+ " from sklearn.preprocessing import MinMaxScaler\n",
389
+ " scaler = MinMaxScaler()\n",
390
+ " scaler.fit(df_fit)\n",
391
+ " df_scaled = scaler.transform(df_transform)\n",
392
+ " df_scaled = pd.DataFrame(df_scaled, columns=df_transform.columns)\n",
393
+ " print('The dataframe has been scaled using the minmax scaling model')\n",
394
+ " scale_model_var = 'minmax'\n",
395
+ " return df_scaled\n",
396
+ " \n",
397
+ " elif scale_model == 'none':\n",
398
+ " print('The dataframe has not been scaled')\n",
399
+ " scale_model_var = 'none'\n",
400
+ " return df_transform\n",
401
+ " \n",
402
+ " else:\n",
403
+ " print('Please choose a valid scaling model: robust, standard, normal, or minmax')\n",
404
+ " return None"
405
+ ]
406
+ },
407
+ {
408
+ "attachments": {},
409
+ "cell_type": "markdown",
410
+ "metadata": {
411
+ "slideshow": {
412
+ "slide_type": "skip"
413
+ }
414
+ },
415
+ "source": [
416
+ "#### **Missing Value Imputation**"
417
+ ]
418
+ },
419
+ {
420
+ "cell_type": "code",
421
+ "execution_count": 23,
422
+ "metadata": {
423
+ "slideshow": {
424
+ "slide_type": "skip"
425
+ }
426
+ },
427
+ "outputs": [],
428
+ "source": [
429
+ "# define a function to impute missing values using different imputation models\n",
430
+ "\n",
431
+ "def impute_missing_values(imputation, df_fit, df_transform, n_neighbors=5):\n",
432
+ "\n",
433
+ " print('Number of missing values before imputation: ', df_transform.isnull().sum().sum())\n",
434
+ "\n",
435
+ " global imputation_var\n",
436
+ "\n",
437
+ " if imputation == 'knn':\n",
438
+ "\n",
439
+ " from sklearn.impute import KNNImputer\n",
440
+ " imputer = KNNImputer(n_neighbors=n_neighbors)\n",
441
+ " imputer.fit(df_fit)\n",
442
+ " df_imputed = imputer.transform(df_transform)\n",
443
+ " df_imputed = pd.DataFrame(df_imputed, columns=df_transform.columns)\n",
444
+ " print('Number of missing values after imputation: ', df_imputed.isnull().sum().sum())\n",
445
+ " imputation_var = 'knn'\n",
446
+ " return df_imputed\n",
447
+ " \n",
448
+ " elif imputation == 'mean':\n",
449
+ "\n",
450
+ " from sklearn.impute import SimpleImputer\n",
451
+ " imputer = SimpleImputer(strategy='mean')\n",
452
+ " imputer.fit(df_fit)\n",
453
+ " df_imputed = imputer.transform(df_transform)\n",
454
+ " df_imputed = pd.DataFrame(df_imputed, columns=df_transform.columns)\n",
455
+ " print('Number of missing values after imputation: ', df_imputed.isnull().sum().sum())\n",
456
+ " imputation_var = 'mean'\n",
457
+ " return df_imputed\n",
458
+ " \n",
459
+ " elif imputation == 'median':\n",
460
+ "\n",
461
+ " from sklearn.impute import SimpleImputer\n",
462
+ " imputer = SimpleImputer(strategy='median')\n",
463
+ " imputer.fit(df_fit)\n",
464
+ " df_imputed = imputer.transform(df_transform)\n",
465
+ " df_imputed = pd.DataFrame(df_imputed, columns=df_transform.columns)\n",
466
+ " print('Number of missing values after imputation: ', df_imputed.isnull().sum().sum())\n",
467
+ " imputation_var = 'median'\n",
468
+ " return df_imputed\n",
469
+ " \n",
470
+ " elif imputation == 'most_frequent':\n",
471
+ " \n",
472
+ " from sklearn.impute import SimpleImputer\n",
473
+ " imputer = SimpleImputer(strategy='most_frequent')\n",
474
+ " imputer.fit(df_fit)\n",
475
+ " df_imputed = imputer.transform(df_transform)\n",
476
+ " df_imputed = pd.DataFrame(df_imputed, columns=df_transform.columns)\n",
477
+ " print('Number of missing values after imputation: ', df_imputed.isnull().sum().sum())\n",
478
+ " imputation_var = 'most_frequent'\n",
479
+ " return df_imputed\n",
480
+ " \n",
481
+ " else:\n",
482
+ " print('Please choose an imputation model from the following: knn, mean, median, most_frequent')\n",
483
+ " df_imputed = df_transform.copy()\n",
484
+ " return df_imputed\n"
485
+ ]
486
+ },
487
+ {
488
+ "attachments": {},
489
+ "cell_type": "markdown",
490
+ "metadata": {
491
+ "slideshow": {
492
+ "slide_type": "skip"
493
+ }
494
+ },
495
+ "source": [
496
+ "#### **Imbalance Treatment**"
497
+ ]
498
+ },
499
+ {
500
+ "cell_type": "code",
501
+ "execution_count": 24,
502
+ "metadata": {
503
+ "slideshow": {
504
+ "slide_type": "skip"
505
+ }
506
+ },
507
+ "outputs": [],
508
+ "source": [
509
+ "#define a function to oversample and understamble the imbalance in the training set\n",
510
+ "\n",
511
+ "def imbalance_treatment(method, X_train, y_train):\n",
512
+ "\n",
513
+ " global imbalance_var\n",
514
+ "\n",
515
+ " if method == 'smote': \n",
516
+ " from imblearn.over_sampling import SMOTE\n",
517
+ " sm = SMOTE(random_state=42)\n",
518
+ " X_train_res, y_train_res = sm.fit_resample(X_train, y_train)\n",
519
+ " print('Shape of the training set after oversampling with SMOTE: ', X_train_res.shape)\n",
520
+ " print('Value counts of the target variable after oversampling with SMOTE: \\n', y_train_res.value_counts())\n",
521
+ " imbalance_var = 'smote'\n",
522
+ " return X_train_res, y_train_res\n",
523
+ " \n",
524
+ " if method == 'undersampling':\n",
525
+ " from imblearn.under_sampling import RandomUnderSampler\n",
526
+ " rus = RandomUnderSampler(random_state=42)\n",
527
+ " X_train_res, y_train_res = rus.fit_resample(X_train, y_train)\n",
528
+ " print('Shape of the training set after undersampling with RandomUnderSampler: ', X_train_res.shape)\n",
529
+ " print('Value counts of the target variable after undersampling with RandomUnderSampler: \\n', y_train_res.value_counts())\n",
530
+ " imbalance_var = 'random_undersampling'\n",
531
+ " return X_train_res, y_train_res\n",
532
+ " \n",
533
+ " if method == 'rose':\n",
534
+ " from imblearn.over_sampling import RandomOverSampler\n",
535
+ " ros = RandomOverSampler(random_state=42)\n",
536
+ " X_train_res, y_train_res = ros.fit_resample(X_train, y_train)\n",
537
+ " print('Shape of the training set after oversampling with RandomOverSampler: ', X_train_res.shape)\n",
538
+ " print('Value counts of the target variable after oversampling with RandomOverSampler: \\n', y_train_res.value_counts())\n",
539
+ " imbalance_var = 'rose'\n",
540
+ " return X_train_res, y_train_res\n",
541
+ " \n",
542
+ " \n",
543
+ " if method == 'none':\n",
544
+ " X_train_res = X_train\n",
545
+ " y_train_res = y_train\n",
546
+ " print('Shape of the training set after no resampling: ', X_train_res.shape)\n",
547
+ " print('Value counts of the target variable after no resampling: \\n', y_train_res.value_counts())\n",
548
+ " imbalance_var = 'none'\n",
549
+ " return X_train_res, y_train_res\n",
550
+ " \n",
551
+ " else:\n",
552
+ " print('Please choose a valid resampling method: smote, rose, undersampling or none')\n",
553
+ " X_train_res = X_train\n",
554
+ " y_train_res = y_train\n",
555
+ " return X_train_res, y_train_res"
556
+ ]
557
+ },
558
+ {
559
+ "attachments": {},
560
+ "cell_type": "markdown",
561
+ "metadata": {
562
+ "slideshow": {
563
+ "slide_type": "skip"
564
+ }
565
+ },
566
+ "source": [
567
+ "#### **Training Models**"
568
+ ]
569
+ },
570
+ {
571
+ "cell_type": "code",
572
+ "execution_count": 25,
573
+ "metadata": {
574
+ "slideshow": {
575
+ "slide_type": "skip"
576
+ }
577
+ },
578
+ "outputs": [],
579
+ "source": [
580
+ "# define a function where you can choose the model you want to use to train the data\n",
581
+ "\n",
582
+ "def train_model(model, X_train, y_train, X_test, y_test):\n",
583
+ "\n",
584
+ " global model_var\n",
585
+ "\n",
586
+ " if model == 'random_forest':\n",
587
+ " from sklearn.ensemble import RandomForestClassifier\n",
588
+ " rfc = RandomForestClassifier(n_estimators=100, random_state=13)\n",
589
+ " rfc.fit(X_train, y_train)\n",
590
+ " y_pred = rfc.predict(X_test)\n",
591
+ " model_var = 'random_forest'\n",
592
+ " return y_pred\n",
593
+ "\n",
594
+ " if model == 'logistic_regression':\n",
595
+ " from sklearn.linear_model import LogisticRegression\n",
596
+ " lr = LogisticRegression()\n",
597
+ " lr.fit(X_train, y_train)\n",
598
+ " y_pred = lr.predict(X_test)\n",
599
+ " model_var = 'logistic_regression'\n",
600
+ " return y_pred\n",
601
+ " \n",
602
+ " if model == 'knn':\n",
603
+ " from sklearn.neighbors import KNeighborsClassifier\n",
604
+ " knn = KNeighborsClassifier(n_neighbors=5)\n",
605
+ " knn.fit(X_train, y_train)\n",
606
+ " y_pred = knn.predict(X_test)\n",
607
+ " model_var = 'knn'\n",
608
+ " return y_pred\n",
609
+ " \n",
610
+ " if model == 'svm':\n",
611
+ " from sklearn.svm import SVC\n",
612
+ " svm = SVC()\n",
613
+ " svm.fit(X_train, y_train)\n",
614
+ " y_pred = svm.predict(X_test)\n",
615
+ " model_var = 'svm'\n",
616
+ " return y_pred\n",
617
+ " \n",
618
+ " if model == 'naive_bayes':\n",
619
+ " from sklearn.naive_bayes import GaussianNB\n",
620
+ " nb = GaussianNB()\n",
621
+ " nb.fit(X_train, y_train)\n",
622
+ " y_pred = nb.predict(X_test)\n",
623
+ " model_var = 'naive_bayes'\n",
624
+ " return y_pred\n",
625
+ " \n",
626
+ " if model == 'decision_tree':\n",
627
+ " from sklearn.tree import DecisionTreeClassifier\n",
628
+ " dt = DecisionTreeClassifier()\n",
629
+ " dt.fit(X_train, y_train)\n",
630
+ " y_pred = dt.predict(X_test)\n",
631
+ " model_var = 'decision_tree'\n",
632
+ " return y_pred\n",
633
+ " \n",
634
+ " if model == 'xgboost':\n",
635
+ " from xgboost import XGBClassifier\n",
636
+ " xgb = XGBClassifier()\n",
637
+ " xgb.fit(X_train, y_train)\n",
638
+ " y_pred = xgb.predict(X_test)\n",
639
+ " model_var = 'xgboost'\n",
640
+ " return y_pred\n",
641
+ " \n",
642
+ " else:\n",
643
+ " print('Please choose a model from the following: random_forest, logistic_regression, knn, svm, naive_bayes, decision_tree, xgboost')\n",
644
+ " return None"
645
+ ]
646
+ },
647
+ {
648
+ "attachments": {},
649
+ "cell_type": "markdown",
650
+ "metadata": {
651
+ "slideshow": {
652
+ "slide_type": "skip"
653
+ }
654
+ },
655
+ "source": [
656
+ "#### **Evaluation Function**"
657
+ ]
658
+ },
659
+ {
660
+ "cell_type": "code",
661
+ "execution_count": 26,
662
+ "metadata": {
663
+ "slideshow": {
664
+ "slide_type": "skip"
665
+ }
666
+ },
667
+ "outputs": [],
668
+ "source": [
669
+ "#define a function that prints the strings below\n",
670
+ "\n",
671
+ "from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, f1_score\n",
672
+ "\n",
673
+ "def evaluate_models(model='random_forest'):\n",
674
+ " print('Have the duplicates been removed?', drop_duplicates_var)\n",
675
+ " print('What is the missing values threshold %?', missing_values_threshold_var)\n",
676
+ " print('What is the variance threshold?', variance_threshold_var)\n",
677
+ " print('What is the correlation threshold?', correlation_threshold_var)\n",
678
+ " print('What is the outlier removal threshold?', outlier_var)\n",
679
+ " print('What is the scaling method?', scale_model_var)\n",
680
+ " print('What is the imputation method?', imputation_var) \n",
681
+ " print('What is the imbalance treatment?', imbalance_var)\n",
682
+ "\n",
683
+ " all_models = ['random_forest', 'logistic_regression', 'knn', 'svm', 'naive_bayes', 'decision_tree', 'xgboost']\n",
684
+ " evaluation_score_append = []\n",
685
+ " evaluation_count_append = []\n",
686
+ " \n",
687
+ " for selected_model in all_models:\n",
688
+ " \n",
689
+ " if model == 'all' or model == selected_model:\n",
690
+ "\n",
691
+ " evaluation_score = []\n",
692
+ " evaluation_count = []\n",
693
+ "\n",
694
+ " y_pred = globals()['y_pred_' + selected_model] # Get the prediction variable dynamically\n",
695
+ "\n",
696
+ " def namestr(obj, namespace):\n",
697
+ " return [name for name in namespace if namespace[name] is obj]\n",
698
+ "\n",
699
+ " model_name = namestr(y_pred, globals())[0]\n",
700
+ " model_name = model_name.replace('y_pred_', '') \n",
701
+ "\n",
702
+ " cm = confusion_matrix(y_test, y_pred)\n",
703
+ "\n",
704
+ " # create a dataframe with the results for each model\n",
705
+ "\n",
706
+ " evaluation_score.append(model_name)\n",
707
+ " evaluation_score.append(round(accuracy_score(y_test, y_pred), 2))\n",
708
+ " evaluation_score.append(round(precision_score(y_test, y_pred, zero_division=0), 2))\n",
709
+ " evaluation_score.append(round(recall_score(y_test, y_pred), 2))\n",
710
+ " evaluation_score.append(round(f1_score(y_test, y_pred), 2))\n",
711
+ " evaluation_score_append.append(evaluation_score)\n",
712
+ "\n",
713
+ "\n",
714
+ " # create a dataframe with the true positives, true negatives, false positives and false negatives for each model\n",
715
+ "\n",
716
+ " evaluation_count.append(model_name)\n",
717
+ " evaluation_count.append(cm[0][0])\n",
718
+ " evaluation_count.append(cm[0][1])\n",
719
+ " evaluation_count.append(cm[1][0])\n",
720
+ " evaluation_count.append(cm[1][1])\n",
721
+ " evaluation_count_append.append(evaluation_count)\n",
722
+ "\n",
723
+ " \n",
724
+ " evaluation_score_append = pd.DataFrame(evaluation_score_append, \n",
725
+ " columns=['Model', 'Accuracy', 'Precision', 'Recall', 'F1-score'])\n",
726
+ " \n",
727
+ " \n",
728
+ "\n",
729
+ " evaluation_count_append = pd.DataFrame(evaluation_count_append,\n",
730
+ " columns=['Model', 'True Negatives', 'False Positives', 'False Negatives', 'True Positives'])\n",
731
+ " \n",
732
+ " \n",
733
+ " return evaluation_score_append, evaluation_count_append"
734
+ ]
735
+ },
736
+ {
737
+ "attachments": {},
738
+ "cell_type": "markdown",
739
+ "metadata": {
740
+ "slideshow": {
741
+ "slide_type": "skip"
742
+ }
743
+ },
744
+ "source": [
745
+ "### **Input Variables**"
746
+ ]
747
+ },
748
+ {
749
+ "cell_type": "code",
750
+ "execution_count": 27,
751
+ "metadata": {
752
+ "slideshow": {
753
+ "slide_type": "skip"
754
+ }
755
+ },
756
+ "outputs": [
757
+ {
758
+ "data": {
759
+ "application/mercury+json": {
760
+ "choices": [
761
+ "yes",
762
+ "no"
763
+ ],
764
+ "code_uid": "Select.0.40.16.25-randf73e59b1",
765
+ "disabled": false,
766
+ "hidden": false,
767
+ "label": "Drop Duplicates",
768
+ "model_id": "399ce99a96bd4959848b0d92057edefe",
769
+ "url_key": "",
770
+ "value": "yes",
771
+ "widget": "Select"
772
+ },
773
+ "application/vnd.jupyter.widget-view+json": {
774
+ "model_id": "399ce99a96bd4959848b0d92057edefe",
775
+ "version_major": 2,
776
+ "version_minor": 0
777
+ },
778
+ "text/plain": [
779
+ "mercury.Select"
780
+ ]
781
+ },
782
+ "metadata": {},
783
+ "output_type": "display_data"
784
+ },
785
+ {
786
+ "data": {
787
+ "application/mercury+json": {
788
+ "code_uid": "Text.0.40.15.28-randb338f866",
789
+ "disabled": false,
790
+ "hidden": false,
791
+ "label": "Missing Value Threeshold",
792
+ "model_id": "b9bba507f9d849dbaabcdb800e653ac9",
793
+ "rows": 1,
794
+ "url_key": "",
795
+ "value": "80",
796
+ "widget": "Text"
797
+ },
798
+ "application/vnd.jupyter.widget-view+json": {
799
+ "model_id": "b9bba507f9d849dbaabcdb800e653ac9",
800
+ "version_major": 2,
801
+ "version_minor": 0
802
+ },
803
+ "text/plain": [
804
+ "mercury.Text"
805
+ ]
806
+ },
807
+ "metadata": {},
808
+ "output_type": "display_data"
809
+ },
810
+ {
811
+ "data": {
812
+ "application/mercury+json": {
813
+ "code_uid": "Text.0.40.15.31-randf456c282",
814
+ "disabled": false,
815
+ "hidden": false,
816
+ "label": "Variance Threshold",
817
+ "model_id": "3451d94059c74b54b3e6a1a3ba3e3d46",
818
+ "rows": 1,
819
+ "url_key": "",
820
+ "value": "0",
821
+ "widget": "Text"
822
+ },
823
+ "application/vnd.jupyter.widget-view+json": {
824
+ "model_id": "3451d94059c74b54b3e6a1a3ba3e3d46",
825
+ "version_major": 2,
826
+ "version_minor": 0
827
+ },
828
+ "text/plain": [
829
+ "mercury.Text"
830
+ ]
831
+ },
832
+ "metadata": {},
833
+ "output_type": "display_data"
834
+ },
835
+ {
836
+ "data": {
837
+ "application/mercury+json": {
838
+ "code_uid": "Text.0.40.15.34-randb820c798",
839
+ "disabled": false,
840
+ "hidden": false,
841
+ "label": "Correlation Threshold",
842
+ "model_id": "c9c2b11bb87c49dc9fbd8644756a7309",
843
+ "rows": 1,
844
+ "url_key": "",
845
+ "value": "1",
846
+ "widget": "Text"
847
+ },
848
+ "application/vnd.jupyter.widget-view+json": {
849
+ "model_id": "c9c2b11bb87c49dc9fbd8644756a7309",
850
+ "version_major": 2,
851
+ "version_minor": 0
852
+ },
853
+ "text/plain": [
854
+ "mercury.Text"
855
+ ]
856
+ },
857
+ "metadata": {},
858
+ "output_type": "display_data"
859
+ },
860
+ {
861
+ "data": {
862
+ "application/mercury+json": {
863
+ "choices": [
864
+ "none",
865
+ 3,
866
+ 4,
867
+ 5
868
+ ],
869
+ "code_uid": "Select.0.40.16.38-rand10bd6524",
870
+ "disabled": false,
871
+ "hidden": false,
872
+ "label": "Outlier Removal Threshold",
873
+ "model_id": "fc579feedb8441c8bec034af4db6d7f4",
874
+ "url_key": "",
875
+ "value": "none",
876
+ "widget": "Select"
877
+ },
878
+ "application/vnd.jupyter.widget-view+json": {
879
+ "model_id": "fc579feedb8441c8bec034af4db6d7f4",
880
+ "version_major": 2,
881
+ "version_minor": 0
882
+ },
883
+ "text/plain": [
884
+ "mercury.Select"
885
+ ]
886
+ },
887
+ "metadata": {},
888
+ "output_type": "display_data"
889
+ },
890
+ {
891
+ "data": {
892
+ "application/mercury+json": {
893
+ "choices": [
894
+ "none",
895
+ "normal",
896
+ "standard",
897
+ "minmax",
898
+ "robust"
899
+ ],
900
+ "code_uid": "Select.0.40.16.46-randa62a9011",
901
+ "disabled": false,
902
+ "hidden": false,
903
+ "label": "Scaling Variables",
904
+ "model_id": "b33b5aa4d7044b21b1469d5f94f70bba",
905
+ "url_key": "",
906
+ "value": "none",
907
+ "widget": "Select"
908
+ },
909
+ "application/vnd.jupyter.widget-view+json": {
910
+ "model_id": "b33b5aa4d7044b21b1469d5f94f70bba",
911
+ "version_major": 2,
912
+ "version_minor": 0
913
+ },
914
+ "text/plain": [
915
+ "mercury.Select"
916
+ ]
917
+ },
918
+ "metadata": {},
919
+ "output_type": "display_data"
920
+ },
921
+ {
922
+ "data": {
923
+ "application/mercury+json": {
924
+ "choices": [
925
+ "mean",
926
+ "median",
927
+ "knn",
928
+ "most_frequent"
929
+ ],
930
+ "code_uid": "Select.0.40.16.50-rand2ace830f",
931
+ "disabled": false,
932
+ "hidden": false,
933
+ "label": "Imputation Methods",
934
+ "model_id": "4e9806f2a50d45d99c01cebedbb4ff2e",
935
+ "url_key": "",
936
+ "value": "mean",
937
+ "widget": "Select"
938
+ },
939
+ "application/vnd.jupyter.widget-view+json": {
940
+ "model_id": "4e9806f2a50d45d99c01cebedbb4ff2e",
941
+ "version_major": 2,
942
+ "version_minor": 0
943
+ },
944
+ "text/plain": [
945
+ "mercury.Select"
946
+ ]
947
+ },
948
+ "metadata": {},
949
+ "output_type": "display_data"
950
+ },
951
+ {
952
+ "data": {
953
+ "application/mercury+json": {
954
+ "choices": [
955
+ "none",
956
+ "smote",
957
+ "undersampling",
958
+ "rose"
959
+ ],
960
+ "code_uid": "Select.0.40.16.55-rand0c78765a",
961
+ "disabled": false,
962
+ "hidden": false,
963
+ "label": "Imbalance Treatment",
964
+ "model_id": "ec3600fc2eac4d49ae415b55e519a098",
965
+ "url_key": "",
966
+ "value": "none",
967
+ "widget": "Select"
968
+ },
969
+ "application/vnd.jupyter.widget-view+json": {
970
+ "model_id": "ec3600fc2eac4d49ae415b55e519a098",
971
+ "version_major": 2,
972
+ "version_minor": 0
973
+ },
974
+ "text/plain": [
975
+ "mercury.Select"
976
+ ]
977
+ },
978
+ "metadata": {},
979
+ "output_type": "display_data"
980
+ },
981
+ {
982
+ "data": {
983
+ "application/mercury+json": {
984
+ "choices": [
985
+ "random_forest",
986
+ "logistic_regression",
987
+ "knn",
988
+ "svm",
989
+ "naive_bayes",
990
+ "decision_tree",
991
+ "xgboost"
992
+ ],
993
+ "code_uid": "Select.0.40.16.60-rand62eb36ee",
994
+ "disabled": false,
995
+ "hidden": false,
996
+ "label": "Model Selection",
997
+ "model_id": "c1fa735443c74283aeb09bb790ab0096",
998
+ "url_key": "",
999
+ "value": "random_forest",
1000
+ "widget": "Select"
1001
+ },
1002
+ "application/vnd.jupyter.widget-view+json": {
1003
+ "model_id": "c1fa735443c74283aeb09bb790ab0096",
1004
+ "version_major": 2,
1005
+ "version_minor": 0
1006
+ },
1007
+ "text/plain": [
1008
+ "mercury.Select"
1009
+ ]
1010
+ },
1011
+ "metadata": {},
1012
+ "output_type": "display_data"
1013
+ }
1014
+ ],
1015
+ "source": [
1016
+ "\n",
1017
+ "evaluation_score_df = pd.DataFrame(columns=['Model', 'Accuracy', 'Precision', 'Recall', 'F1-score', 'model_variables'])\n",
1018
+ "evaluation_count_df = pd.DataFrame(columns=['Model', 'True Negatives', 'False Positives', 'False Negatives', 'True Positives', 'model_variables'])\n",
1019
+ "\n",
1020
+ "#############################################################################################################\n",
1021
+ "# reset the dataframe containing all results, evaluation_score_df and evaluation_count_df\n",
1022
+ "\n",
1023
+ "reset_results = 'no' # 'yes' or 'no'\n",
1024
+ "\n",
1025
+ "#############################################################################################################\n",
1026
+ "\n",
1027
+ "if reset_results == 'yes':\n",
1028
+ " evaluation_score_df = pd.DataFrame(columns=['Model', 'Accuracy', 'Precision', 'Recall', 'F1-score', 'model_variables'])\n",
1029
+ " evaluation_count_df = pd.DataFrame(columns=['Model', 'True Negatives', 'False Positives', 'False Negatives', 'True Positives', 'model_variables'])\n",
1030
+ " \n",
1031
+ "\n",
1032
+ "#############################################################################################################\n",
1033
+ "\n",
1034
+ "# input train and test sets\n",
1035
+ "input_train_set = X_train\n",
1036
+ "input_test_set = X_test\n",
1037
+ "\n",
1038
+ "\n",
1039
+ "\n",
1040
+ "# input feature removal variables\n",
1041
+ "input_drop_duplicates = mr.Select(label=\"Drop Duplicates\", value=\"yes\", choices=[\"yes\", \"no\"]) # 'yes' or 'no'\n",
1042
+ "input_drop_duplicates = str(input_drop_duplicates.value)\n",
1043
+ "\n",
1044
+ "input_missing_values_threshold = mr.Text(label=\"Missing Value Threeshold\", value='80') # 0-100 (removes columns with more missing values than the threshold)\n",
1045
+ "input_missing_values_threshold = int(input_missing_values_threshold.value)\n",
1046
+ "\n",
1047
+ "input_variance_threshold = mr.Text(label=\"Variance Threshold\", value='0') # \n",
1048
+ "input_variance_threshold = float(input_variance_threshold.value)\n",
1049
+ "\n",
1050
+ "input_correlation_threshold = mr.Text(label=\"Correlation Threshold\", value='1') # \n",
1051
+ "input_correlation_threshold = float(input_correlation_threshold.value)\n",
1052
+ "\n",
1053
+ "# input outlier removal variables\n",
1054
+ "input_outlier_removal_threshold = mr.Select(label=\"Outlier Removal Threshold\", value=\"none\", choices=['none', 3, 4, 5]) # 'none' or zscore from 0 to 100\n",
1055
+ "\n",
1056
+ "if input_outlier_removal_threshold.value != 'none':\n",
1057
+ " input_outlier_removal_threshold = int(input_outlier_removal_threshold.value)\n",
1058
+ "elif input_outlier_removal_threshold.value == 'none':\n",
1059
+ " input_outlier_removal_threshold = str(input_outlier_removal_threshold.value)\n",
1060
+ "\n",
1061
+ "# input scaling variables\n",
1062
+ "input_scale_model = mr.Select(label=\"Scaling Variables\", value=\"none\", choices=['none', 'normal', 'standard', 'minmax', 'robust']) # 'none', 'normal', 'standard', 'minmax', 'robust'\n",
1063
+ "input_scale_model = str(input_scale_model.value)\n",
1064
+ "\n",
1065
+ "# input imputation variables\n",
1066
+ "input_imputation_method = mr.Select(label=\"Imputation Methods\", value=\"mean\", choices=['mean', 'median', 'knn', 'most_frequent']) # 'mean', 'median', 'knn', 'most_frequent'\n",
1067
+ "input_n_neighbors = 5 # only for knn imputation\n",
1068
+ "input_imputation_method = str(input_imputation_method.value)\n",
1069
+ "\n",
1070
+ "# input imbalance treatment variables\n",
1071
+ "input_imbalance_treatment = mr.Select(label=\"Imbalance Treatment\", value=\"none\", choices=['none', 'smote', 'undersampling', 'rose']) # 'none', 'smote', 'undersampling', 'rose'\n",
1072
+ "input_imbalance_treatment = str(input_imbalance_treatment.value)\n",
1073
+ "\n",
1074
+ "\n",
1075
+ "# input model\n",
1076
+ "input_model = mr.Select(label=\"Model Selection\", value=\"random_forest\", choices=['random_forest', 'logistic_regression', 'knn', 'svm', 'naive_bayes','decision_tree','xgboost']) # 'all', 'random_forest', 'logistic_regression', 'knn', \n",
1077
+ " # 'svm', 'naive_bayes', # 'decision_tree', 'xgboost'\n",
1078
+ "input_model = str(input_model.value)\n"
1079
+ ]
1080
+ },
1081
+ {
1082
+ "attachments": {},
1083
+ "cell_type": "markdown",
1084
+ "metadata": {
1085
+ "slideshow": {
1086
+ "slide_type": "skip"
1087
+ }
1088
+ },
1089
+ "source": [
1090
+ "### **Transform Data**"
1091
+ ]
1092
+ },
1093
+ {
1094
+ "attachments": {},
1095
+ "cell_type": "markdown",
1096
+ "metadata": {
1097
+ "slideshow": {
1098
+ "slide_type": "skip"
1099
+ }
1100
+ },
1101
+ "source": [
1102
+ "#### **Remove Features**"
1103
+ ]
1104
+ },
1105
+ {
1106
+ "cell_type": "code",
1107
+ "execution_count": 28,
1108
+ "metadata": {
1109
+ "slideshow": {
1110
+ "slide_type": "skip"
1111
+ }
1112
+ },
1113
+ "outputs": [
1114
+ {
1115
+ "name": "stdout",
1116
+ "output_type": "stream",
1117
+ "text": [
1118
+ "Shape of the dataframe is: (1175, 590)\n",
1119
+ "the number of columns to be dropped due to duplications is: 104\n",
1120
+ "the number of columns to be dropped due to missing values is: 8\n",
1121
+ "the number of columns to be dropped due to low variance is: 12\n",
1122
+ "the number of columns to be dropped due to high correlation is: 21\n",
1123
+ "Total number of columns to be dropped is: 145\n",
1124
+ "New shape of the dataframe is: (1175, 445)\n",
1125
+ "<class 'list'>\n",
1126
+ "No outliers were removed\n",
1127
+ "The dataframe has not been scaled\n",
1128
+ "The dataframe has not been scaled\n",
1129
+ "Number of missing values before imputation: 19977\n",
1130
+ "Number of missing values after imputation: 0\n",
1131
+ "Number of missing values before imputation: 6954\n",
1132
+ "Number of missing values after imputation: 0\n",
1133
+ "Shape of the training set after no resampling: (1175, 445)\n",
1134
+ "Value counts of the target variable after no resampling: \n",
1135
+ " pass/fail\n",
1136
+ "0 1097\n",
1137
+ "1 78\n",
1138
+ "dtype: int64\n"
1139
+ ]
1140
+ }
1141
+ ],
1142
+ "source": [
1143
+ "# remove features using the function list_columns_to_drop\n",
1144
+ "\n",
1145
+ "dropped = columns_to_drop(input_train_set, \n",
1146
+ " input_drop_duplicates, input_missing_values_threshold, \n",
1147
+ " input_variance_threshold, input_correlation_threshold)\n",
1148
+ "\n",
1149
+ "# drop the columns from the training and testing sets and save the new sets as new variables\n",
1150
+ "\n",
1151
+ "X_train2 = input_train_set.drop(dropped, axis=1)\n",
1152
+ "X_test2 = input_test_set.drop(dropped, axis=1)\n",
1153
+ "\n",
1154
+ "X_train_dropped_outliers = outlier_removal(X_train2, input_outlier_removal_threshold)\n",
1155
+ "\n",
1156
+ "\n",
1157
+ "X_train_scaled = scale_dataframe(input_scale_model, X_train_dropped_outliers, X_train_dropped_outliers)\n",
1158
+ "X_test_scaled = scale_dataframe(input_scale_model, X_train_dropped_outliers, X_test2)\n",
1159
+ "\n",
1160
+ "# impute the missing values in the training and testing sets using the function impute_missing_values\n",
1161
+ "\n",
1162
+ "X_train_imputed = impute_missing_values(input_imputation_method,X_train_scaled, X_train_scaled, input_n_neighbors)\n",
1163
+ "X_test_imputed = impute_missing_values(input_imputation_method,X_train_scaled, X_test_scaled, input_n_neighbors)\n",
1164
+ "\n",
1165
+ "# treat imbalance in the training set using the function oversample\n",
1166
+ "\n",
1167
+ "X_train_res, y_train_res = imbalance_treatment(input_imbalance_treatment, X_train_imputed, y_train)\n",
1168
+ "\n"
1169
+ ]
1170
+ },
1171
+ {
1172
+ "attachments": {},
1173
+ "cell_type": "markdown",
1174
+ "metadata": {
1175
+ "slideshow": {
1176
+ "slide_type": "skip"
1177
+ }
1178
+ },
1179
+ "source": [
1180
+ "### **Model Training**"
1181
+ ]
1182
+ },
1183
+ {
1184
+ "cell_type": "code",
1185
+ "execution_count": 29,
1186
+ "metadata": {
1187
+ "slideshow": {
1188
+ "slide_type": "skip"
1189
+ }
1190
+ },
1191
+ "outputs": [],
1192
+ "source": [
1193
+ "# disable warnings\n",
1194
+ "\n",
1195
+ "import warnings\n",
1196
+ "warnings.filterwarnings('ignore')\n",
1197
+ "\n",
1198
+ "# train the model using the function train_model and save the predictions as new variables\n",
1199
+ "\n",
1200
+ "y_pred_random_forest = train_model('random_forest', X_train_res, y_train_res, X_test_imputed, y_test)\n",
1201
+ "y_pred_logistic_regression = train_model('logistic_regression', X_train_res, y_train_res, X_test_imputed, y_test)\n",
1202
+ "y_pred_knn = train_model('knn', X_train_res, y_train_res, X_test_imputed, y_test)\n",
1203
+ "y_pred_svm = train_model('svm', X_train_res, y_train_res, X_test_imputed, y_test)\n",
1204
+ "y_pred_naive_bayes = train_model('naive_bayes', X_train_res, y_train_res, X_test_imputed, y_test)\n",
1205
+ "y_pred_decision_tree = train_model('decision_tree', X_train_res, y_train_res, X_test_imputed, y_test)\n",
1206
+ "y_pred_xgboost = train_model('xgboost', X_train_res, y_train_res, X_test_imputed, y_test)"
1207
+ ]
1208
+ },
1209
+ {
1210
+ "attachments": {},
1211
+ "cell_type": "markdown",
1212
+ "metadata": {
1213
+ "slideshow": {
1214
+ "slide_type": "skip"
1215
+ }
1216
+ },
1217
+ "source": [
1218
+ "#### **Evaluate and Save**"
1219
+ ]
1220
+ },
1221
+ {
1222
+ "cell_type": "code",
1223
+ "execution_count": 30,
1224
+ "metadata": {
1225
+ "slideshow": {
1226
+ "slide_type": "slide"
1227
+ }
1228
+ },
1229
+ "outputs": [
1230
+ {
1231
+ "name": "stdout",
1232
+ "output_type": "stream",
1233
+ "text": [
1234
+ "Have the duplicates been removed? yes\n",
1235
+ "What is the missing values threshold %? 80\n",
1236
+ "What is the variance threshold? 0.0\n",
1237
+ "What is the correlation threshold? 1.0\n",
1238
+ "What is the outlier removal threshold? none\n",
1239
+ "What is the scaling method? none\n",
1240
+ "What is the imputation method? mean\n",
1241
+ "What is the imbalance treatment? none\n"
1242
+ ]
1243
+ },
1244
+ {
1245
+ "data": {
1246
+ "text/html": [
1247
+ "<div>\n",
1248
+ "<style scoped>\n",
1249
+ " .dataframe tbody tr th:only-of-type {\n",
1250
+ " vertical-align: middle;\n",
1251
+ " }\n",
1252
+ "\n",
1253
+ " .dataframe tbody tr th {\n",
1254
+ " vertical-align: top;\n",
1255
+ " }\n",
1256
+ "\n",
1257
+ " .dataframe thead th {\n",
1258
+ " text-align: right;\n",
1259
+ " }\n",
1260
+ "</style>\n",
1261
+ "<table border=\"1\" class=\"dataframe\">\n",
1262
+ " <thead>\n",
1263
+ " <tr style=\"text-align: right;\">\n",
1264
+ " <th></th>\n",
1265
+ " <th>Model</th>\n",
1266
+ " <th>Accuracy</th>\n",
1267
+ " <th>Precision</th>\n",
1268
+ " <th>Recall</th>\n",
1269
+ " <th>F1-score</th>\n",
1270
+ " </tr>\n",
1271
+ " </thead>\n",
1272
+ " <tbody>\n",
1273
+ " <tr>\n",
1274
+ " <th>0</th>\n",
1275
+ " <td>random_forest</td>\n",
1276
+ " <td>0.93</td>\n",
1277
+ " <td>0.0</td>\n",
1278
+ " <td>0.0</td>\n",
1279
+ " <td>0.0</td>\n",
1280
+ " </tr>\n",
1281
+ " </tbody>\n",
1282
+ "</table>\n",
1283
+ "</div>"
1284
+ ],
1285
+ "text/plain": [
1286
+ " Model Accuracy Precision Recall F1-score\n",
1287
+ "0 random_forest 0.93 0.0 0.0 0.0"
1288
+ ]
1289
+ },
1290
+ "metadata": {},
1291
+ "output_type": "display_data"
1292
+ },
1293
+ {
1294
+ "data": {
1295
+ "text/html": [
1296
+ "<div>\n",
1297
+ "<style scoped>\n",
1298
+ " .dataframe tbody tr th:only-of-type {\n",
1299
+ " vertical-align: middle;\n",
1300
+ " }\n",
1301
+ "\n",
1302
+ " .dataframe tbody tr th {\n",
1303
+ " vertical-align: top;\n",
1304
+ " }\n",
1305
+ "\n",
1306
+ " .dataframe thead th {\n",
1307
+ " text-align: right;\n",
1308
+ " }\n",
1309
+ "</style>\n",
1310
+ "<table border=\"1\" class=\"dataframe\">\n",
1311
+ " <thead>\n",
1312
+ " <tr style=\"text-align: right;\">\n",
1313
+ " <th></th>\n",
1314
+ " <th>Model</th>\n",
1315
+ " <th>True Negatives</th>\n",
1316
+ " <th>False Positives</th>\n",
1317
+ " <th>False Negatives</th>\n",
1318
+ " <th>True Positives</th>\n",
1319
+ " </tr>\n",
1320
+ " </thead>\n",
1321
+ " <tbody>\n",
1322
+ " <tr>\n",
1323
+ " <th>0</th>\n",
1324
+ " <td>random_forest</td>\n",
1325
+ " <td>366</td>\n",
1326
+ " <td>0</td>\n",
1327
+ " <td>26</td>\n",
1328
+ " <td>0</td>\n",
1329
+ " </tr>\n",
1330
+ " </tbody>\n",
1331
+ "</table>\n",
1332
+ "</div>"
1333
+ ],
1334
+ "text/plain": [
1335
+ " Model True Negatives False Positives False Negatives \\\n",
1336
+ "0 random_forest 366 0 26 \n",
1337
+ "\n",
1338
+ " True Positives \n",
1339
+ "0 0 "
1340
+ ]
1341
+ },
1342
+ "metadata": {},
1343
+ "output_type": "display_data"
1344
+ },
1345
+ {
1346
+ "data": {
1347
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUcAAAFMCAYAAABYjn6oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAr6ElEQVR4nO3deVxU5f4H8M8IDKDAiBAgCogbIpsIV8R9BZdUyszMfffmvucvl1tm7mFqmOWClLfUzDLzZu6KLCWCK6KmLMIgyirG5nB+f5ijI0djZDkz+Hm/XrzunWfOefjOvPDTM+d55jkyQRAEEBGRhlpSF0BEpIsYjkREIhiOREQiGI5ERCIYjkREIhiOREQiGI5ERCIMpS6gIkpLS5GWlgZzc3PIZDKpyyEiPSAIAu7fvw97e3vUqvX88aFeh2NaWhocHBykLoOI9FBKSgoaNmz43Of1OhzNzc0BAPKWIyEzkEtcDema5BNrpC6BdND9vDw0dXZQ58fz6HU4Pv4oLTOQMxypDAsLC6lLIB32T5fiOCFDRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguGow8YP6oDfdy3AndOrcef0apzYMRsB7VtqHOPibIs96yYi/dRqZISvwckds+FgZ6lxjJ+nM/63eSruRayF8tQqHPpqOkyMjarzpZCENm8KQYtmzqhrZoJ2bXwQHn5a6pL0gqHUBdDzpd7JwaINP+HP5HsAgGH9/LAneALavrMC8TfT4dzQGke3zcKOHyPw8aZfkJtfgBbOdigsKlH34efpjJ82voc123/DrJV7UPxQBc/mDVBaKkj1sqga7dm9C3Nnz8BnG0Lg3649tny1GUGv98a5C1fg6OgodXk6TSYIgt7+K8nLy4NCoYCxx3jIDORSl1MtUk+sxP+t+xE7foxE2IrRKClRYeyisOcef3LHbByNvoqPQn6pxip1Q/YfG6UuQXId2/nB27s11n++Sd3WysMV/foHYemy5RJWJp28vDzYWimQm5sLCwuL5x7Hj9V6olYtGQYF+qCOqRzRF25BJpOhVwc3XE/OwP7PJyPp6HKcCpuDfl081ee8ZmmGNp7OuJuVj+Ohs5B45BP8tmU62rVqLOEroepSXFyM2HMx6N4zQKO9e48AREVGSFSV/mA46ji3pva4e2YtcqPXYf0HgzF49le4ejMdNvXMYF7HBHNG98ThiCvo9++N2H/8PL5bOw4dfJoCAJwbWgMAPpjYB9t+iMCAySGIi0/Bwc1T0cTxNSlfFlWDe/fuQaVSwcbGVqPd1tYWd+6kS1SV/uA1Rx13LfEO/N5ZjrrmtRHUvRW++mg4AsZ9htz7BQCAAycuYsPO4wCAC9dS4efVGOPf6oDwmBuoVUsGANi6Nxxf748CAJxPuI0ubVwwcoA/Fm/YL82Lomolk8k0HguCUKaNyuLIUceVPFThZso9nLuSjMUb9uPitVRMHtIF97LzUVKiQvxNpcbxCTfT1bPVyrt5AID4m5qjhIRb6WVmtKnmsba2hoGBQZlRYkZGRpnRJJXFcNQzMshgLDdEyUMVYq4kobmT5h95MycbJCuzAQBJaZlIy8hB80Y2Gsc0dbJBsjKr2momacjlcni39sGxI4c12o8dPYy2/u0kqkp/8GO1DvtwSj/8duYKUtKzYV7HBIMCfdDJtxn6Tw4BAATvOIKvV45B+LkbOHn2GgLatUSfTu4IHP+Zuo/gHUewcFJfXLyWivMJtzGsnx9cGtni3blbpXpZVI2mzZiFsaOGo7WPL/za+mPrli+RkpyMcRMmSV2azmM46jAbK3Ns/XgE7KwtkJtfiEvXU9F/cgiORV8FAOw/fgFTl32HuWMCsHbeW7iWlIEhc7cgIu6muo+N/z0BE2MjrJo9EJaK2rh4LRWv/3sjbt2+J9XLomo06O3ByMrMxCfLPkK6Ugk3N3f8+PNBODk5SV2azpN8nWNISAhWr14NpVIJNzc3rFu3Dh07dizXua/iOkcqP65zJDF6sc5x165dmDFjBj744APExsaiY8eO6N27N5KTk6Usi4hI2nD89NNPMXbsWIwbNw6urq5Yt24dHBwcsGnTpn8+mYioCkkWjsXFxYiJiUFAgObq/YCAAEREiK/eLyoqQl5ensYPEVFVkCwcH6/et7Utu3o/PV189f7y5cuhUCjUPw4ODtVRKhG9giRf56jN6v0FCxYgNzdX/ZOSklIdJRLRK0iycHy8ev/ZUWJGRkaZ0eRjxsbGsLCw0PipCeop6iDp6HI41q8naR1uTe1x49elqG3CmX9dkZmZCUd7GyQlJkpax6WLF9GkUUM8ePBA0jqqk2ThKJfL4ePjg8OHNVfvHz58GO3avVqr9+eOCcDBUxfV31pZM3cgzuych5zoYER99365+pAbGeLT+YOQcmwF7kWsxZ51E9HApq7GMXXNTbF16Qikn1qN9FOrsXXpCCjMTNXPX76RhrOXkjB1WNdKe21UMatXLkefvv3g1KgRACA5ORkDg/rBSlEHDe2sMWvGNBQXF7+wj6KiIsycPhUN7axhpaiDt97oj9u3b2sck52djTEjh8PWSgFbKwXGjByOnJwc9fPuHh7w/VcbbPgsuLJfos6S9GP1rFmzsGXLFmzbtg3x8fGYOXMmkpOTMWnSq7N638TYCCOD/BG6L1LdJpPJEPZTFL7/7Vy5+1k9dyD6d/XEiAXb0X10MMxM5di7fpJ68wkACF0+Cp4uDTFgSggGTAmBp0tDbP14hEY/YfujMGFQR43zSBoFBQXYsX0rRo0ZBwBQqVR4s39fPHjwAEdPhCNs53f4cd9ezJ87+4X9zJ01A/t/2oewnd/h6Ilw5OfnY+CA16FSqdTHjBr+Li6cj8NPB37FTwd+xYXzcRg7arhGPyNGjsaXmzdpnFeTSfoNmcGDByMzMxMfffQRlEol3N3dcfDgq7V6P7B9SzxUqRB94Za6bfaq7wEA1pZ94N6swT/2YWFmglFB/hi7MAzHoxMAAGMWhuH6/5aim18LHImMh4uzLQLbu6HT8NX441ISAGDy0v/iZNgcNHOywfWkDADA4Yh41FPUQUefZjj5x7XKfrmkhUO//g+GhoZo6+8PADhy+DfEx1/B9YMpsLe3BwCsWLUWE8aOwodLl4leZsrNzUXo9q3YGvo1unXvAQDYtuMbNHN2wLGjR9AzIBBX4+Px26FfcTI8Cm38/AAAn3/xFbp09Me1hAQ0d3EBAPQMCERWZiZOnzqJLl27VcdbICnJJ2Tee+89JCYmoqioCDExMejUqZPUJVWrDq2b4tyVii1693Z1hNzIEEci49Vtyru5uPxnGtp6OQN4dLuEnPt/qYMRAH6/mIic+3+hrdeTzW9LHqpw8Voq2ns3qVBNVHHhp0+htY+v+nF0VCTc3NzVwQg8CqyioiLEnosR7SP2XAxKSkrQ46kNb+3t7eHm5q7e8DY6KhIKhUIdjADg17YtFAqFxqa4crkcHp5eOPOK3ING8nB81TnZ14Pybm6F+rCzskBRcQly/t7j8bGMzPuwtXo0mrC1ssDdrPwy597NyoetteaIIy0jB072VhWqiSouKSkR9es/CcI76emweWay0tLSEnK5/LnL39LT0yGXy2FpqblFnY2tLe78fc6dO+l4zcamzLmv2diU2e7MvkEDySeHqgvDUWImxnIUFj2skr5lMhme/uK82NfoZTIAz7QXFJWgtgnvTii1woICmJiYaLSJLXN7mc1rnz3nef3imXZTE1P8VfCXVr9LXzEcJZaZkw9Li9oV6iM9Mw/GciPUNTfVaH+tnhkyMh99i+hOZh5srMzLnGttaYY7mfc12iwVtXEvu+wok6qXlZU1snOy1Y9t7ezUo73HsrOzUVJS8tzlb3Z2diguLkZ2drZG+92MDPUo1NbWDhl37pQ5997du7B9ZlPc7OwsWFu/GrfYYDhK7PzV22jR2K5CfcTGJ6O45CG6t22hbrOztoBbE3tEnX800RN94RbqmteGr9uTya5/uTuhrnltRJ2/qdGfWxN7xCVoLvWg6ufl7Y2rV66oH/u19cfly5egVD7Z/f3I4d9gbGwM79Y+on14t/aBkZERjj614a1SqcTly5fUG976tfVHbm4u/vj9d/Uxv0dHIzc3t8ymuJcvX0KrVt6V8vp0HcNRYocj49GycX2NUV9jB2t4Nm8AW2sLmBobwbN5A3g2bwAjQwMAgP1rCsT9sFAddHn5hQj9MRIrZr2JLm2aw8ulIbZ9PBKXbqSp935MuHUHh85cxueLh6CNRyO08WiEzxe9i19OXlTPVAOAY/16sLdR4Pjf55F0evYMxJUrl9Wjvh49A+Dq2hJjRw1HXGwsjh87igXz52D02PHqmerU1FR4ubdQB51CocCo0WPx/rzZOH7sKOJiYzFm5DC4u3uoZ69buLoiILAXJk8aj+ioKERHRWHypPHo0/d19Uw1ACQlJiItNRVd/z6vpuNmtxK7fCMN5+KTMTCgNbbuPQMA2LR4KDr5NlMfE71rAQDApc9iJCuzYGhoABdnO5g+9U2WeWv2QqUqxTcrx8LU2AjHf0/AhOlfo7T0yfXE0f+3A2vnvYWfQyYDAH45eREzV+zRqOft3r44EnlVfasFko67hwda+/hi757dGDdhIgwMDPDD/l8wY+p76Na5PUxNTfH2O+9ixao16nMelpTgWkICCp66LrhqbTAMDA0xbMjbKCgoQNdu3fHl1lAYGBioj9kethOzZ0xDvz6PZrX7vt4fwes198Pcvetb9OgZ8MostZN8s9uKqCmb3QZ2aInlM9+Az1ufiE6aVBe5kSEu/bQYIxeEIvKZj9r6qCZsdvvr/w5iwfw5iIm7hFq1pPugV1RUBHfXZtjx9bdo1769ZHVUhvJudsuRow44FH4FTR1s0MBGgdt3ciSrw7F+PazceqhGBGNN0at3H9y4fh2pqamS7kKVnJSE+e9/oPfBqA2OHKnGqgkjR6p8enGbBCIiXcVwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISUa67D+7fv7/cHfbv3/+liyEi0hXlCsegoKBydSaTyaBSqSpSDxGRTihXOJaWllZ1HUREOqVC1xwLCwsrqw4iIp2idTiqVCosXboUDRo0gJmZGW7evAkAWLRoEbZu3VrpBRIRSUHrcFy2bBlCQ0OxatUqyOVydbuHhwe2bNlSqcUREUlF63AMCwvDl19+iaFDh8LAwEDd7unpiatXr1ZqcUREUtE6HFNTU9G0adMy7aWlpSgpKamUooiIpKZ1OLq5ueH06dNl2vfs2QNvb+9KKYqISGrlWsrztCVLlmD48OFITU1FaWkpfvjhByQkJCAsLAwHDhyoihqJiKqd1iPHfv36YdeuXTh48CBkMhkWL16M+Ph4/Pzzz+jZs2dV1EhEVO20HjkCQGBgIAIDAyu7FiIinfFS4QgAZ8+eRXx8PGQyGVxdXeHj41OZdRERSUrrcLx9+zaGDBmCM2fOoG7dugCAnJwctGvXDt9++y0cHBwqu0Yiomqn9TXHMWPGoKSkBPHx8cjKykJWVhbi4+MhCALGjh1bFTUSEVU7rUeOp0+fRkREBFxcXNRtLi4u2LBhA9q3b1+pxRERSUXrkaOjo6PoYu+HDx+iQYMGlVIUEZHUtA7HVatWYerUqTh79iwEQQDwaHJm+vTpWLNmTaUXSEQkhXJ9rLa0tIRMJlM/fvDgAfz8/GBo+Oj0hw8fwtDQEGPGjCn3xrhERLqsXOG4bt26Ki6DiEi3lCscR44cWdV1EBHplJdeBA4ABQUFZSZnLCwsKlQQEZEu0HpC5sGDB5gyZQpsbGxgZmYGS0tLjR8ioppA63CcN28ejh07hpCQEBgbG2PLli348MMPYW9vj7CwsKqokYio2mn9sfrnn39GWFgYunTpgjFjxqBjx45o2rQpnJycsHPnTgwdOrQq6iQiqlZajxyzsrLg7OwM4NH1xaysLABAhw4dcOrUqcqtjohIIlqHY+PGjZGYmAgAaNmyJXbv3g3g0Yjy8UYURET6TutwHD16NM6fPw8AWLBggfra48yZMzF37txKL5CISApaX3OcOXOm+v937doVV69exdmzZ9GkSRN4eXlVanFERFKp0DpH4NFGFI6OjpVRCxGRzihXOK5fv77cHU6bNu2liyEi0hXlCsfg4OBydSaTyRiORFQjlCscb926VdV1EBHpFK1nq4mIXgUMRyIiEQxHIiIRDEciIhEMRyIiES8VjqdPn8awYcPg7++P1NRUAMDXX3+N8PDwSi2OiEgqWofj3r17ERgYCFNTU8TGxqKoqAgAcP/+fXzyySeVXiARkRS0DsePP/4YX3zxBb766isYGRmp29u1a4dz585VanFERFLROhwTEhLQqVOnMu0WFhbIycmpjJqIiCSndTjWr18fN27cKNMeHh6Oxo0bV0pRRERS0zocJ06ciOnTpyM6OhoymQxpaWnYuXMn5syZg/fee68qaiQiqnZab1k2b9485ObmomvXrigsLESnTp1gbGyMOXPmYMqUKVVRIxFRtZMJgiC8zIl//fUXrly5gtLSUrRs2RJmZmaVXds/ysvLg0KhgLHHeMgM5NX++0m3Zf+xUeoSSAfl5eXB1kqB3NxcWFhYPPe4l97stnbt2vD19X3Z04mIdJrW4di1a1fIZLLnPn/s2LEKFUREpAu0DsdWrVppPC4pKUFcXBwuXbqEkSNHVlZdRESS0jocn7cr+H/+8x/k5+dXuCAiIl1QaRtPDBs2DNu2baus7oiIJFVp4RgZGQkTE5PK6o6ISFJaf6x+8803NR4LggClUomzZ89i0aJFlVYYEZGUtA5HhUKh8bhWrVpwcXHBRx99hICAgEorjIhISlqFo0qlwqhRo+Dh4YF69epVVU1ERJLT6pqjgYEBAgMDkZubW1X1EBHpBK0nZDw8PHDz5s2qqIWISGdoHY7Lli3DnDlzcODAASiVSuTl5Wn8EBHVBFpPyPTq1QsA0L9/f42vEQqCAJlMBpVKVXnVERFJROtwPH78eFXUQUSkU7QOR2dnZzg4OJTZfEIQBKSkpFRaYUREUtL6mqOzszPu3r1bpj0rKwvOzs6VUhQRkdS0DsfH1xaflZ+fz68PElGNUe6P1bNmzQIAyGQyLFq0CLVr11Y/p1KpEB0dXWY7MyIifVXucIyNjQXwaOR48eJFyOVPbksgl8vh5eWFOXPmVH6FREQSKHc4Pp6lHj16ND777LMX3nuBiEjfaT1bvX379qqog4hIp1Tafo5ERDUJw5GISATDkYhIBMORiEgEw5GISATDkYhIBMORiEgEw5GISATDkYhIBMORiEgEw5GISATDkYhIBMORiEgEw5GISATDkYhIBMORiEgEw5GISATDkYhIBMNRz8wZE4Dwb+YiI3wNko4ux+5Px6OZk02Z41ycbbFn3USkn1qNjPA1OLljNhzsLCWomKS2eVMIWjRzRl0zE7Rr44Pw8NNSl6QXGI56pmPrpvhi1yl0HrEGr/97IwwMDHBg0xTUNnlyN0jnhtY4um0Wrt1KR+D4z9Bm8HIs/+pXFBaVSFg5SWHP7l2YO3sG5r//AaL+iEW7Dh0R9HpvJCcnS12azpMJgiBIXcTLysvLg0KhgLHHeMgM5P98Qg1kbWmGlGMr0GNsMM6c+xMAELZiNEpKVBi7KEzi6qSV/cdGqUuQXMd2fvD2bo31n29St7XycEW//kFYumy5hJVJJy8vD7ZWCuTm5r7wLqocOeo5CzMTAEB27l8AAJlMhl4d3HA9OQP7P5+MpKPLcSpsDvp18ZSyTJJAcXExYs/FoHvPAI327j0CEBUZIVFV+oPhqOdWzh6IM+du4MqfSgCATT0zmNcxwZzRPXE44gr6/Xsj9h8/j+/WjkMHn6YSV0vV6d69e1CpVLCxsdVot7W1xZ076RJVpT+0vm816Y7g99+GRzN7dB8drG6rVevRf+8OnLiIDTuPAwAuXEuFn1djjH+rA8JjbkhSK0lHJpNpPBYEoUwblcWRo576dP4gvN7ZA4Hj1yM1I0fdfi87HyUlKsTfVGocn3AznbPVrxhra2sYGBiUGSVmZGSUGU1SWQxHPRQ8fxAGdPNCr4nrkZSWqfFcyUMVYq4kobmT5h9/MycbJCuzq7NMkphcLod3ax8cO3JYo/3Y0cNo699Ooqr0Bz9W65l1C97G4N6+GDTzS+Q/KIStlTkAIDe/UL1UJ3jHEXy9cgzCz93AybPXENCuJfp0ckfg+M+kLJ0kMG3GLIwdNRytfXzh19YfW7d8iZTkZIybMEnq0nQel/LomYJY8eUp4xd/jW9+jlY/HjGgLeaOCUADm7q4lpSBj7/4BQdOXKyuMnUCl/I8snlTCD5duwrpSiXc3Nyxam0wOnTsJHVZkinvUh5Jw/HUqVNYvXo1YmJioFQqsW/fPgQFBZX7/FcxHKn8GI4kRi/WOT548ABeXl7YuJF/xESkWyS95ti7d2/07t273McXFRWhqKhI/TgvL68qyiIi0q/Z6uXLl0OhUKh/HBwcpC6JiGoovQrHBQsWIDc3V/2TkpIidUlEVEPp1VIeY2NjGBsbS10GEb0C9GrkWFPVU9RB0tHlcKxfT9I63Jra48avSzW2PyNpZWZmwtHeBkmJiZLWceniRTRp1BAPHjyQtI7qxHDUAXPHBODgqYtIVmYBANbMHYgzO+chJzoYUd+9X64+5EaG+HT+IKQcW4F7EWuxZ91ENLCpq3FMXXNTbF06AumnViP91GpsXToCCjNT9fOXb6Th7KUkTB3WtdJeG1XM6pXL0advPzg1agQASE5OxsCgfrBS1EFDO2vMmjENxcXFL+yjqKgIM6dPRUM7a1gp6uCtN/rj9u3bGsdkZ2djzMjhsLVSwNZKgTEjhyMnJ0f9vLuHB3z/1QYbPgvGq0LScMzPz0dcXBzi4uIAALdu3UJcXNwrtRGnibERRgb5I3RfpLpNJpMh7KcofP/buXL3s3ruQPTv6okRC7aj++hgmJnKsXf9JNSq9WSDgdDlo+Dp0hADpoRgwJQQeLo0xNaPR2j0E7Y/ChMGddQ4j6RRUFCAHdu3YtSYcQAAlUqFN/v3xYMHD3D0RDjCdn6HH/ftxfy5s1/Yz9xZM7D/p30I2/kdjp4IR35+PgYOeB0qlUp9zKjh7+LC+Tj8dOBX/HTgV1w4H4exo4Zr9DNi5Gh8uXmTxnk1maThePbsWXh7e8Pb2xsAMGvWLHh7e2Px4sVSllWtAtu3xEOVCtEXbqnbZq/6Hpt3n8Kt25kvOPMJCzMTjAryx/uf7sPx6AScT7iNMQvD4N7UHt38WgB4dNuEwPZueO+jnYi+cAvRF25h8tL/om9nD43bLByOiEc9RR109GlWuS+UtHbo1//B0NAQbf39AQBHDv+G+Pgr2LbjG7Ty9ka37j2wYtVabN/61XOXteXm5iJ0+1asWLUW3br3QCtvb2zb8Q0uXbqIY0ePAACuxsfjt0O/ImTzFrT190dbf398/sVXOPjLAVxLSFD31TMgEFmZmTh96mTVv3gdIGk4dunSBYIglPkJDQ2Vsqxq1aF1U5y7UrGRsrerI+RGhjgSGa9uU97NxeU/09DWyxkA4OfpjJz7f+GPS0nqY36/mIic+3+hrVdjdVvJQxUuXktFe+8mFaqJKi789Cm09vFVP46OioSbmzvs7e3VbT0DAlFUVITYczGifcSei0FJSQl6PLXhrb29Pdzc3NUb3kZHRUKhUKCNn5/6GL+2baFQKDQ2xZXL5fDw9MKZV+QeNLzmKDEn+3pQ3s2tUB92VhYoKi5Bzv0CjfaMzPuwtXr09ShbKwvczcovc+7drHzYWmt+hSotIwdO9lYVqokqLikpEfXrPwnCO+npsLHV3G3J0tIScrkc6enim9emp6dDLpfD0lJzuzobW1vc+fucO3fS8ZpN2Zu0vWZjU2a7M/sGDSSfHKouDEeJmRjLUVj0sEr6lslkePqL82Jfo5fJADzTXlBUgtomRlVSE5VfYUEBTExMNNrENql9mc1rnz3nef3imXZTE1P8VfCXVr9LXzEcJZaZkw9Li9oV6iM9Mw/GciPUNTfVaH+tnhkyMh9di7qTmQebv7c3e5q1pRnuZN7XaLNU1Ma97LKjTKpeVlbWyM55sgenrZ2derT3WHZ2NkpKSmBrK755rZ2dHYqLi5GdrbmX592MDPUo1NbWDhl37pQ5997du7B9ZlPc7OwsWFu/9lKvR98wHCV2/upttGhsV6E+YuOTUVzyEN3btlC32VlbwK2JPaLOP5roib5wC3XNa8PXzUl9zL/cnVDXvDaizt/U6M+tiT3iEjSXelD18/L2xtUrV9SP/dr64/LlS1Aqn+zyfuTwbzA2NoZ3ax/RPrxb+8DIyAhHn9rwVqlU4vLlS+oNb/3a+iM3Nxd//P67+pjfo6ORm5tbZlPcy5cvoVUr70p5fbqO4Sixw5HxaNm4vsaor7GDNTybN4CttQVMjY3g2bwBPJs3gJGhAQDA/jUF4n5YqA66vPxChP4YiRWz3kSXNs3h5dIQ2z4eiUs30nAs+ioAIOHWHRw6cxmfLx6CNh6N0MajET5f9C5+OXkR15My1L/bsX492NsocPzv80g6PXsG4sqVy+pRX4+eAXB1bYmxo4YjLjYWx48dxYL5czB67Hj11lupqanwcm+hDjqFQoFRo8fi/XmzcfzYUcTFxmLMyGFwd/dAt+49AAAtXF0RENgLkyeNR3RUFKKjojB50nj06fs6mru4qOtJSkxEWmoquv59Xk2nV18frIku30jDufhkDAxoja17zwAANi0eik6+T5bSRO9aAABw6bMYycosGBoawMXZDqZPfZNl3pq9UKlK8c3KsTA1NsLx3xMwYfrXKC19cj1x9P/twNp5b+HnkMkAgF9OXsTMFXs06nm7ty+ORF7lLRV0gLuHB1r7+GLvnt0YN2EiDAwM8MP+XzBj6nvo1rk9TE1N8fY772LFqjXqcx6WlOBaQgIKnrouuGptMAwMDTFsyNsoKChA127d8eXWUBgYGKiP2R62E7NnTEO/Po9mtfu+3h/B6zW3Ety961v06BkAJycnvAq4E7gOCOzQEstnvgGftz4RnTSpLnIjQ1z6aTFGLghF5DMftfVRTdjs9tf/HcSC+XMQE3dJfWdJKRQVFcHdtRl2fP0t2rVvL1kdlaG8m91y5KgDDoVfQVMHGzSwUeD2nRzJ6nCsXw8rtx6qEcFYU/Tq3Qc3rl9HamqqpFv0JSclYf77H+h9MGqDI0eqsWrCyJEqn17cJoGISFcxHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRBhKXUBFCILw6H9VxRJXQrooLy9P6hJIB93/++/icX48j0z4pyN02O3bt+Hg4CB1GUSkh1JSUtCwYcPnPq/X4VhaWoq0tDSYm5tDJpNJXY7k8vLy4ODggJSUFFhYWEhdDukI/l1oEgQB9+/fh729PWrVev6VRb3+WF2rVq0XJv+rysLCgv8IqAz+XTyhUCj+8RhOyBARiWA4EhGJYDjWIMbGxliyZAmMjY2lLoV0CP8uXo5eT8gQEVUVjhyJiEQwHImIRDAciYhEMByJiEQwHGuIkJAQODs7w8TEBD4+Pjh9+rTUJZHETp06hX79+sHe3h4ymQw//vij1CXpFYZjDbBr1y7MmDEDH3zwAWJjY9GxY0f07t0bycnJUpdGEnrw4AG8vLywceNGqUvRS1zKUwP4+fmhdevW2LRpk7rN1dUVQUFBWL58uYSVka6QyWTYt28fgoKCpC5Fb3DkqOeKi4sRExODgIAAjfaAgABERERIVBWR/mM46rl79+5BpVLB1tZWo93W1hbp6ekSVUWk/xiONcSzW7YJgsBt3IgqgOGo56ytrWFgYFBmlJiRkVFmNElE5cdw1HNyuRw+Pj44fPiwRvvhw4fRrl07iaoi0n96vdktPTJr1iwMHz4cvr6+8Pf3x5dffonk5GRMmjRJ6tJIQvn5+bhx44b68a1btxAXF4d69erB0dFRwsr0A5fy1BAhISFYtWoVlEol3N3dERwcjE6dOkldFknoxIkT6Nq1a5n2kSNHIjQ0tPoL0jMMRyIiEbzmSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UiSatSoEdatW6d+LNV2/v/5z3/QqlWr5z5/4sQJyGQy5OTklLvPLl26YMaMGRWqKzQ0FHXr1q1QH/RyGI6kU5RKJXr37l2uY/8p0IgqghtPUIUVFxdDLpdXSl92dnaV0g9RRXHkSBq6dOmCKVOmYMqUKahbty6srKywcOFCPP0V/EaNGuHjjz/GqFGjoFAoMH78eABAREQEOnXqBFNTUzg4OGDatGl48OCB+ryMjAz069cPpqamcHZ2xs6dO8v8/mc/Vt++fRvvvPMO6tWrhzp16sDX1xfR0dEIDQ3Fhx9+iPPnz0Mmk0Emk6k3U8jNzcWECRNgY2MDCwsLdOvWDefPn9f4PStWrICtrS3Mzc0xduxYFBYWavU+ZWZmYsiQIWjYsCFq164NDw8PfPvtt2WOe/jw4Qvfy+LiYsybNw8NGjRAnTp14OfnhxMnTmhVC1UNhiOVsWPHDhgaGiI6Ohrr169HcHAwtmzZonHM6tWr4e7ujpiYGCxatAgXL15EYGAg3nzzTVy4cAG7du1CeHg4pkyZoj5n1KhRSExMxLFjx/D9998jJCQEGRkZz60jPz8fnTt3RlpaGvbv34/z589j3rx5KC0txeDBgzF79my4ublBqVRCqVRi8ODBEAQBffv2RXp6Og4ePIiYmBi0bt0a3bt3R1ZWFgBg9+7dWLJkCZYtW4azZ8+ifv36CAkJ0eo9KiwshI+PDw4cOIBLly5hwoQJGD58OKKjo7V6L0ePHo0zZ87gu+++w4ULFzBo0CD06tUL169f16oeqgIC0VM6d+4suLq6CqWlpeq2+fPnC66ururHTk5OQlBQkMZ5w4cPFyZMmKDRdvr0aaFWrVpCQUGBkJCQIAAQoqKi1M/Hx8cLAITg4GB1GwBh3759giAIwubNmwVzc3MhMzNTtNYlS5YIXl5eGm1Hjx4VLCwshMLCQo32Jk2aCJs3bxYEQRD8/f2FSZMmaTzv5+dXpq+nHT9+XAAgZGdnP/eYPn36CLNnz1Y//qf38saNG4JMJhNSU1M1+unevbuwYMECQRAEYfv27YJCoXju76Sqw2uOVEbbtm017j/j7++PtWvXQqVSwcDAAADg6+urcU5MTAxu3Lih8VFZEASUlpbi1q1buHbtGgwNDTXOa9GixQtnYuPi4uDt7Y169eqVu/aYmBjk5+fDyspKo72goAB//vknACA+Pr7MRsD+/v44fvx4uX+PSqXCihUrsGvXLqSmpqKoqAhFRUWoU6eOxnEvei/PnTsHQRDQvHlzjXOKiorK1E/Vj+FIL+XZECgtLcXEiRMxbdq0Msc6OjoiISEBQNkbgb2Iqamp1nWVlpaifv36otftKnNJzNq1axEcHIx169bBw8MDderUwYwZM1BcXKxVrQYGBoiJiVH/R+cxMzOzSquVXg7DkcqIiooq87hZs2Zl/gE/rXXr1rh8+TKaNm0q+ryrqysePnyIs2fPok2bNgCAhISEF64b9PT0xJYtW5CVlSU6epTL5VCpVGXqSE9Ph6GhIRo1avTcWqKiojBixAiN16iN06dPY8CAARg2bBiAR0F3/fp1uLq6ahz3ovfS29sbKpUKGRkZ6Nixo1a/n6oeJ2SojJSUFMyaNQsJCQn49ttvsWHDBkyfPv2F58yfPx+RkZGYPHky4uLicP36dezfvx9Tp04FALi4uKBXr14YP348oqOjERMTg3Hjxr1wdDhkyBDY2dkhKCgIZ86cwc2bN7F3715ERkYCeDRr/vi+KPfu3UNRURF69OgBf39/BAUF4dChQ0hMTERERAQWLlyIs2fPAgCmT5+Obdu2Ydu2bbh27RqWLFmCy5cva/UeNW3aFIcPH0ZERATi4+MxceJE0fuEv+i9bN68OYYOHYoRI0bghx9+wK1bt/DHH39g5cqVOHjwoFb1UBWQ+qIn6ZbOnTsL7733njBp0iTBwsJCsLS0FN5//32NSQUnJyeNSZTHfv/9d6Fnz56CmZmZUKdOHcHT01NYtmyZ+nmlUin07dtXMDY2FhwdHYWwsLAyfeGpCRlBEITExERh4MCBgoWFhVC7dm3B19dXiI6OFgRBEAoLC4WBAwcKdevWFQAI27dvFwRBEPLy8oSpU6cK9vb2gpGRkeDg4CAMHTpUSE5OVve7bNkywdraWjAzMxNGjhwpzJs3T6sJmczMTGHAgAGCmZmZYGNjIyxcuFAYMWKEMGDAAK3ey+LiYmHx4sVCo0aNBCMjI8HOzk544403hAsXLgiCwAkZKfEeMqShS5cuaNWqlcZX+oheRfxYTUQkguFIRCSCH6uJiERw5EhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQk4v8B7YgKY252X9IAAAAASUVORK5CYII=",
1348
+ "text/plain": [
1349
+ "<Figure size 350x350 with 1 Axes>"
1350
+ ]
1351
+ },
1352
+ "metadata": {},
1353
+ "output_type": "display_data"
1354
+ }
1355
+ ],
1356
+ "source": [
1357
+ "evaluation_score_output, evaluation_counts_output = evaluate_models(input_model)\n",
1358
+ "\n",
1359
+ "# check if the model has already been evaluated and if not, append the results to the dataframe\n",
1360
+ "\n",
1361
+ "evaluation_score_df = pd.concat([evaluation_score_output, evaluation_score_df], ignore_index=True) \n",
1362
+ "display(pd.DataFrame(evaluation_score_output))\n",
1363
+ "\n",
1364
+ "evaluation_count_df = pd.concat([evaluation_counts_output, evaluation_count_df], ignore_index=True) \n",
1365
+ "display(pd.DataFrame(evaluation_counts_output))\n",
1366
+ "\n",
1367
+ "from mlxtend.plotting import plot_confusion_matrix\n",
1368
+ "\n",
1369
+ "# select the model index and filter the row from evaluation_count_df dataframe\n",
1370
+ "model_index = 0\n",
1371
+ "\n",
1372
+ "selected_model = evaluation_count_df[evaluation_count_df.index == model_index]\n",
1373
+ "\n",
1374
+ "# create a np.array with selected_model values\n",
1375
+ "\n",
1376
+ "\n",
1377
+ "conf_matrix = np.array([[selected_model['True Negatives'].values[0], selected_model['False Positives'].values[0]],\n",
1378
+ " [selected_model['False Negatives'].values[0], selected_model['True Positives'].values[0]]])\n",
1379
+ "\n",
1380
+ "#change the size of the graph\n",
1381
+ "\n",
1382
+ "plt.rcParams['figure.figsize'] = [3.5, 3.5]\n",
1383
+ "\n",
1384
+ "fig, ax = plot_confusion_matrix(\n",
1385
+ " conf_mat=conf_matrix,\n",
1386
+ " show_absolute=True,\n",
1387
+ " show_normed=True\n",
1388
+ ")"
1389
+ ]
1390
+ },
1391
+ {
1392
+ "attachments": {},
1393
+ "cell_type": "markdown",
1394
+ "metadata": {},
1395
+ "source": [
1396
+ "#### **Plot Evaluation**"
1397
+ ]
1398
+ }
1399
+ ],
1400
+ "metadata": {
1401
+ "kernelspec": {
1402
+ "display_name": "Python 3 (ipykernel)",
1403
+ "language": "python",
1404
+ "name": "python3"
1405
+ },
1406
+ "language_info": {
1407
+ "codemirror_mode": {
1408
+ "name": "ipython",
1409
+ "version": 3
1410
+ },
1411
+ "file_extension": ".py",
1412
+ "mimetype": "text/x-python",
1413
+ "name": "python",
1414
+ "nbconvert_exporter": "python",
1415
+ "pygments_lexer": "ipython3",
1416
+ "version": "3.9.16"
1417
+ }
1418
+ },
1419
+ "nbformat": 4,
1420
+ "nbformat_minor": 2
1421
+ }
secom_data.csv ADDED
The diff for this file is too large to render. See raw diff
 
secom_labels.csv ADDED
@@ -0,0 +1,1567 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ -1 "19/07/2008 11:55:00"
2
+ -1 "19/07/2008 12:32:00"
3
+ 1 "19/07/2008 13:17:00"
4
+ -1 "19/07/2008 14:43:00"
5
+ -1 "19/07/2008 15:22:00"
6
+ -1 "19/07/2008 17:53:00"
7
+ -1 "19/07/2008 19:44:00"
8
+ -1 "19/07/2008 19:45:00"
9
+ -1 "19/07/2008 20:24:00"
10
+ -1 "19/07/2008 21:35:00"
11
+ 1 "19/07/2008 21:57:00"
12
+ 1 "19/07/2008 22:52:00"
13
+ -1 "20/07/2008 03:35:00"
14
+ -1 "21/07/2008 08:21:00"
15
+ 1 "21/07/2008 11:53:00"
16
+ -1 "22/07/2008 00:03:00"
17
+ -1 "22/07/2008 02:59:00"
18
+ -1 "22/07/2008 08:41:00"
19
+ -1 "22/07/2008 11:47:00"
20
+ -1 "22/07/2008 14:00:00"
21
+ -1 "22/07/2008 15:30:00"
22
+ -1 "23/07/2008 05:15:00"
23
+ -1 "23/07/2008 19:22:00"
24
+ 1 "25/07/2008 15:23:00"
25
+ -1 "27/07/2008 04:18:00"
26
+ -1 "27/07/2008 09:37:00"
27
+ -1 "27/07/2008 11:10:00"
28
+ -1 "27/07/2008 15:46:00"
29
+ -1 "27/07/2008 16:06:00"
30
+ -1 "27/07/2008 16:49:00"
31
+ -1 "27/07/2008 20:24:00"
32
+ -1 "27/07/2008 22:28:00"
33
+ -1 "27/07/2008 22:28:00"
34
+ -1 "27/07/2008 23:14:00"
35
+ -1 "28/07/2008 03:31:00"
36
+ -1 "28/07/2008 03:48:00"
37
+ -1 "28/07/2008 04:37:00"
38
+ -1 "28/07/2008 05:36:00"
39
+ 1 "28/07/2008 06:45:00"
40
+ -1 "28/07/2008 08:36:00"
41
+ 1 "28/07/2008 15:11:00"
42
+ -1 "28/07/2008 23:57:00"
43
+ -1 "29/07/2008 04:08:00"
44
+ -1 "29/07/2008 05:16:00"
45
+ -1 "29/07/2008 06:19:00"
46
+ 1 "29/07/2008 08:23:00"
47
+ -1 "29/07/2008 11:47:00"
48
+ -1 "29/07/2008 15:41:00"
49
+ 1 "29/07/2008 15:49:00"
50
+ 1 "29/07/2008 17:05:00"
51
+ 1 "29/07/2008 18:08:00"
52
+ -1 "29/07/2008 21:07:00"
53
+ -1 "29/07/2008 23:14:00"
54
+ -1 "29/07/2008 23:19:00"
55
+ -1 "30/07/2008 06:30:00"
56
+ -1 "30/07/2008 07:08:00"
57
+ -1 "30/07/2008 12:02:00"
58
+ 1 "30/07/2008 12:29:00"
59
+ 1 "30/07/2008 21:16:00"
60
+ -1 "31/07/2008 13:57:00"
61
+ -1 "31/07/2008 15:36:00"
62
+ -1 "31/07/2008 17:07:00"
63
+ 1 "31/07/2008 20:18:00"
64
+ -1 "01/08/2008 02:02:00"
65
+ 1 "01/08/2008 05:52:00"
66
+ -1 "01/08/2008 10:20:00"
67
+ -1 "01/08/2008 10:26:00"
68
+ -1 "01/08/2008 11:28:00"
69
+ -1 "01/08/2008 12:29:00"
70
+ -1 "01/08/2008 14:07:00"
71
+ -1 "01/08/2008 15:10:00"
72
+ -1 "02/08/2008 03:39:00"
73
+ -1 "03/08/2008 13:09:00"
74
+ -1 "03/08/2008 14:06:00"
75
+ -1 "03/08/2008 14:25:00"
76
+ -1 "03/08/2008 15:03:00"
77
+ -1 "03/08/2008 15:27:00"
78
+ -1 "03/08/2008 16:00:00"
79
+ -1 "03/08/2008 17:00:00"
80
+ -1 "03/08/2008 17:58:00"
81
+ -1 "03/08/2008 20:23:00"
82
+ -1 "03/08/2008 22:52:00"
83
+ 1 "04/08/2008 00:39:00"
84
+ -1 "04/08/2008 03:45:00"
85
+ -1 "04/08/2008 03:49:00"
86
+ -1 "04/08/2008 13:19:00"
87
+ -1 "04/08/2008 14:04:00"
88
+ -1 "04/08/2008 14:31:00"
89
+ -1 "04/08/2008 15:29:00"
90
+ -1 "04/08/2008 16:15:00"
91
+ -1 "04/08/2008 16:31:00"
92
+ -1 "04/08/2008 17:11:00"
93
+ -1 "04/08/2008 17:46:00"
94
+ -1 "04/08/2008 18:24:00"
95
+ -1 "04/08/2008 19:58:00"
96
+ -1 "04/08/2008 20:32:00"
97
+ 1 "04/08/2008 20:58:00"
98
+ -1 "04/08/2008 21:43:00"
99
+ -1 "04/08/2008 22:51:00"
100
+ -1 "04/08/2008 23:33:00"
101
+ -1 "05/08/2008 00:04:00"
102
+ -1 "05/08/2008 01:12:00"
103
+ -1 "05/08/2008 02:15:00"
104
+ -1 "05/08/2008 02:36:00"
105
+ -1 "05/08/2008 02:45:00"
106
+ -1 "05/08/2008 03:17:00"
107
+ -1 "05/08/2008 03:36:00"
108
+ -1 "05/08/2008 03:54:00"
109
+ -1 "05/08/2008 04:32:00"
110
+ -1 "05/08/2008 04:35:00"
111
+ -1 "05/08/2008 05:11:00"
112
+ -1 "05/08/2008 06:10:00"
113
+ -1 "05/08/2008 06:11:00"
114
+ -1 "05/08/2008 06:21:00"
115
+ -1 "05/08/2008 07:12:00"
116
+ 1 "05/08/2008 07:12:00"
117
+ -1 "05/08/2008 07:48:00"
118
+ -1 "05/08/2008 08:50:00"
119
+ -1 "05/08/2008 09:48:00"
120
+ -1 "05/08/2008 14:17:00"
121
+ -1 "05/08/2008 14:45:00"
122
+ -1 "05/08/2008 15:45:00"
123
+ -1 "05/08/2008 20:04:00"
124
+ -1 "05/08/2008 21:07:00"
125
+ -1 "05/08/2008 21:22:00"
126
+ -1 "05/08/2008 23:02:00"
127
+ -1 "05/08/2008 23:06:00"
128
+ -1 "05/08/2008 23:38:00"
129
+ -1 "06/08/2008 00:04:00"
130
+ -1 "06/08/2008 02:20:00"
131
+ -1 "06/08/2008 03:22:00"
132
+ 1 "06/08/2008 05:40:00"
133
+ -1 "06/08/2008 09:56:00"
134
+ -1 "06/08/2008 09:57:00"
135
+ -1 "06/08/2008 12:33:00"
136
+ -1 "06/08/2008 13:35:00"
137
+ -1 "06/08/2008 17:35:00"
138
+ -1 "06/08/2008 18:00:00"
139
+ -1 "06/08/2008 18:34:00"
140
+ -1 "06/08/2008 19:13:00"
141
+ -1 "06/08/2008 19:24:00"
142
+ -1 "06/08/2008 20:00:00"
143
+ -1 "06/08/2008 20:17:00"
144
+ -1 "06/08/2008 21:15:00"
145
+ -1 "06/08/2008 22:27:00"
146
+ -1 "06/08/2008 23:40:00"
147
+ -1 "06/08/2008 23:45:00"
148
+ -1 "07/08/2008 00:51:00"
149
+ -1 "07/08/2008 07:30:00"
150
+ -1 "07/08/2008 08:21:00"
151
+ -1 "07/08/2008 08:45:00"
152
+ -1 "07/08/2008 08:55:00"
153
+ -1 "07/08/2008 10:12:00"
154
+ -1 "07/08/2008 11:10:00"
155
+ 1 "07/08/2008 11:40:00"
156
+ -1 "08/08/2008 04:55:00"
157
+ -1 "08/08/2008 07:26:00"
158
+ 1 "08/08/2008 08:44:00"
159
+ 1 "08/08/2008 12:37:00"
160
+ -1 "08/08/2008 20:21:00"
161
+ -1 "08/08/2008 21:22:00"
162
+ -1 "08/08/2008 21:53:00"
163
+ -1 "08/08/2008 22:06:00"
164
+ -1 "08/08/2008 22:25:00"
165
+ -1 "09/08/2008 02:15:00"
166
+ -1 "09/08/2008 02:37:00"
167
+ -1 "09/08/2008 06:05:00"
168
+ 1 "09/08/2008 09:16:00"
169
+ -1 "09/08/2008 09:22:00"
170
+ 1 "09/08/2008 11:42:00"
171
+ -1 "09/08/2008 17:34:00"
172
+ -1 "09/08/2008 19:03:00"
173
+ -1 "09/08/2008 20:04:00"
174
+ -1 "09/08/2008 21:07:00"
175
+ -1 "09/08/2008 22:15:00"
176
+ -1 "09/08/2008 22:37:00"
177
+ -1 "09/08/2008 23:17:00"
178
+ -1 "09/08/2008 23:34:00"
179
+ -1 "10/08/2008 00:09:00"
180
+ -1 "10/08/2008 00:46:00"
181
+ 1 "10/08/2008 06:00:00"
182
+ -1 "10/08/2008 06:41:00"
183
+ 1 "10/08/2008 07:01:00"
184
+ -1 "10/08/2008 11:16:00"
185
+ -1 "10/08/2008 11:49:00"
186
+ -1 "10/08/2008 12:22:00"
187
+ 1 "10/08/2008 15:59:00"
188
+ -1 "10/08/2008 19:07:00"
189
+ 1 "10/08/2008 20:07:00"
190
+ 1 "10/08/2008 22:26:00"
191
+ -1 "11/08/2008 03:06:00"
192
+ -1 "11/08/2008 04:09:00"
193
+ -1 "11/08/2008 05:15:00"
194
+ -1 "11/08/2008 11:35:00"
195
+ -1 "11/08/2008 12:38:00"
196
+ -1 "12/08/2008 04:23:00"
197
+ -1 "12/08/2008 06:16:00"
198
+ -1 "12/08/2008 10:54:00"
199
+ -1 "12/08/2008 11:29:00"
200
+ -1 "12/08/2008 12:04:00"
201
+ -1 "13/08/2008 02:48:00"
202
+ -1 "15/08/2008 03:26:00"
203
+ -1 "15/08/2008 04:14:00"
204
+ -1 "15/08/2008 05:13:00"
205
+ -1 "15/08/2008 09:38:00"
206
+ -1 "15/08/2008 10:14:00"
207
+ -1 "15/08/2008 11:42:00"
208
+ -1 "15/08/2008 18:19:00"
209
+ -1 "15/08/2008 19:19:00"
210
+ -1 "15/08/2008 20:00:00"
211
+ -1 "15/08/2008 20:03:00"
212
+ -1 "15/08/2008 23:31:00"
213
+ -1 "16/08/2008 02:21:00"
214
+ -1 "16/08/2008 05:47:00"
215
+ -1 "16/08/2008 06:52:00"
216
+ -1 "16/08/2008 07:33:00"
217
+ -1 "16/08/2008 08:39:00"
218
+ -1 "16/08/2008 08:41:00"
219
+ 1 "16/08/2008 09:44:00"
220
+ -1 "16/08/2008 13:51:00"
221
+ -1 "16/08/2008 14:30:00"
222
+ -1 "16/08/2008 15:16:00"
223
+ 1 "16/08/2008 15:19:00"
224
+ -1 "16/08/2008 23:48:00"
225
+ -1 "17/08/2008 00:52:00"
226
+ -1 "17/08/2008 01:53:00"
227
+ -1 "17/08/2008 03:17:00"
228
+ -1 "17/08/2008 03:18:00"
229
+ -1 "17/08/2008 03:46:00"
230
+ -1 "17/08/2008 04:19:00"
231
+ -1 "17/08/2008 05:21:00"
232
+ 1 "17/08/2008 12:16:00"
233
+ -1 "17/08/2008 13:34:00"
234
+ -1 "17/08/2008 14:21:00"
235
+ -1 "17/08/2008 15:25:00"
236
+ 1 "17/08/2008 21:26:00"
237
+ 1 "17/08/2008 22:03:00"
238
+ -1 "17/08/2008 22:21:00"
239
+ 1 "17/08/2008 23:04:00"
240
+ -1 "17/08/2008 23:20:00"
241
+ 1 "17/08/2008 23:55:00"
242
+ 1 "18/08/2008 00:02:00"
243
+ -1 "18/08/2008 00:20:00"
244
+ 1 "18/08/2008 01:23:00"
245
+ 1 "18/08/2008 04:01:00"
246
+ -1 "18/08/2008 04:12:00"
247
+ -1 "18/08/2008 04:35:00"
248
+ -1 "18/08/2008 05:03:00"
249
+ -1 "18/08/2008 05:25:00"
250
+ -1 "18/08/2008 06:07:00"
251
+ -1 "18/08/2008 06:11:00"
252
+ -1 "18/08/2008 06:26:00"
253
+ -1 "18/08/2008 07:11:00"
254
+ -1 "18/08/2008 07:23:00"
255
+ -1 "18/08/2008 07:29:00"
256
+ -1 "18/08/2008 08:18:00"
257
+ -1 "18/08/2008 08:31:00"
258
+ -1 "18/08/2008 10:13:00"
259
+ -1 "18/08/2008 11:04:00"
260
+ -1 "18/08/2008 12:00:00"
261
+ -1 "18/08/2008 12:06:00"
262
+ -1 "18/08/2008 12:22:00"
263
+ -1 "18/08/2008 12:49:00"
264
+ -1 "18/08/2008 13:07:00"
265
+ -1 "18/08/2008 14:01:00"
266
+ -1 "18/08/2008 14:04:00"
267
+ -1 "18/08/2008 14:45:00"
268
+ -1 "18/08/2008 15:00:00"
269
+ -1 "18/08/2008 15:26:00"
270
+ -1 "18/08/2008 15:30:00"
271
+ -1 "18/08/2008 15:33:00"
272
+ -1 "18/08/2008 15:41:00"
273
+ -1 "18/08/2008 16:19:00"
274
+ 1 "18/08/2008 17:13:00"
275
+ -1 "18/08/2008 17:16:00"
276
+ -1 "18/08/2008 17:37:00"
277
+ -1 "18/08/2008 19:24:00"
278
+ 1 "18/08/2008 19:54:00"
279
+ -1 "18/08/2008 23:00:00"
280
+ -1 "18/08/2008 23:03:00"
281
+ -1 "18/08/2008 23:47:00"
282
+ -1 "19/08/2008 01:10:00"
283
+ 1 "19/08/2008 03:59:00"
284
+ -1 "19/08/2008 04:58:00"
285
+ -1 "19/08/2008 05:09:00"
286
+ -1 "19/08/2008 05:11:00"
287
+ -1 "19/08/2008 05:11:00"
288
+ -1 "19/08/2008 05:40:00"
289
+ -1 "19/08/2008 05:41:00"
290
+ -1 "19/08/2008 05:53:00"
291
+ -1 "19/08/2008 05:54:00"
292
+ 1 "19/08/2008 05:56:00"
293
+ -1 "19/08/2008 06:24:00"
294
+ -1 "19/08/2008 07:43:00"
295
+ 1 "19/08/2008 07:58:00"
296
+ -1 "19/08/2008 08:01:00"
297
+ -1 "19/08/2008 08:07:00"
298
+ -1 "19/08/2008 08:33:00"
299
+ -1 "19/08/2008 09:04:00"
300
+ -1 "19/08/2008 09:05:00"
301
+ -1 "19/08/2008 10:46:00"
302
+ -1 "19/08/2008 11:11:00"
303
+ -1 "19/08/2008 11:13:00"
304
+ -1 "19/08/2008 11:13:00"
305
+ -1 "19/08/2008 11:28:00"
306
+ -1 "19/08/2008 11:44:00"
307
+ -1 "19/08/2008 11:46:00"
308
+ -1 "19/08/2008 11:57:00"
309
+ -1 "19/08/2008 11:58:00"
310
+ -1 "19/08/2008 12:30:00"
311
+ -1 "19/08/2008 15:33:00"
312
+ -1 "19/08/2008 18:12:00"
313
+ -1 "19/08/2008 18:12:00"
314
+ -1 "19/08/2008 18:30:00"
315
+ -1 "19/08/2008 18:30:00"
316
+ -1 "19/08/2008 19:38:00"
317
+ -1 "19/08/2008 20:53:00"
318
+ -1 "20/08/2008 00:05:00"
319
+ -1 "20/08/2008 01:33:00"
320
+ -1 "20/08/2008 01:42:00"
321
+ -1 "20/08/2008 02:13:00"
322
+ 1 "20/08/2008 02:27:00"
323
+ -1 "20/08/2008 03:00:00"
324
+ 1 "20/08/2008 03:12:00"
325
+ -1 "20/08/2008 06:36:00"
326
+ -1 "20/08/2008 07:12:00"
327
+ 1 "20/08/2008 08:40:00"
328
+ 1 "20/08/2008 09:17:00"
329
+ -1 "20/08/2008 10:26:00"
330
+ -1 "20/08/2008 16:08:00"
331
+ -1 "20/08/2008 16:16:00"
332
+ -1 "20/08/2008 17:09:00"
333
+ -1 "20/08/2008 17:35:00"
334
+ -1 "20/08/2008 17:36:00"
335
+ -1 "20/08/2008 18:29:00"
336
+ -1 "20/08/2008 18:35:00"
337
+ 1 "20/08/2008 19:20:00"
338
+ -1 "20/08/2008 20:19:00"
339
+ -1 "20/08/2008 21:33:00"
340
+ -1 "20/08/2008 21:41:00"
341
+ -1 "20/08/2008 21:58:00"
342
+ -1 "20/08/2008 22:13:00"
343
+ -1 "20/08/2008 22:45:00"
344
+ -1 "20/08/2008 23:18:00"
345
+ 1 "20/08/2008 23:43:00"
346
+ -1 "21/08/2008 02:11:00"
347
+ -1 "21/08/2008 02:46:00"
348
+ -1 "21/08/2008 04:22:00"
349
+ -1 "21/08/2008 04:29:00"
350
+ -1 "21/08/2008 05:06:00"
351
+ -1 "21/08/2008 05:15:00"
352
+ 1 "21/08/2008 06:10:00"
353
+ -1 "21/08/2008 11:22:00"
354
+ -1 "21/08/2008 12:00:00"
355
+ -1 "21/08/2008 12:31:00"
356
+ -1 "21/08/2008 12:33:00"
357
+ -1 "21/08/2008 12:43:00"
358
+ -1 "21/08/2008 12:52:00"
359
+ -1 "21/08/2008 13:11:00"
360
+ -1 "21/08/2008 13:19:00"
361
+ -1 "21/08/2008 13:29:00"
362
+ -1 "21/08/2008 13:45:00"
363
+ -1 "21/08/2008 14:47:00"
364
+ -1 "21/08/2008 15:05:00"
365
+ -1 "21/08/2008 15:06:00"
366
+ -1 "21/08/2008 15:32:00"
367
+ -1 "21/08/2008 15:48:00"
368
+ -1 "21/08/2008 15:50:00"
369
+ 1 "21/08/2008 16:19:00"
370
+ -1 "21/08/2008 16:36:00"
371
+ -1 "21/08/2008 17:25:00"
372
+ -1 "21/08/2008 17:44:00"
373
+ -1 "21/08/2008 18:04:00"
374
+ 1 "21/08/2008 18:05:00"
375
+ -1 "21/08/2008 18:39:00"
376
+ -1 "21/08/2008 18:53:00"
377
+ -1 "21/08/2008 19:12:00"
378
+ -1 "21/08/2008 19:12:00"
379
+ -1 "21/08/2008 19:46:00"
380
+ -1 "21/08/2008 20:19:00"
381
+ -1 "21/08/2008 20:21:00"
382
+ -1 "21/08/2008 20:37:00"
383
+ -1 "21/08/2008 21:32:00"
384
+ -1 "21/08/2008 22:25:00"
385
+ -1 "21/08/2008 22:41:00"
386
+ -1 "21/08/2008 23:08:00"
387
+ -1 "21/08/2008 23:27:00"
388
+ -1 "21/08/2008 23:53:00"
389
+ -1 "21/08/2008 23:57:00"
390
+ -1 "22/08/2008 00:43:00"
391
+ -1 "22/08/2008 00:44:00"
392
+ -1 "22/08/2008 00:47:00"
393
+ 1 "22/08/2008 01:04:00"
394
+ -1 "22/08/2008 01:26:00"
395
+ -1 "22/08/2008 01:27:00"
396
+ -1 "22/08/2008 01:54:00"
397
+ -1 "22/08/2008 02:01:00"
398
+ -1 "22/08/2008 02:25:00"
399
+ -1 "22/08/2008 02:52:00"
400
+ -1 "22/08/2008 03:18:00"
401
+ -1 "22/08/2008 03:58:00"
402
+ -1 "22/08/2008 04:40:00"
403
+ -1 "22/08/2008 04:57:00"
404
+ -1 "22/08/2008 05:21:00"
405
+ -1 "22/08/2008 05:31:00"
406
+ -1 "22/08/2008 05:32:00"
407
+ 1 "22/08/2008 06:00:00"
408
+ -1 "22/08/2008 07:04:00"
409
+ -1 "22/08/2008 07:17:00"
410
+ -1 "22/08/2008 07:27:00"
411
+ -1 "22/08/2008 09:29:00"
412
+ -1 "22/08/2008 09:29:00"
413
+ -1 "22/08/2008 10:01:00"
414
+ -1 "22/08/2008 10:18:00"
415
+ -1 "22/08/2008 10:47:00"
416
+ -1 "22/08/2008 11:32:00"
417
+ -1 "22/08/2008 12:13:00"
418
+ -1 "22/08/2008 12:37:00"
419
+ -1 "22/08/2008 12:42:00"
420
+ -1 "22/08/2008 13:22:00"
421
+ -1 "22/08/2008 14:45:00"
422
+ -1 "22/08/2008 15:25:00"
423
+ -1 "22/08/2008 15:39:00"
424
+ -1 "22/08/2008 15:54:00"
425
+ 1 "22/08/2008 19:14:00"
426
+ -1 "22/08/2008 23:46:00"
427
+ -1 "22/08/2008 23:47:00"
428
+ -1 "22/08/2008 23:49:00"
429
+ -1 "22/08/2008 23:56:00"
430
+ -1 "23/08/2008 02:04:00"
431
+ -1 "23/08/2008 03:26:00"
432
+ -1 "23/08/2008 04:50:00"
433
+ -1 "23/08/2008 04:52:00"
434
+ -1 "23/08/2008 05:57:00"
435
+ -1 "23/08/2008 05:57:00"
436
+ -1 "23/08/2008 05:58:00"
437
+ -1 "23/08/2008 05:58:00"
438
+ -1 "23/08/2008 09:24:00"
439
+ -1 "23/08/2008 12:58:00"
440
+ -1 "23/08/2008 13:02:00"
441
+ -1 "23/08/2008 15:10:00"
442
+ 1 "23/08/2008 15:29:00"
443
+ -1 "24/08/2008 02:32:00"
444
+ -1 "24/08/2008 04:00:00"
445
+ -1 "24/08/2008 07:12:00"
446
+ -1 "24/08/2008 07:14:00"
447
+ -1 "24/08/2008 10:09:00"
448
+ -1 "24/08/2008 10:14:00"
449
+ 1 "24/08/2008 13:03:00"
450
+ -1 "25/08/2008 09:29:00"
451
+ -1 "27/08/2008 00:46:00"
452
+ -1 "27/08/2008 11:38:00"
453
+ -1 "27/08/2008 12:22:00"
454
+ -1 "27/08/2008 13:35:00"
455
+ -1 "27/08/2008 14:18:00"
456
+ -1 "27/08/2008 17:14:00"
457
+ -1 "27/08/2008 22:48:00"
458
+ -1 "27/08/2008 22:58:00"
459
+ -1 "28/08/2008 03:03:00"
460
+ -1 "28/08/2008 03:04:00"
461
+ -1 "28/08/2008 03:29:00"
462
+ -1 "28/08/2008 03:38:00"
463
+ -1 "28/08/2008 03:45:00"
464
+ -1 "28/08/2008 04:10:00"
465
+ -1 "28/08/2008 04:20:00"
466
+ -1 "28/08/2008 04:54:00"
467
+ -1 "28/08/2008 05:00:00"
468
+ -1 "28/08/2008 06:15:00"
469
+ -1 "28/08/2008 06:39:00"
470
+ -1 "28/08/2008 06:56:00"
471
+ -1 "28/08/2008 07:40:00"
472
+ -1 "28/08/2008 07:51:00"
473
+ -1 "28/08/2008 08:41:00"
474
+ -1 "28/08/2008 09:46:00"
475
+ -1 "28/08/2008 09:49:00"
476
+ -1 "28/08/2008 10:15:00"
477
+ -1 "28/08/2008 10:28:00"
478
+ -1 "28/08/2008 10:32:00"
479
+ -1 "28/08/2008 11:19:00"
480
+ -1 "28/08/2008 12:44:00"
481
+ -1 "28/08/2008 14:48:00"
482
+ -1 "28/08/2008 15:19:00"
483
+ -1 "28/08/2008 16:01:00"
484
+ -1 "28/08/2008 16:43:00"
485
+ -1 "28/08/2008 16:52:00"
486
+ -1 "28/08/2008 17:21:00"
487
+ -1 "28/08/2008 17:27:00"
488
+ -1 "28/08/2008 17:32:00"
489
+ -1 "28/08/2008 18:05:00"
490
+ -1 "28/08/2008 18:10:00"
491
+ -1 "28/08/2008 18:15:00"
492
+ -1 "28/08/2008 18:25:00"
493
+ -1 "28/08/2008 18:47:00"
494
+ -1 "28/08/2008 18:57:00"
495
+ -1 "28/08/2008 20:20:00"
496
+ 1 "28/08/2008 20:39:00"
497
+ -1 "28/08/2008 21:03:00"
498
+ -1 "28/08/2008 21:52:00"
499
+ -1 "28/08/2008 22:57:00"
500
+ -1 "28/08/2008 23:40:00"
501
+ -1 "28/08/2008 23:42:00"
502
+ -1 "29/08/2008 00:49:00"
503
+ -1 "29/08/2008 01:06:00"
504
+ -1 "29/08/2008 02:38:00"
505
+ -1 "29/08/2008 02:39:00"
506
+ -1 "29/08/2008 03:27:00"
507
+ -1 "29/08/2008 03:33:00"
508
+ -1 "29/08/2008 03:46:00"
509
+ 1 "29/08/2008 04:55:00"
510
+ -1 "29/08/2008 04:56:00"
511
+ -1 "29/08/2008 05:16:00"
512
+ -1 "29/08/2008 05:54:00"
513
+ -1 "29/08/2008 05:54:00"
514
+ -1 "29/08/2008 05:57:00"
515
+ -1 "29/08/2008 05:57:00"
516
+ -1 "29/08/2008 06:35:00"
517
+ -1 "29/08/2008 06:37:00"
518
+ -1 "29/08/2008 06:40:00"
519
+ 1 "29/08/2008 06:45:00"
520
+ -1 "29/08/2008 06:54:00"
521
+ -1 "29/08/2008 07:18:00"
522
+ -1 "29/08/2008 07:22:00"
523
+ -1 "29/08/2008 07:24:00"
524
+ -1 "29/08/2008 07:33:00"
525
+ -1 "29/08/2008 07:33:00"
526
+ -1 "29/08/2008 08:10:00"
527
+ -1 "29/08/2008 08:20:00"
528
+ -1 "29/08/2008 08:41:00"
529
+ -1 "29/08/2008 08:45:00"
530
+ -1 "29/08/2008 12:21:00"
531
+ -1 "29/08/2008 12:22:00"
532
+ -1 "29/08/2008 12:37:00"
533
+ -1 "29/08/2008 13:04:00"
534
+ -1 "29/08/2008 13:14:00"
535
+ -1 "29/08/2008 13:27:00"
536
+ -1 "29/08/2008 13:49:00"
537
+ -1 "29/08/2008 14:11:00"
538
+ -1 "29/08/2008 14:18:00"
539
+ -1 "29/08/2008 14:30:00"
540
+ -1 "29/08/2008 15:01:00"
541
+ -1 "29/08/2008 15:43:00"
542
+ -1 "29/08/2008 16:26:00"
543
+ -1 "29/08/2008 20:21:00"
544
+ -1 "29/08/2008 20:49:00"
545
+ -1 "29/08/2008 21:25:00"
546
+ -1 "29/08/2008 21:46:00"
547
+ -1 "29/08/2008 21:54:00"
548
+ -1 "29/08/2008 22:11:00"
549
+ -1 "29/08/2008 22:45:00"
550
+ -1 "29/08/2008 22:49:00"
551
+ -1 "29/08/2008 22:56:00"
552
+ -1 "30/08/2008 00:01:00"
553
+ -1 "30/08/2008 00:05:00"
554
+ -1 "30/08/2008 00:57:00"
555
+ -1 "30/08/2008 01:29:00"
556
+ -1 "30/08/2008 02:08:00"
557
+ -1 "30/08/2008 02:22:00"
558
+ -1 "30/08/2008 02:32:00"
559
+ -1 "30/08/2008 02:39:00"
560
+ -1 "30/08/2008 02:50:00"
561
+ -1 "30/08/2008 03:10:00"
562
+ -1 "30/08/2008 04:20:00"
563
+ -1 "30/08/2008 04:24:00"
564
+ -1 "30/08/2008 04:55:00"
565
+ -1 "30/08/2008 05:05:00"
566
+ -1 "30/08/2008 05:05:00"
567
+ -1 "30/08/2008 05:38:00"
568
+ -1 "30/08/2008 05:51:00"
569
+ -1 "30/08/2008 07:50:00"
570
+ -1 "30/08/2008 07:54:00"
571
+ -1 "30/08/2008 08:10:00"
572
+ -1 "30/08/2008 08:29:00"
573
+ -1 "30/08/2008 08:42:00"
574
+ -1 "30/08/2008 08:53:00"
575
+ -1 "30/08/2008 09:13:00"
576
+ -1 "30/08/2008 09:37:00"
577
+ 1 "30/08/2008 09:45:00"
578
+ -1 "30/08/2008 10:15:00"
579
+ -1 "30/08/2008 10:16:00"
580
+ -1 "30/08/2008 11:12:00"
581
+ -1 "30/08/2008 11:14:00"
582
+ -1 "30/08/2008 11:18:00"
583
+ -1 "30/08/2008 11:57:00"
584
+ 1 "30/08/2008 14:10:00"
585
+ -1 "30/08/2008 14:23:00"
586
+ -1 "30/08/2008 14:37:00"
587
+ -1 "30/08/2008 15:06:00"
588
+ -1 "30/08/2008 15:16:00"
589
+ -1 "30/08/2008 15:37:00"
590
+ -1 "30/08/2008 15:50:00"
591
+ -1 "30/08/2008 15:57:00"
592
+ -1 "30/08/2008 16:24:00"
593
+ -1 "30/08/2008 17:05:00"
594
+ -1 "30/08/2008 17:49:00"
595
+ -1 "30/08/2008 19:21:00"
596
+ -1 "30/08/2008 19:27:00"
597
+ -1 "30/08/2008 20:11:00"
598
+ -1 "30/08/2008 20:53:00"
599
+ -1 "30/08/2008 21:53:00"
600
+ -1 "30/08/2008 23:51:00"
601
+ -1 "31/08/2008 02:57:00"
602
+ 1 "31/08/2008 04:46:00"
603
+ -1 "31/08/2008 05:05:00"
604
+ -1 "31/08/2008 09:11:00"
605
+ -1 "31/08/2008 10:36:00"
606
+ 1 "31/08/2008 10:59:00"
607
+ -1 "31/08/2008 10:59:00"
608
+ -1 "31/08/2008 11:03:00"
609
+ -1 "31/08/2008 15:09:00"
610
+ -1 "31/08/2008 15:13:00"
611
+ -1 "31/08/2008 16:32:00"
612
+ -1 "31/08/2008 20:24:00"
613
+ -1 "31/08/2008 21:04:00"
614
+ -1 "31/08/2008 21:46:00"
615
+ -1 "31/08/2008 21:58:00"
616
+ -1 "31/08/2008 22:32:00"
617
+ -1 "31/08/2008 22:48:00"
618
+ -1 "31/08/2008 22:57:00"
619
+ -1 "01/09/2008 00:01:00"
620
+ -1 "01/09/2008 00:39:00"
621
+ -1 "01/09/2008 00:45:00"
622
+ -1 "01/09/2008 00:53:00"
623
+ -1 "01/09/2008 05:29:00"
624
+ -1 "01/09/2008 05:32:00"
625
+ -1 "01/09/2008 06:12:00"
626
+ -1 "01/09/2008 06:21:00"
627
+ -1 "01/09/2008 06:52:00"
628
+ -1 "01/09/2008 08:18:00"
629
+ -1 "01/09/2008 09:06:00"
630
+ -1 "01/09/2008 09:19:00"
631
+ -1 "01/09/2008 09:54:00"
632
+ -1 "01/09/2008 10:57:00"
633
+ -1 "01/09/2008 11:40:00"
634
+ -1 "01/09/2008 16:20:00"
635
+ 1 "01/09/2008 19:54:00"
636
+ -1 "01/09/2008 20:51:00"
637
+ -1 "01/09/2008 22:05:00"
638
+ -1 "01/09/2008 23:05:00"
639
+ -1 "01/09/2008 23:19:00"
640
+ -1 "01/09/2008 23:24:00"
641
+ -1 "01/09/2008 23:28:00"
642
+ -1 "01/09/2008 23:39:00"
643
+ -1 "01/09/2008 23:45:00"
644
+ -1 "01/09/2008 23:59:00"
645
+ -1 "02/09/2008 00:26:00"
646
+ -1 "02/09/2008 00:31:00"
647
+ -1 "02/09/2008 00:46:00"
648
+ -1 "02/09/2008 01:09:00"
649
+ -1 "02/09/2008 01:10:00"
650
+ -1 "02/09/2008 01:10:00"
651
+ -1 "02/09/2008 01:36:00"
652
+ -1 "02/09/2008 01:50:00"
653
+ -1 "02/09/2008 02:02:00"
654
+ -1 "02/09/2008 02:11:00"
655
+ -1 "02/09/2008 02:50:00"
656
+ -1 "02/09/2008 02:52:00"
657
+ -1 "02/09/2008 03:33:00"
658
+ -1 "02/09/2008 03:35:00"
659
+ -1 "02/09/2008 03:35:00"
660
+ -1 "02/09/2008 04:19:00"
661
+ -1 "02/09/2008 04:22:00"
662
+ -1 "02/09/2008 05:46:00"
663
+ -1 "02/09/2008 06:03:00"
664
+ -1 "02/09/2008 06:19:00"
665
+ -1 "02/09/2008 06:32:00"
666
+ -1 "02/09/2008 06:48:00"
667
+ -1 "02/09/2008 07:22:00"
668
+ -1 "02/09/2008 07:32:00"
669
+ -1 "02/09/2008 08:15:00"
670
+ -1 "02/09/2008 08:54:00"
671
+ -1 "02/09/2008 09:36:00"
672
+ -1 "02/09/2008 09:37:00"
673
+ -1 "02/09/2008 10:13:00"
674
+ -1 "02/09/2008 10:21:00"
675
+ -1 "02/09/2008 10:25:00"
676
+ -1 "02/09/2008 10:33:00"
677
+ -1 "02/09/2008 11:08:00"
678
+ -1 "02/09/2008 11:22:00"
679
+ -1 "02/09/2008 11:47:00"
680
+ -1 "02/09/2008 11:49:00"
681
+ -1 "02/09/2008 12:01:00"
682
+ -1 "02/09/2008 12:17:00"
683
+ -1 "02/09/2008 12:26:00"
684
+ -1 "02/09/2008 12:30:00"
685
+ -1 "02/09/2008 12:44:00"
686
+ -1 "02/09/2008 13:05:00"
687
+ -1 "02/09/2008 13:08:00"
688
+ -1 "02/09/2008 13:27:00"
689
+ -1 "02/09/2008 13:40:00"
690
+ -1 "02/09/2008 14:09:00"
691
+ -1 "02/09/2008 14:21:00"
692
+ -1 "02/09/2008 14:34:00"
693
+ -1 "02/09/2008 15:29:00"
694
+ -1 "02/09/2008 16:10:00"
695
+ -1 "02/09/2008 16:50:00"
696
+ -1 "02/09/2008 16:54:00"
697
+ -1 "02/09/2008 16:58:00"
698
+ -1 "02/09/2008 17:10:00"
699
+ -1 "02/09/2008 17:18:00"
700
+ -1 "02/09/2008 18:38:00"
701
+ -1 "02/09/2008 18:52:00"
702
+ -1 "02/09/2008 19:18:00"
703
+ -1 "02/09/2008 20:18:00"
704
+ -1 "02/09/2008 20:52:00"
705
+ -1 "02/09/2008 20:58:00"
706
+ -1 "02/09/2008 20:59:00"
707
+ -1 "03/09/2008 00:18:00"
708
+ -1 "03/09/2008 00:45:00"
709
+ -1 "03/09/2008 00:58:00"
710
+ 1 "03/09/2008 01:15:00"
711
+ -1 "03/09/2008 01:32:00"
712
+ -1 "03/09/2008 04:18:00"
713
+ -1 "03/09/2008 06:26:00"
714
+ -1 "03/09/2008 09:38:00"
715
+ -1 "03/09/2008 14:24:00"
716
+ -1 "03/09/2008 14:29:00"
717
+ -1 "03/09/2008 17:22:00"
718
+ -1 "03/09/2008 18:16:00"
719
+ -1 "03/09/2008 18:16:00"
720
+ -1 "03/09/2008 20:00:00"
721
+ -1 "03/09/2008 20:10:00"
722
+ -1 "04/09/2008 08:01:00"
723
+ -1 "04/09/2008 08:22:00"
724
+ -1 "04/09/2008 08:33:00"
725
+ -1 "04/09/2008 08:41:00"
726
+ -1 "04/09/2008 08:53:00"
727
+ -1 "04/09/2008 11:50:00"
728
+ -1 "04/09/2008 14:09:00"
729
+ -1 "04/09/2008 14:11:00"
730
+ -1 "04/09/2008 14:48:00"
731
+ -1 "04/09/2008 16:30:00"
732
+ -1 "04/09/2008 16:41:00"
733
+ -1 "04/09/2008 16:56:00"
734
+ -1 "04/09/2008 17:30:00"
735
+ -1 "05/09/2008 15:30:00"
736
+ -1 "05/09/2008 21:48:00"
737
+ -1 "07/09/2008 00:08:00"
738
+ -1 "07/09/2008 00:12:00"
739
+ -1 "07/09/2008 00:49:00"
740
+ -1 "07/09/2008 10:52:00"
741
+ -1 "07/09/2008 12:04:00"
742
+ -1 "07/09/2008 12:20:00"
743
+ -1 "07/09/2008 13:02:00"
744
+ -1 "07/09/2008 18:02:00"
745
+ -1 "07/09/2008 18:24:00"
746
+ -1 "07/09/2008 18:49:00"
747
+ -1 "07/09/2008 19:29:00"
748
+ -1 "07/09/2008 19:31:00"
749
+ -1 "07/09/2008 20:12:00"
750
+ -1 "07/09/2008 20:50:00"
751
+ -1 "07/09/2008 23:33:00"
752
+ -1 "08/09/2008 00:32:00"
753
+ -1 "08/09/2008 00:40:00"
754
+ -1 "08/09/2008 01:24:00"
755
+ -1 "08/09/2008 03:32:00"
756
+ -1 "08/09/2008 03:48:00"
757
+ -1 "08/09/2008 04:21:00"
758
+ -1 "08/09/2008 06:37:00"
759
+ -1 "08/09/2008 07:14:00"
760
+ -1 "08/09/2008 07:41:00"
761
+ -1 "08/09/2008 18:46:00"
762
+ -1 "08/09/2008 19:14:00"
763
+ -1 "08/09/2008 19:15:00"
764
+ -1 "08/09/2008 19:25:00"
765
+ -1 "08/09/2008 19:33:00"
766
+ -1 "08/09/2008 20:00:00"
767
+ -1 "08/09/2008 21:36:00"
768
+ -1 "08/09/2008 21:53:00"
769
+ -1 "08/09/2008 22:17:00"
770
+ -1 "09/09/2008 00:25:00"
771
+ -1 "09/09/2008 03:53:00"
772
+ -1 "09/09/2008 08:44:00"
773
+ -1 "10/09/2008 07:26:00"
774
+ -1 "10/09/2008 09:21:00"
775
+ -1 "10/09/2008 20:52:00"
776
+ -1 "10/09/2008 20:53:00"
777
+ -1 "10/09/2008 21:56:00"
778
+ -1 "10/09/2008 23:30:00"
779
+ -1 "10/09/2008 23:43:00"
780
+ -1 "11/09/2008 00:17:00"
781
+ -1 "11/09/2008 05:20:00"
782
+ -1 "11/09/2008 06:04:00"
783
+ -1 "11/09/2008 07:43:00"
784
+ -1 "11/09/2008 08:06:00"
785
+ -1 "11/09/2008 08:58:00"
786
+ -1 "11/09/2008 09:24:00"
787
+ -1 "11/09/2008 12:47:00"
788
+ -1 "11/09/2008 13:36:00"
789
+ -1 "11/09/2008 14:20:00"
790
+ -1 "11/09/2008 14:24:00"
791
+ -1 "11/09/2008 14:31:00"
792
+ -1 "11/09/2008 15:05:00"
793
+ -1 "11/09/2008 15:08:00"
794
+ -1 "11/09/2008 16:28:00"
795
+ -1 "11/09/2008 21:13:00"
796
+ 1 "11/09/2008 22:07:00"
797
+ -1 "11/09/2008 23:10:00"
798
+ 1 "11/09/2008 23:48:00"
799
+ -1 "12/09/2008 05:11:00"
800
+ -1 "12/09/2008 05:55:00"
801
+ -1 "12/09/2008 06:38:00"
802
+ -1 "12/09/2008 06:41:00"
803
+ -1 "12/09/2008 06:45:00"
804
+ -1 "12/09/2008 07:21:00"
805
+ -1 "12/09/2008 07:29:00"
806
+ -1 "12/09/2008 07:38:00"
807
+ -1 "12/09/2008 11:57:00"
808
+ -1 "12/09/2008 13:08:00"
809
+ -1 "12/09/2008 14:52:00"
810
+ -1 "12/09/2008 15:40:00"
811
+ -1 "12/09/2008 16:23:00"
812
+ -1 "12/09/2008 18:01:00"
813
+ -1 "12/09/2008 18:52:00"
814
+ -1 "12/09/2008 19:36:00"
815
+ -1 "12/09/2008 20:28:00"
816
+ -1 "12/09/2008 21:12:00"
817
+ -1 "12/09/2008 22:25:00"
818
+ -1 "12/09/2008 22:45:00"
819
+ -1 "12/09/2008 23:28:00"
820
+ -1 "12/09/2008 23:40:00"
821
+ -1 "13/09/2008 00:25:00"
822
+ -1 "13/09/2008 02:57:00"
823
+ -1 "13/09/2008 03:14:00"
824
+ -1 "13/09/2008 09:19:00"
825
+ -1 "13/09/2008 10:55:00"
826
+ -1 "13/09/2008 11:42:00"
827
+ 1 "13/09/2008 11:56:00"
828
+ -1 "13/09/2008 12:48:00"
829
+ -1 "13/09/2008 14:07:00"
830
+ -1 "13/09/2008 16:04:00"
831
+ -1 "13/09/2008 16:04:00"
832
+ 1 "13/09/2008 20:06:00"
833
+ -1 "14/09/2008 02:50:00"
834
+ -1 "14/09/2008 02:59:00"
835
+ -1 "14/09/2008 15:02:00"
836
+ -1 "14/09/2008 15:46:00"
837
+ -1 "14/09/2008 16:34:00"
838
+ -1 "14/09/2008 17:40:00"
839
+ -1 "14/09/2008 18:27:00"
840
+ -1 "14/09/2008 18:27:00"
841
+ -1 "14/09/2008 19:13:00"
842
+ -1 "14/09/2008 20:00:00"
843
+ -1 "14/09/2008 20:43:00"
844
+ -1 "14/09/2008 20:45:00"
845
+ -1 "14/09/2008 21:31:00"
846
+ -1 "14/09/2008 23:00:00"
847
+ -1 "15/09/2008 02:04:00"
848
+ -1 "15/09/2008 10:03:00"
849
+ -1 "15/09/2008 11:40:00"
850
+ -1 "15/09/2008 12:27:00"
851
+ -1 "15/09/2008 16:10:00"
852
+ -1 "15/09/2008 16:59:00"
853
+ -1 "15/09/2008 19:54:00"
854
+ -1 "15/09/2008 21:56:00"
855
+ -1 "15/09/2008 22:13:00"
856
+ -1 "15/09/2008 22:45:00"
857
+ -1 "15/09/2008 22:54:00"
858
+ -1 "15/09/2008 23:37:00"
859
+ -1 "16/09/2008 07:39:00"
860
+ -1 "16/09/2008 07:48:00"
861
+ -1 "16/09/2008 08:50:00"
862
+ -1 "16/09/2008 08:52:00"
863
+ -1 "16/09/2008 09:37:00"
864
+ -1 "16/09/2008 17:07:00"
865
+ -1 "16/09/2008 18:09:00"
866
+ -1 "16/09/2008 18:23:00"
867
+ -1 "16/09/2008 19:34:00"
868
+ -1 "16/09/2008 19:45:00"
869
+ -1 "16/09/2008 21:21:00"
870
+ -1 "16/09/2008 22:45:00"
871
+ -1 "17/09/2008 02:01:00"
872
+ 1 "17/09/2008 04:23:00"
873
+ -1 "17/09/2008 07:14:00"
874
+ -1 "17/09/2008 07:28:00"
875
+ -1 "17/09/2008 21:52:00"
876
+ -1 "18/09/2008 00:57:00"
877
+ -1 "18/09/2008 01:40:00"
878
+ -1 "18/09/2008 01:43:00"
879
+ -1 "18/09/2008 02:01:00"
880
+ -1 "18/09/2008 03:58:00"
881
+ -1 "18/09/2008 03:58:00"
882
+ -1 "18/09/2008 05:44:00"
883
+ -1 "18/09/2008 05:58:00"
884
+ -1 "18/09/2008 08:04:00"
885
+ -1 "18/09/2008 10:48:00"
886
+ -1 "18/09/2008 13:48:00"
887
+ -1 "18/09/2008 17:22:00"
888
+ -1 "18/09/2008 18:12:00"
889
+ -1 "18/09/2008 18:56:00"
890
+ -1 "18/09/2008 21:12:00"
891
+ -1 "18/09/2008 21:56:00"
892
+ -1 "18/09/2008 23:00:00"
893
+ -1 "18/09/2008 23:05:00"
894
+ -1 "18/09/2008 23:44:00"
895
+ -1 "19/09/2008 00:30:00"
896
+ -1 "19/09/2008 01:57:00"
897
+ -1 "19/09/2008 02:44:00"
898
+ -1 "19/09/2008 04:42:00"
899
+ -1 "19/09/2008 05:33:00"
900
+ -1 "19/09/2008 05:57:00"
901
+ -1 "19/09/2008 06:01:00"
902
+ -1 "19/09/2008 06:44:00"
903
+ -1 "19/09/2008 07:14:00"
904
+ -1 "19/09/2008 07:18:00"
905
+ -1 "19/09/2008 08:08:00"
906
+ -1 "19/09/2008 08:52:00"
907
+ -1 "19/09/2008 09:12:00"
908
+ -1 "19/09/2008 09:47:00"
909
+ -1 "19/09/2008 10:45:00"
910
+ -1 "19/09/2008 11:13:00"
911
+ -1 "19/09/2008 11:54:00"
912
+ -1 "19/09/2008 13:59:00"
913
+ -1 "19/09/2008 15:31:00"
914
+ -1 "19/09/2008 16:40:00"
915
+ 1 "19/09/2008 16:58:00"
916
+ -1 "19/09/2008 17:47:00"
917
+ -1 "19/09/2008 18:11:00"
918
+ -1 "19/09/2008 18:33:00"
919
+ -1 "19/09/2008 19:18:00"
920
+ -1 "19/09/2008 19:29:00"
921
+ -1 "19/09/2008 20:05:00"
922
+ -1 "19/09/2008 20:07:00"
923
+ -1 "19/09/2008 20:10:00"
924
+ -1 "19/09/2008 20:17:00"
925
+ 1 "19/09/2008 20:19:00"
926
+ -1 "19/09/2008 21:08:00"
927
+ 1 "19/09/2008 21:09:00"
928
+ -1 "19/09/2008 21:13:00"
929
+ -1 "19/09/2008 21:14:00"
930
+ 1 "19/09/2008 21:59:00"
931
+ -1 "19/09/2008 23:26:00"
932
+ -1 "19/09/2008 23:33:00"
933
+ -1 "20/09/2008 00:18:00"
934
+ -1 "20/09/2008 00:33:00"
935
+ -1 "20/09/2008 03:58:00"
936
+ -1 "20/09/2008 04:13:00"
937
+ -1 "20/09/2008 04:28:00"
938
+ -1 "20/09/2008 05:22:00"
939
+ -1 "20/09/2008 05:25:00"
940
+ -1 "20/09/2008 05:34:00"
941
+ -1 "20/09/2008 06:08:00"
942
+ -1 "20/09/2008 07:21:00"
943
+ -1 "20/09/2008 08:14:00"
944
+ -1 "20/09/2008 10:51:00"
945
+ -1 "20/09/2008 11:18:00"
946
+ -1 "20/09/2008 12:20:00"
947
+ -1 "20/09/2008 12:26:00"
948
+ -1 "20/09/2008 12:27:00"
949
+ -1 "20/09/2008 12:36:00"
950
+ -1 "20/09/2008 12:57:00"
951
+ -1 "20/09/2008 14:00:00"
952
+ -1 "20/09/2008 14:06:00"
953
+ -1 "20/09/2008 14:42:00"
954
+ -1 "20/09/2008 14:50:00"
955
+ -1 "20/09/2008 14:53:00"
956
+ -1 "20/09/2008 15:02:00"
957
+ -1 "20/09/2008 15:19:00"
958
+ -1 "20/09/2008 15:37:00"
959
+ -1 "20/09/2008 15:46:00"
960
+ -1 "20/09/2008 16:43:00"
961
+ -1 "20/09/2008 16:44:00"
962
+ -1 "20/09/2008 17:26:00"
963
+ -1 "20/09/2008 17:29:00"
964
+ -1 "20/09/2008 18:03:00"
965
+ -1 "20/09/2008 18:21:00"
966
+ -1 "20/09/2008 18:56:00"
967
+ -1 "20/09/2008 19:14:00"
968
+ -1 "20/09/2008 19:21:00"
969
+ -1 "20/09/2008 23:34:00"
970
+ -1 "21/09/2008 00:48:00"
971
+ -1 "21/09/2008 01:06:00"
972
+ -1 "21/09/2008 02:07:00"
973
+ -1 "21/09/2008 03:04:00"
974
+ -1 "21/09/2008 03:47:00"
975
+ -1 "21/09/2008 04:17:00"
976
+ -1 "21/09/2008 04:49:00"
977
+ -1 "21/09/2008 07:30:00"
978
+ -1 "21/09/2008 07:55:00"
979
+ -1 "21/09/2008 08:22:00"
980
+ -1 "21/09/2008 08:49:00"
981
+ -1 "21/09/2008 09:16:00"
982
+ -1 "21/09/2008 09:31:00"
983
+ -1 "21/09/2008 10:07:00"
984
+ -1 "21/09/2008 10:49:00"
985
+ -1 "21/09/2008 11:33:00"
986
+ -1 "21/09/2008 12:04:00"
987
+ -1 "21/09/2008 14:30:00"
988
+ -1 "21/09/2008 14:31:00"
989
+ -1 "21/09/2008 14:33:00"
990
+ -1 "21/09/2008 15:15:00"
991
+ -1 "21/09/2008 15:26:00"
992
+ -1 "21/09/2008 15:34:00"
993
+ -1 "21/09/2008 16:43:00"
994
+ -1 "21/09/2008 17:26:00"
995
+ -1 "21/09/2008 17:30:00"
996
+ -1 "21/09/2008 18:12:00"
997
+ -1 "21/09/2008 19:19:00"
998
+ -1 "21/09/2008 20:35:00"
999
+ -1 "21/09/2008 21:54:00"
1000
+ -1 "21/09/2008 22:02:00"
1001
+ -1 "22/09/2008 00:12:00"
1002
+ -1 "22/09/2008 00:28:00"
1003
+ -1 "22/09/2008 00:47:00"
1004
+ -1 "22/09/2008 01:43:00"
1005
+ -1 "22/09/2008 03:51:00"
1006
+ -1 "22/09/2008 06:05:00"
1007
+ -1 "22/09/2008 07:12:00"
1008
+ -1 "22/09/2008 10:43:00"
1009
+ -1 "22/09/2008 11:50:00"
1010
+ -1 "22/09/2008 12:11:00"
1011
+ -1 "22/09/2008 12:45:00"
1012
+ -1 "22/09/2008 13:03:00"
1013
+ -1 "22/09/2008 14:24:00"
1014
+ -1 "22/09/2008 14:27:00"
1015
+ -1 "22/09/2008 14:36:00"
1016
+ -1 "22/09/2008 16:25:00"
1017
+ -1 "22/09/2008 21:30:00"
1018
+ -1 "22/09/2008 21:31:00"
1019
+ -1 "22/09/2008 22:15:00"
1020
+ -1 "22/09/2008 22:17:00"
1021
+ -1 "22/09/2008 23:01:00"
1022
+ -1 "22/09/2008 23:10:00"
1023
+ -1 "23/09/2008 00:57:00"
1024
+ -1 "23/09/2008 06:44:00"
1025
+ -1 "23/09/2008 06:44:00"
1026
+ -1 "23/09/2008 06:52:00"
1027
+ -1 "23/09/2008 07:58:00"
1028
+ -1 "23/09/2008 08:11:00"
1029
+ -1 "23/09/2008 09:43:00"
1030
+ 1 "23/09/2008 11:14:00"
1031
+ -1 "23/09/2008 11:42:00"
1032
+ -1 "23/09/2008 11:43:00"
1033
+ -1 "23/09/2008 12:29:00"
1034
+ -1 "23/09/2008 12:31:00"
1035
+ -1 "23/09/2008 12:46:00"
1036
+ -1 "23/09/2008 13:37:00"
1037
+ -1 "23/09/2008 15:23:00"
1038
+ -1 "23/09/2008 15:33:00"
1039
+ -1 "23/09/2008 15:58:00"
1040
+ -1 "23/09/2008 18:10:00"
1041
+ -1 "23/09/2008 18:36:00"
1042
+ -1 "23/09/2008 18:56:00"
1043
+ -1 "23/09/2008 20:18:00"
1044
+ -1 "23/09/2008 20:59:00"
1045
+ -1 "23/09/2008 21:26:00"
1046
+ -1 "23/09/2008 22:25:00"
1047
+ -1 "24/09/2008 02:19:00"
1048
+ -1 "24/09/2008 02:44:00"
1049
+ -1 "24/09/2008 03:32:00"
1050
+ -1 "24/09/2008 03:40:00"
1051
+ -1 "24/09/2008 05:13:00"
1052
+ -1 "24/09/2008 05:22:00"
1053
+ -1 "24/09/2008 06:13:00"
1054
+ -1 "24/09/2008 06:14:00"
1055
+ -1 "24/09/2008 07:23:00"
1056
+ -1 "24/09/2008 10:10:00"
1057
+ -1 "24/09/2008 10:53:00"
1058
+ -1 "24/09/2008 10:59:00"
1059
+ -1 "24/09/2008 11:47:00"
1060
+ -1 "24/09/2008 12:04:00"
1061
+ -1 "24/09/2008 12:35:00"
1062
+ -1 "24/09/2008 13:01:00"
1063
+ 1 "24/09/2008 15:05:00"
1064
+ -1 "24/09/2008 15:39:00"
1065
+ -1 "24/09/2008 15:42:00"
1066
+ -1 "24/09/2008 15:43:00"
1067
+ -1 "24/09/2008 16:26:00"
1068
+ -1 "24/09/2008 17:54:00"
1069
+ -1 "24/09/2008 18:05:00"
1070
+ -1 "25/09/2008 01:05:00"
1071
+ -1 "25/09/2008 02:03:00"
1072
+ -1 "25/09/2008 06:21:00"
1073
+ -1 "25/09/2008 07:12:00"
1074
+ -1 "25/09/2008 07:58:00"
1075
+ -1 "25/09/2008 08:45:00"
1076
+ -1 "25/09/2008 09:31:00"
1077
+ -1 "25/09/2008 10:23:00"
1078
+ -1 "25/09/2008 11:08:00"
1079
+ -1 "25/09/2008 11:09:00"
1080
+ -1 "25/09/2008 11:55:00"
1081
+ -1 "25/09/2008 13:42:00"
1082
+ -1 "25/09/2008 14:08:00"
1083
+ -1 "25/09/2008 14:28:00"
1084
+ -1 "25/09/2008 15:12:00"
1085
+ -1 "25/09/2008 15:40:00"
1086
+ -1 "25/09/2008 15:55:00"
1087
+ -1 "25/09/2008 16:44:00"
1088
+ -1 "25/09/2008 17:28:00"
1089
+ -1 "25/09/2008 17:29:00"
1090
+ -1 "25/09/2008 19:49:00"
1091
+ -1 "25/09/2008 22:05:00"
1092
+ -1 "25/09/2008 23:04:00"
1093
+ -1 "25/09/2008 23:48:00"
1094
+ -1 "26/09/2008 00:19:00"
1095
+ -1 "26/09/2008 01:21:00"
1096
+ -1 "26/09/2008 02:26:00"
1097
+ -1 "26/09/2008 03:12:00"
1098
+ -1 "26/09/2008 03:29:00"
1099
+ -1 "26/09/2008 04:14:00"
1100
+ -1 "26/09/2008 05:32:00"
1101
+ -1 "26/09/2008 11:08:00"
1102
+ -1 "26/09/2008 13:36:00"
1103
+ -1 "26/09/2008 13:45:00"
1104
+ -1 "26/09/2008 14:20:00"
1105
+ -1 "26/09/2008 14:51:00"
1106
+ -1 "26/09/2008 15:06:00"
1107
+ -1 "26/09/2008 15:36:00"
1108
+ -1 "26/09/2008 15:49:00"
1109
+ -1 "26/09/2008 16:31:00"
1110
+ -1 "26/09/2008 17:59:00"
1111
+ -1 "26/09/2008 18:54:00"
1112
+ -1 "26/09/2008 19:38:00"
1113
+ -1 "26/09/2008 19:45:00"
1114
+ -1 "26/09/2008 19:55:00"
1115
+ -1 "26/09/2008 20:23:00"
1116
+ -1 "26/09/2008 20:31:00"
1117
+ -1 "27/09/2008 00:16:00"
1118
+ -1 "27/09/2008 00:17:00"
1119
+ -1 "27/09/2008 01:29:00"
1120
+ -1 "27/09/2008 03:53:00"
1121
+ -1 "27/09/2008 10:10:00"
1122
+ -1 "27/09/2008 10:13:00"
1123
+ -1 "27/09/2008 11:04:00"
1124
+ -1 "27/09/2008 11:45:00"
1125
+ -1 "27/09/2008 11:54:00"
1126
+ -1 "27/09/2008 12:26:00"
1127
+ -1 "27/09/2008 12:28:00"
1128
+ -1 "27/09/2008 12:36:00"
1129
+ -1 "27/09/2008 13:14:00"
1130
+ -1 "27/09/2008 13:19:00"
1131
+ -1 "27/09/2008 14:01:00"
1132
+ -1 "27/09/2008 14:05:00"
1133
+ -1 "27/09/2008 14:46:00"
1134
+ -1 "27/09/2008 15:09:00"
1135
+ -1 "27/09/2008 15:30:00"
1136
+ -1 "27/09/2008 16:13:00"
1137
+ -1 "27/09/2008 17:26:00"
1138
+ -1 "27/09/2008 18:14:00"
1139
+ -1 "27/09/2008 19:16:00"
1140
+ -1 "27/09/2008 20:46:00"
1141
+ -1 "27/09/2008 21:45:00"
1142
+ -1 "28/09/2008 00:51:00"
1143
+ -1 "28/09/2008 01:22:00"
1144
+ -1 "28/09/2008 03:55:00"
1145
+ 1 "28/09/2008 04:45:00"
1146
+ -1 "28/09/2008 05:31:00"
1147
+ -1 "28/09/2008 06:22:00"
1148
+ -1 "28/09/2008 07:38:00"
1149
+ -1 "28/09/2008 07:52:00"
1150
+ -1 "28/09/2008 08:40:00"
1151
+ -1 "28/09/2008 08:41:00"
1152
+ 1 "28/09/2008 09:50:00"
1153
+ -1 "28/09/2008 17:05:00"
1154
+ -1 "28/09/2008 17:06:00"
1155
+ -1 "28/09/2008 17:49:00"
1156
+ -1 "28/09/2008 17:55:00"
1157
+ -1 "28/09/2008 18:34:00"
1158
+ -1 "28/09/2008 18:43:00"
1159
+ -1 "28/09/2008 19:18:00"
1160
+ -1 "28/09/2008 19:29:00"
1161
+ -1 "28/09/2008 20:02:00"
1162
+ -1 "28/09/2008 20:42:00"
1163
+ -1 "28/09/2008 21:08:00"
1164
+ -1 "28/09/2008 21:27:00"
1165
+ -1 "28/09/2008 22:44:00"
1166
+ -1 "28/09/2008 23:54:00"
1167
+ -1 "29/09/2008 02:06:00"
1168
+ -1 "29/09/2008 03:07:00"
1169
+ -1 "29/09/2008 03:50:00"
1170
+ -1 "29/09/2008 04:18:00"
1171
+ -1 "29/09/2008 04:47:00"
1172
+ -1 "29/09/2008 05:32:00"
1173
+ -1 "29/09/2008 07:53:00"
1174
+ -1 "29/09/2008 09:15:00"
1175
+ -1 "29/09/2008 11:13:00"
1176
+ -1 "29/09/2008 11:53:00"
1177
+ -1 "29/09/2008 12:25:00"
1178
+ -1 "29/09/2008 14:03:00"
1179
+ -1 "29/09/2008 14:04:00"
1180
+ -1 "29/09/2008 14:08:00"
1181
+ -1 "29/09/2008 15:09:00"
1182
+ -1 "29/09/2008 15:16:00"
1183
+ -1 "29/09/2008 16:27:00"
1184
+ -1 "29/09/2008 17:21:00"
1185
+ -1 "29/09/2008 21:26:00"
1186
+ 1 "29/09/2008 21:48:00"
1187
+ -1 "29/09/2008 22:13:00"
1188
+ -1 "30/09/2008 01:33:00"
1189
+ -1 "30/09/2008 01:36:00"
1190
+ 1 "30/09/2008 02:44:00"
1191
+ -1 "30/09/2008 04:01:00"
1192
+ -1 "30/09/2008 04:42:00"
1193
+ -1 "30/09/2008 08:44:00"
1194
+ -1 "30/09/2008 12:31:00"
1195
+ -1 "30/09/2008 13:29:00"
1196
+ -1 "30/09/2008 14:20:00"
1197
+ -1 "30/09/2008 14:36:00"
1198
+ -1 "30/09/2008 15:16:00"
1199
+ -1 "30/09/2008 15:26:00"
1200
+ -1 "30/09/2008 16:13:00"
1201
+ -1 "30/09/2008 16:50:00"
1202
+ -1 "30/09/2008 17:27:00"
1203
+ -1 "30/09/2008 19:17:00"
1204
+ -1 "30/09/2008 19:17:00"
1205
+ -1 "30/09/2008 21:39:00"
1206
+ -1 "30/09/2008 21:42:00"
1207
+ -1 "30/09/2008 23:34:00"
1208
+ -1 "30/09/2008 23:58:00"
1209
+ -1 "01/10/2008 00:20:00"
1210
+ -1 "01/10/2008 01:11:00"
1211
+ -1 "01/10/2008 02:53:00"
1212
+ 1 "01/10/2008 05:56:00"
1213
+ -1 "01/10/2008 07:19:00"
1214
+ -1 "01/10/2008 07:28:00"
1215
+ -1 "01/10/2008 08:15:00"
1216
+ -1 "01/10/2008 09:15:00"
1217
+ -1 "01/10/2008 09:16:00"
1218
+ -1 "01/10/2008 14:22:00"
1219
+ -1 "01/10/2008 15:16:00"
1220
+ -1 "01/10/2008 16:43:00"
1221
+ -1 "01/10/2008 19:57:00"
1222
+ -1 "01/10/2008 21:15:00"
1223
+ -1 "01/10/2008 21:50:00"
1224
+ -1 "01/10/2008 22:47:00"
1225
+ -1 "01/10/2008 23:34:00"
1226
+ -1 "02/10/2008 00:21:00"
1227
+ -1 "02/10/2008 00:22:00"
1228
+ 1 "02/10/2008 03:17:00"
1229
+ -1 "02/10/2008 03:27:00"
1230
+ -1 "02/10/2008 04:11:00"
1231
+ -1 "02/10/2008 04:23:00"
1232
+ -1 "02/10/2008 04:24:00"
1233
+ -1 "02/10/2008 06:49:00"
1234
+ -1 "02/10/2008 07:35:00"
1235
+ -1 "02/10/2008 07:58:00"
1236
+ -1 "02/10/2008 08:24:00"
1237
+ -1 "02/10/2008 08:52:00"
1238
+ -1 "02/10/2008 08:57:00"
1239
+ 1 "02/10/2008 09:10:00"
1240
+ -1 "02/10/2008 09:42:00"
1241
+ -1 "02/10/2008 10:03:00"
1242
+ 1 "02/10/2008 14:07:00"
1243
+ 1 "02/10/2008 14:10:00"
1244
+ -1 "02/10/2008 14:54:00"
1245
+ -1 "02/10/2008 15:10:00"
1246
+ -1 "02/10/2008 15:44:00"
1247
+ -1 "02/10/2008 15:58:00"
1248
+ -1 "02/10/2008 16:32:00"
1249
+ -1 "02/10/2008 16:58:00"
1250
+ -1 "02/10/2008 17:00:00"
1251
+ -1 "02/10/2008 17:19:00"
1252
+ -1 "02/10/2008 19:21:00"
1253
+ -1 "02/10/2008 19:25:00"
1254
+ -1 "02/10/2008 20:54:00"
1255
+ 1 "02/10/2008 21:32:00"
1256
+ -1 "02/10/2008 21:33:00"
1257
+ -1 "02/10/2008 22:23:00"
1258
+ -1 "02/10/2008 22:33:00"
1259
+ -1 "02/10/2008 23:32:00"
1260
+ -1 "02/10/2008 23:32:00"
1261
+ -1 "03/10/2008 00:24:00"
1262
+ -1 "03/10/2008 00:55:00"
1263
+ -1 "03/10/2008 02:41:00"
1264
+ -1 "03/10/2008 03:52:00"
1265
+ -1 "03/10/2008 03:56:00"
1266
+ -1 "03/10/2008 04:49:00"
1267
+ -1 "03/10/2008 05:01:00"
1268
+ -1 "03/10/2008 05:45:00"
1269
+ -1 "03/10/2008 06:15:00"
1270
+ -1 "03/10/2008 08:35:00"
1271
+ -1 "03/10/2008 09:30:00"
1272
+ -1 "03/10/2008 11:40:00"
1273
+ -1 "03/10/2008 12:31:00"
1274
+ -1 "03/10/2008 18:45:00"
1275
+ -1 "03/10/2008 19:23:00"
1276
+ -1 "03/10/2008 19:23:00"
1277
+ -1 "03/10/2008 20:11:00"
1278
+ -1 "03/10/2008 20:26:00"
1279
+ -1 "03/10/2008 20:35:00"
1280
+ -1 "03/10/2008 20:46:00"
1281
+ -1 "03/10/2008 21:15:00"
1282
+ -1 "03/10/2008 21:52:00"
1283
+ -1 "03/10/2008 22:08:00"
1284
+ -1 "03/10/2008 22:53:00"
1285
+ -1 "03/10/2008 23:46:00"
1286
+ -1 "04/10/2008 00:58:00"
1287
+ -1 "04/10/2008 01:49:00"
1288
+ -1 "04/10/2008 02:36:00"
1289
+ -1 "04/10/2008 03:53:00"
1290
+ -1 "04/10/2008 04:12:00"
1291
+ -1 "04/10/2008 04:45:00"
1292
+ -1 "04/10/2008 09:29:00"
1293
+ -1 "04/10/2008 15:16:00"
1294
+ -1 "04/10/2008 16:58:00"
1295
+ -1 "04/10/2008 18:15:00"
1296
+ -1 "04/10/2008 18:25:00"
1297
+ -1 "04/10/2008 18:59:00"
1298
+ -1 "04/10/2008 19:12:00"
1299
+ -1 "04/10/2008 19:47:00"
1300
+ -1 "04/10/2008 19:54:00"
1301
+ -1 "04/10/2008 20:39:00"
1302
+ -1 "04/10/2008 22:06:00"
1303
+ 1 "04/10/2008 23:18:00"
1304
+ 1 "05/10/2008 00:33:00"
1305
+ -1 "05/10/2008 00:33:00"
1306
+ -1 "05/10/2008 01:35:00"
1307
+ -1 "05/10/2008 04:01:00"
1308
+ -1 "05/10/2008 04:20:00"
1309
+ -1 "05/10/2008 04:48:00"
1310
+ -1 "05/10/2008 05:31:00"
1311
+ -1 "05/10/2008 05:53:00"
1312
+ -1 "05/10/2008 06:15:00"
1313
+ -1 "05/10/2008 08:02:00"
1314
+ -1 "05/10/2008 08:40:00"
1315
+ -1 "05/10/2008 09:04:00"
1316
+ -1 "05/10/2008 09:47:00"
1317
+ -1 "05/10/2008 10:00:00"
1318
+ -1 "05/10/2008 10:43:00"
1319
+ -1 "05/10/2008 11:05:00"
1320
+ -1 "05/10/2008 11:30:00"
1321
+ -1 "05/10/2008 12:03:00"
1322
+ -1 "05/10/2008 12:17:00"
1323
+ -1 "05/10/2008 13:49:00"
1324
+ -1 "05/10/2008 14:34:00"
1325
+ 1 "05/10/2008 15:30:00"
1326
+ 1 "05/10/2008 15:35:00"
1327
+ -1 "05/10/2008 16:15:00"
1328
+ 1 "05/10/2008 16:37:00"
1329
+ 1 "05/10/2008 16:49:00"
1330
+ 1 "05/10/2008 18:46:00"
1331
+ -1 "05/10/2008 18:59:00"
1332
+ -1 "05/10/2008 19:45:00"
1333
+ -1 "05/10/2008 20:12:00"
1334
+ -1 "05/10/2008 20:30:00"
1335
+ -1 "05/10/2008 22:13:00"
1336
+ -1 "06/10/2008 00:41:00"
1337
+ -1 "06/10/2008 01:25:00"
1338
+ -1 "06/10/2008 01:27:00"
1339
+ -1 "06/10/2008 01:30:00"
1340
+ -1 "06/10/2008 02:44:00"
1341
+ -1 "06/10/2008 02:49:00"
1342
+ -1 "06/10/2008 03:31:00"
1343
+ 1 "06/10/2008 03:50:00"
1344
+ 1 "06/10/2008 03:57:00"
1345
+ -1 "06/10/2008 04:26:00"
1346
+ -1 "06/10/2008 05:21:00"
1347
+ -1 "06/10/2008 05:24:00"
1348
+ -1 "06/10/2008 06:11:00"
1349
+ -1 "06/10/2008 06:26:00"
1350
+ -1 "06/10/2008 06:49:00"
1351
+ -1 "06/10/2008 07:12:00"
1352
+ -1 "06/10/2008 07:17:00"
1353
+ -1 "06/10/2008 07:35:00"
1354
+ -1 "06/10/2008 07:38:00"
1355
+ -1 "06/10/2008 08:24:00"
1356
+ -1 "06/10/2008 08:57:00"
1357
+ -1 "06/10/2008 09:11:00"
1358
+ -1 "06/10/2008 09:57:00"
1359
+ -1 "06/10/2008 10:07:00"
1360
+ -1 "06/10/2008 11:51:00"
1361
+ -1 "06/10/2008 12:39:00"
1362
+ -1 "06/10/2008 12:42:00"
1363
+ -1 "06/10/2008 13:08:00"
1364
+ 1 "06/10/2008 13:38:00"
1365
+ 1 "06/10/2008 13:55:00"
1366
+ 1 "06/10/2008 15:00:00"
1367
+ -1 "06/10/2008 15:01:00"
1368
+ -1 "06/10/2008 15:52:00"
1369
+ -1 "06/10/2008 16:42:00"
1370
+ -1 "06/10/2008 16:50:00"
1371
+ -1 "06/10/2008 17:26:00"
1372
+ -1 "06/10/2008 17:26:00"
1373
+ -1 "06/10/2008 17:35:00"
1374
+ -1 "06/10/2008 18:54:00"
1375
+ -1 "06/10/2008 18:55:00"
1376
+ -1 "06/10/2008 19:42:00"
1377
+ -1 "06/10/2008 20:02:00"
1378
+ -1 "06/10/2008 20:36:00"
1379
+ -1 "06/10/2008 20:47:00"
1380
+ -1 "06/10/2008 21:46:00"
1381
+ -1 "06/10/2008 21:48:00"
1382
+ -1 "06/10/2008 22:37:00"
1383
+ -1 "06/10/2008 23:03:00"
1384
+ -1 "07/10/2008 01:46:00"
1385
+ -1 "07/10/2008 03:29:00"
1386
+ -1 "07/10/2008 03:39:00"
1387
+ -1 "07/10/2008 07:32:00"
1388
+ -1 "07/10/2008 07:41:00"
1389
+ -1 "07/10/2008 08:25:00"
1390
+ -1 "07/10/2008 08:26:00"
1391
+ -1 "07/10/2008 09:11:00"
1392
+ -1 "07/10/2008 09:20:00"
1393
+ -1 "07/10/2008 09:59:00"
1394
+ -1 "07/10/2008 10:04:00"
1395
+ -1 "07/10/2008 10:10:00"
1396
+ -1 "07/10/2008 10:51:00"
1397
+ -1 "07/10/2008 11:15:00"
1398
+ -1 "07/10/2008 11:16:00"
1399
+ -1 "07/10/2008 11:36:00"
1400
+ -1 "07/10/2008 12:40:00"
1401
+ 1 "07/10/2008 13:10:00"
1402
+ -1 "07/10/2008 13:48:00"
1403
+ -1 "07/10/2008 14:35:00"
1404
+ -1 "07/10/2008 16:32:00"
1405
+ -1 "07/10/2008 17:06:00"
1406
+ -1 "07/10/2008 17:28:00"
1407
+ -1 "07/10/2008 18:39:00"
1408
+ -1 "07/10/2008 19:24:00"
1409
+ -1 "07/10/2008 20:19:00"
1410
+ -1 "07/10/2008 20:39:00"
1411
+ -1 "07/10/2008 20:48:00"
1412
+ -1 "08/10/2008 04:47:00"
1413
+ -1 "08/10/2008 05:35:00"
1414
+ -1 "08/10/2008 05:38:00"
1415
+ -1 "08/10/2008 06:25:00"
1416
+ -1 "08/10/2008 07:10:00"
1417
+ -1 "08/10/2008 07:13:00"
1418
+ -1 "08/10/2008 07:16:00"
1419
+ -1 "08/10/2008 09:01:00"
1420
+ -1 "08/10/2008 09:06:00"
1421
+ -1 "08/10/2008 10:37:00"
1422
+ -1 "08/10/2008 12:11:00"
1423
+ -1 "08/10/2008 13:35:00"
1424
+ -1 "08/10/2008 13:38:00"
1425
+ -1 "08/10/2008 14:48:00"
1426
+ -1 "08/10/2008 15:37:00"
1427
+ -1 "08/10/2008 16:26:00"
1428
+ -1 "08/10/2008 17:14:00"
1429
+ -1 "08/10/2008 17:31:00"
1430
+ -1 "08/10/2008 17:41:00"
1431
+ -1 "08/10/2008 18:22:00"
1432
+ -1 "08/10/2008 20:27:00"
1433
+ -1 "08/10/2008 21:19:00"
1434
+ -1 "08/10/2008 21:45:00"
1435
+ -1 "08/10/2008 22:08:00"
1436
+ -1 "08/10/2008 23:13:00"
1437
+ -1 "08/10/2008 23:50:00"
1438
+ -1 "09/10/2008 00:23:00"
1439
+ 1 "09/10/2008 04:34:00"
1440
+ -1 "09/10/2008 06:06:00"
1441
+ -1 "09/10/2008 07:38:00"
1442
+ -1 "09/10/2008 14:15:00"
1443
+ -1 "09/10/2008 15:04:00"
1444
+ 1 "09/10/2008 15:55:00"
1445
+ -1 "09/10/2008 15:56:00"
1446
+ -1 "10/10/2008 10:05:00"
1447
+ -1 "10/10/2008 10:46:00"
1448
+ -1 "10/10/2008 10:53:00"
1449
+ -1 "10/10/2008 12:30:00"
1450
+ -1 "10/10/2008 15:33:00"
1451
+ -1 "10/10/2008 15:50:00"
1452
+ -1 "10/10/2008 20:02:00"
1453
+ -1 "10/10/2008 21:03:00"
1454
+ -1 "10/10/2008 21:07:00"
1455
+ -1 "10/10/2008 21:16:00"
1456
+ -1 "11/10/2008 02:55:00"
1457
+ -1 "11/10/2008 06:56:00"
1458
+ -1 "11/10/2008 07:38:00"
1459
+ -1 "11/10/2008 07:39:00"
1460
+ -1 "11/10/2008 07:42:00"
1461
+ -1 "11/10/2008 08:27:00"
1462
+ -1 "11/10/2008 14:43:00"
1463
+ -1 "11/10/2008 15:33:00"
1464
+ -1 "11/10/2008 16:25:00"
1465
+ -1 "11/10/2008 23:16:00"
1466
+ -1 "11/10/2008 23:58:00"
1467
+ -1 "12/10/2008 00:57:00"
1468
+ -1 "12/10/2008 01:50:00"
1469
+ -1 "12/10/2008 02:59:00"
1470
+ -1 "12/10/2008 03:21:00"
1471
+ -1 "12/10/2008 03:28:00"
1472
+ -1 "12/10/2008 08:19:00"
1473
+ -1 "12/10/2008 18:47:00"
1474
+ -1 "13/10/2008 03:34:00"
1475
+ -1 "13/10/2008 03:53:00"
1476
+ -1 "13/10/2008 11:27:00"
1477
+ -1 "13/10/2008 12:18:00"
1478
+ -1 "13/10/2008 14:06:00"
1479
+ -1 "13/10/2008 14:29:00"
1480
+ -1 "13/10/2008 14:30:00"
1481
+ -1 "13/10/2008 14:55:00"
1482
+ -1 "13/10/2008 15:42:00"
1483
+ -1 "13/10/2008 15:42:00"
1484
+ -1 "13/10/2008 16:13:00"
1485
+ -1 "13/10/2008 19:17:00"
1486
+ -1 "13/10/2008 19:36:00"
1487
+ -1 "13/10/2008 19:40:00"
1488
+ -1 "13/10/2008 20:10:00"
1489
+ -1 "13/10/2008 20:30:00"
1490
+ -1 "13/10/2008 20:53:00"
1491
+ -1 "13/10/2008 21:20:00"
1492
+ -1 "13/10/2008 21:47:00"
1493
+ -1 "13/10/2008 21:57:00"
1494
+ -1 "13/10/2008 22:48:00"
1495
+ -1 "13/10/2008 22:54:00"
1496
+ -1 "14/10/2008 00:35:00"
1497
+ -1 "14/10/2008 03:21:00"
1498
+ -1 "14/10/2008 03:28:00"
1499
+ -1 "14/10/2008 03:35:00"
1500
+ -1 "14/10/2008 13:13:00"
1501
+ -1 "14/10/2008 13:16:00"
1502
+ -1 "14/10/2008 14:07:00"
1503
+ -1 "14/10/2008 14:15:00"
1504
+ -1 "14/10/2008 14:43:00"
1505
+ -1 "14/10/2008 17:36:00"
1506
+ -1 "14/10/2008 19:15:00"
1507
+ -1 "14/10/2008 20:01:00"
1508
+ -1 "14/10/2008 20:30:00"
1509
+ -1 "14/10/2008 20:48:00"
1510
+ -1 "14/10/2008 21:36:00"
1511
+ -1 "14/10/2008 23:07:00"
1512
+ -1 "15/10/2008 00:03:00"
1513
+ -1 "15/10/2008 00:27:00"
1514
+ -1 "15/10/2008 00:47:00"
1515
+ -1 "15/10/2008 01:52:00"
1516
+ -1 "15/10/2008 01:52:00"
1517
+ -1 "15/10/2008 01:52:00"
1518
+ -1 "15/10/2008 02:40:00"
1519
+ -1 "15/10/2008 02:40:00"
1520
+ 1 "15/10/2008 02:42:00"
1521
+ -1 "15/10/2008 03:24:00"
1522
+ -1 "15/10/2008 04:08:00"
1523
+ -1 "15/10/2008 05:13:00"
1524
+ -1 "15/10/2008 05:16:00"
1525
+ -1 "15/10/2008 06:49:00"
1526
+ -1 "15/10/2008 07:36:00"
1527
+ -1 "15/10/2008 07:55:00"
1528
+ -1 "15/10/2008 08:21:00"
1529
+ -1 "15/10/2008 09:11:00"
1530
+ -1 "15/10/2008 10:00:00"
1531
+ -1 "15/10/2008 12:53:00"
1532
+ -1 "15/10/2008 13:14:00"
1533
+ -1 "15/10/2008 13:16:00"
1534
+ -1 "15/10/2008 14:08:00"
1535
+ -1 "15/10/2008 15:11:00"
1536
+ -1 "15/10/2008 16:24:00"
1537
+ -1 "15/10/2008 17:19:00"
1538
+ -1 "15/10/2008 18:16:00"
1539
+ -1 "15/10/2008 19:15:00"
1540
+ -1 "15/10/2008 19:24:00"
1541
+ -1 "15/10/2008 21:44:00"
1542
+ -1 "15/10/2008 22:45:00"
1543
+ -1 "15/10/2008 22:54:00"
1544
+ -1 "15/10/2008 23:00:00"
1545
+ -1 "15/10/2008 23:45:00"
1546
+ -1 "16/10/2008 02:16:00"
1547
+ -1 "16/10/2008 02:16:00"
1548
+ -1 "16/10/2008 02:17:00"
1549
+ -1 "16/10/2008 02:22:00"
1550
+ -1 "16/10/2008 02:55:00"
1551
+ -1 "16/10/2008 03:56:00"
1552
+ -1 "16/10/2008 04:02:00"
1553
+ -1 "16/10/2008 04:02:00"
1554
+ -1 "16/10/2008 04:04:00"
1555
+ -1 "16/10/2008 04:47:00"
1556
+ -1 "16/10/2008 04:50:00"
1557
+ -1 "16/10/2008 04:54:00"
1558
+ -1 "16/10/2008 05:08:00"
1559
+ -1 "16/10/2008 05:13:00"
1560
+ -1 "16/10/2008 05:44:00"
1561
+ -1 "16/10/2008 05:58:00"
1562
+ -1 "16/10/2008 15:02:00"
1563
+ -1 "16/10/2008 15:13:00"
1564
+ -1 "16/10/2008 20:49:00"
1565
+ -1 "17/10/2008 05:26:00"
1566
+ -1 "17/10/2008 06:01:00"
1567
+ -1 "17/10/2008 06:07:00"
secom_names.csv ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Title: SECOM Data Set
2
+
3
+ Abstract: Data from a semi-conductor manufacturing process
4
+
5
+
6
+ -----------------------------------------------------
7
+
8
+ Data Set Characteristics: Multivariate
9
+ Number of Instances: 1567
10
+ Area: Computer
11
+ Attribute Characteristics: Real
12
+ Number of Attributes: 591
13
+ Date Donated: 2008-11-19
14
+ Associated Tasks: Classification, Causal-Discovery
15
+ Missing Values? Yes
16
+
17
+ -----------------------------------------------------
18
+
19
+ Source:
20
+
21
+ Authors: Michael McCann, Adrian Johnston
22
+
23
+ -----------------------------------------------------
24
+
25
+ Data Set Information:
26
+
27
+ A complex modern semi-conductor manufacturing process is normally under consistent
28
+ surveillance via the monitoring of signals/variables collected from sensors and or
29
+ process measurement points. However, not all of these signals are equally valuable
30
+ in a specific monitoring system. The measured signals contain a combination of
31
+ useful information, irrelevant information as well as noise. It is often the case
32
+ that useful information is buried in the latter two. Engineers typically have a
33
+ much larger number of signals than are actually required. If we consider each type
34
+ of signal as a feature, then feature selection may be applied to identify the most
35
+ relevant signals. The Process Engineers may then use these signals to determine key
36
+ factors contributing to yield excursions downstream in the process. This will
37
+ enable an increase in process throughput, decreased time to learning and reduce the
38
+ per unit production costs.
39
+
40
+ To enhance current business improvement techniques the application of feature
41
+ selection as an intelligent systems technique is being investigated.
42
+
43
+ The dataset presented in this case represents a selection of such features where
44
+ each example represents a single production entity with associated measured
45
+ features and the labels represent a simple pass/fail yield for in house line
46
+ testing, figure 2, and associated date time stamp. Where .1 corresponds to a pass
47
+ and 1 corresponds to a fail and the data time stamp is for that specific test
48
+ point.
49
+
50
+
51
+ Using feature selection techniques it is desired to rank features according to
52
+ their impact on the overall yield for the product, causal relationships may also be
53
+ considered with a view to identifying the key features.
54
+
55
+ Results may be submitted in terms of feature relevance for predictability using
56
+ error rates as our evaluation metrics. It is suggested that cross validation be
57
+ applied to generate these results. Some baseline results are shown below for basic
58
+ feature selection techniques using a simple kernel ridge classifier and 10 fold
59
+ cross validation.
60
+
61
+ Baseline Results: Pre-processing objects were applied to the dataset simply to
62
+ standardize the data and remove the constant features and then a number of
63
+ different feature selection objects selecting 40 highest ranked features were
64
+ applied with a simple classifier to achieve some initial results. 10 fold cross
65
+ validation was used and the balanced error rate (*BER) generated as our initial
66
+ performance metric to help investigate this dataset.
67
+
68
+
69
+ SECOM Dataset: 1567 examples 591 features, 104 fails
70
+
71
+ FSmethod (40 features) BER % True + % True - %
72
+ S2N (signal to noise) 34.5 +-2.6 57.8 +-5.3 73.1 +2.1
73
+ Ttest 33.7 +-2.1 59.6 +-4.7 73.0 +-1.8
74
+ Relief 40.1 +-2.8 48.3 +-5.9 71.6 +-3.2
75
+ Pearson 34.1 +-2.0 57.4 +-4.3 74.4 +-4.9
76
+ Ftest 33.5 +-2.2 59.1 +-4.8 73.8 +-1.8
77
+ Gram Schmidt 35.6 +-2.4 51.2 +-11.8 77.5 +-2.3
78
+
79
+ -----------------------------------------------------
80
+
81
+ Attribute Information:
82
+
83
+ Key facts: Data Structure: The data consists of 2 files the dataset file SECOM
84
+ consisting of 1567 examples each with 591 features a 1567 x 591 matrix and a labels
85
+ file containing the classifications and date time stamp for each example.
86
+
87
+ As with any real life data situations this data contains null values varying in
88
+ intensity depending on the individuals features. This needs to be taken into
89
+ consideration when investigating the data either through pre-processing or within
90
+ the technique applied.
91
+
92
+ The data is represented in a raw text file each line representing an individual
93
+ example and the features seperated by spaces. The null values are represented by
94
+ the 'NaN' value as per MatLab.
95
+
96
+
97
+
98
+