Upload P2 - Secom Notebook - Mercury.ipynb
Browse files- P2 - Secom Notebook - Mercury.ipynb +162 -61
P2 - Secom Notebook - Mercury.ipynb
CHANGED
@@ -26,7 +26,7 @@
|
|
26 |
},
|
27 |
{
|
28 |
"cell_type": "code",
|
29 |
-
"execution_count":
|
30 |
"metadata": {
|
31 |
"slideshow": {
|
32 |
"slide_type": "skip"
|
@@ -53,7 +53,7 @@
|
|
53 |
},
|
54 |
{
|
55 |
"cell_type": "code",
|
56 |
-
"execution_count":
|
57 |
"metadata": {
|
58 |
"slideshow": {
|
59 |
"slide_type": "skip"
|
@@ -64,7 +64,7 @@
|
|
64 |
"data": {
|
65 |
"application/mercury+json": {
|
66 |
"allow_download": true,
|
67 |
-
"code_uid": "App.0.40.24.1-
|
68 |
"continuous_update": false,
|
69 |
"description": "Recumpute everything dynamically",
|
70 |
"full_screen": true,
|
@@ -96,7 +96,7 @@
|
|
96 |
},
|
97 |
{
|
98 |
"cell_type": "code",
|
99 |
-
"execution_count":
|
100 |
"metadata": {
|
101 |
"slideshow": {
|
102 |
"slide_type": "skip"
|
@@ -138,7 +138,7 @@
|
|
138 |
},
|
139 |
{
|
140 |
"cell_type": "code",
|
141 |
-
"execution_count":
|
142 |
"metadata": {
|
143 |
"slideshow": {
|
144 |
"slide_type": "skip"
|
@@ -195,7 +195,7 @@
|
|
195 |
},
|
196 |
{
|
197 |
"cell_type": "code",
|
198 |
-
"execution_count":
|
199 |
"metadata": {
|
200 |
"slideshow": {
|
201 |
"slide_type": "skip"
|
@@ -290,7 +290,7 @@
|
|
290 |
},
|
291 |
{
|
292 |
"cell_type": "code",
|
293 |
-
"execution_count":
|
294 |
"metadata": {
|
295 |
"slideshow": {
|
296 |
"slide_type": "skip"
|
@@ -341,7 +341,7 @@
|
|
341 |
},
|
342 |
{
|
343 |
"cell_type": "code",
|
344 |
-
"execution_count":
|
345 |
"metadata": {
|
346 |
"slideshow": {
|
347 |
"slide_type": "skip"
|
@@ -419,7 +419,7 @@
|
|
419 |
},
|
420 |
{
|
421 |
"cell_type": "code",
|
422 |
-
"execution_count":
|
423 |
"metadata": {
|
424 |
"slideshow": {
|
425 |
"slide_type": "skip"
|
@@ -499,7 +499,7 @@
|
|
499 |
},
|
500 |
{
|
501 |
"cell_type": "code",
|
502 |
-
"execution_count":
|
503 |
"metadata": {
|
504 |
"slideshow": {
|
505 |
"slide_type": "skip"
|
@@ -585,7 +585,7 @@
|
|
585 |
},
|
586 |
{
|
587 |
"cell_type": "code",
|
588 |
-
"execution_count":
|
589 |
"metadata": {
|
590 |
"slideshow": {
|
591 |
"slide_type": "skip"
|
@@ -648,7 +648,7 @@
|
|
648 |
},
|
649 |
{
|
650 |
"cell_type": "code",
|
651 |
-
"execution_count":
|
652 |
"metadata": {
|
653 |
"slideshow": {
|
654 |
"slide_type": "skip"
|
@@ -737,7 +737,7 @@
|
|
737 |
},
|
738 |
{
|
739 |
"cell_type": "code",
|
740 |
-
"execution_count":
|
741 |
"metadata": {
|
742 |
"slideshow": {
|
743 |
"slide_type": "skip"
|
@@ -825,7 +825,7 @@
|
|
825 |
},
|
826 |
{
|
827 |
"cell_type": "code",
|
828 |
-
"execution_count":
|
829 |
"metadata": {
|
830 |
"slideshow": {
|
831 |
"slide_type": "skip"
|
@@ -839,17 +839,17 @@
|
|
839 |
"yes",
|
840 |
"no"
|
841 |
],
|
842 |
-
"code_uid": "Select.0.40.16.25-
|
843 |
"disabled": false,
|
844 |
"hidden": false,
|
845 |
"label": "Drop Duplicates",
|
846 |
-
"model_id": "
|
847 |
"url_key": "",
|
848 |
"value": "yes",
|
849 |
"widget": "Select"
|
850 |
},
|
851 |
"application/vnd.jupyter.widget-view+json": {
|
852 |
-
"model_id": "
|
853 |
"version_major": 2,
|
854 |
"version_minor": 0
|
855 |
},
|
@@ -863,18 +863,18 @@
|
|
863 |
{
|
864 |
"data": {
|
865 |
"application/mercury+json": {
|
866 |
-
"code_uid": "Text.0.40.15.28-
|
867 |
"disabled": false,
|
868 |
"hidden": false,
|
869 |
"label": "Missing Value Threeshold",
|
870 |
-
"model_id": "
|
871 |
"rows": 1,
|
872 |
"url_key": "",
|
873 |
"value": "80",
|
874 |
"widget": "Text"
|
875 |
},
|
876 |
"application/vnd.jupyter.widget-view+json": {
|
877 |
-
"model_id": "
|
878 |
"version_major": 2,
|
879 |
"version_minor": 0
|
880 |
},
|
@@ -888,18 +888,18 @@
|
|
888 |
{
|
889 |
"data": {
|
890 |
"application/mercury+json": {
|
891 |
-
"code_uid": "Text.0.40.15.31-
|
892 |
"disabled": false,
|
893 |
"hidden": false,
|
894 |
"label": "Variance Threshold",
|
895 |
-
"model_id": "
|
896 |
"rows": 1,
|
897 |
"url_key": "",
|
898 |
"value": "0",
|
899 |
"widget": "Text"
|
900 |
},
|
901 |
"application/vnd.jupyter.widget-view+json": {
|
902 |
-
"model_id": "
|
903 |
"version_major": 2,
|
904 |
"version_minor": 0
|
905 |
},
|
@@ -913,18 +913,18 @@
|
|
913 |
{
|
914 |
"data": {
|
915 |
"application/mercury+json": {
|
916 |
-
"code_uid": "Text.0.40.15.34-
|
917 |
"disabled": false,
|
918 |
"hidden": false,
|
919 |
"label": "Correlation Threshold",
|
920 |
-
"model_id": "
|
921 |
"rows": 1,
|
922 |
"url_key": "",
|
923 |
"value": "1",
|
924 |
"widget": "Text"
|
925 |
},
|
926 |
"application/vnd.jupyter.widget-view+json": {
|
927 |
-
"model_id": "
|
928 |
"version_major": 2,
|
929 |
"version_minor": 0
|
930 |
},
|
@@ -944,17 +944,17 @@
|
|
944 |
4,
|
945 |
5
|
946 |
],
|
947 |
-
"code_uid": "Select.0.40.16.38-
|
948 |
"disabled": false,
|
949 |
"hidden": false,
|
950 |
"label": "Outlier Removal Threshold",
|
951 |
-
"model_id": "
|
952 |
"url_key": "",
|
953 |
"value": "none",
|
954 |
"widget": "Select"
|
955 |
},
|
956 |
"application/vnd.jupyter.widget-view+json": {
|
957 |
-
"model_id": "
|
958 |
"version_major": 2,
|
959 |
"version_minor": 0
|
960 |
},
|
@@ -975,17 +975,17 @@
|
|
975 |
"minmax",
|
976 |
"robust"
|
977 |
],
|
978 |
-
"code_uid": "Select.0.40.16.46-
|
979 |
"disabled": false,
|
980 |
"hidden": false,
|
981 |
"label": "Scaling Variables",
|
982 |
-
"model_id": "
|
983 |
"url_key": "",
|
984 |
"value": "none",
|
985 |
"widget": "Select"
|
986 |
},
|
987 |
"application/vnd.jupyter.widget-view+json": {
|
988 |
-
"model_id": "
|
989 |
"version_major": 2,
|
990 |
"version_minor": 0
|
991 |
},
|
@@ -1005,17 +1005,17 @@
|
|
1005 |
"knn",
|
1006 |
"most_frequent"
|
1007 |
],
|
1008 |
-
"code_uid": "Select.0.40.16.50-
|
1009 |
"disabled": false,
|
1010 |
"hidden": false,
|
1011 |
"label": "Imputation Methods",
|
1012 |
-
"model_id": "
|
1013 |
"url_key": "",
|
1014 |
"value": "mean",
|
1015 |
"widget": "Select"
|
1016 |
},
|
1017 |
"application/vnd.jupyter.widget-view+json": {
|
1018 |
-
"model_id": "
|
1019 |
"version_major": 2,
|
1020 |
"version_minor": 0
|
1021 |
},
|
@@ -1036,17 +1036,17 @@
|
|
1036 |
"pca",
|
1037 |
"boruta"
|
1038 |
],
|
1039 |
-
"code_uid": "Select.0.40.16.55-
|
1040 |
"disabled": false,
|
1041 |
"hidden": false,
|
1042 |
"label": "Feature Selection",
|
1043 |
-
"model_id": "
|
1044 |
"url_key": "",
|
1045 |
-
"value": "
|
1046 |
"widget": "Select"
|
1047 |
},
|
1048 |
"application/vnd.jupyter.widget-view+json": {
|
1049 |
-
"model_id": "
|
1050 |
"version_major": 2,
|
1051 |
"version_minor": 0
|
1052 |
},
|
@@ -1066,17 +1066,17 @@
|
|
1066 |
"undersampling",
|
1067 |
"rose"
|
1068 |
],
|
1069 |
-
"code_uid": "Select.0.40.16.59-
|
1070 |
"disabled": false,
|
1071 |
"hidden": false,
|
1072 |
"label": "Imbalance Treatment",
|
1073 |
-
"model_id": "
|
1074 |
"url_key": "",
|
1075 |
"value": "none",
|
1076 |
"widget": "Select"
|
1077 |
},
|
1078 |
"application/vnd.jupyter.widget-view+json": {
|
1079 |
-
"model_id": "
|
1080 |
"version_major": 2,
|
1081 |
"version_minor": 0
|
1082 |
},
|
@@ -1099,17 +1099,17 @@
|
|
1099 |
"decision_tree",
|
1100 |
"xgboost"
|
1101 |
],
|
1102 |
-
"code_uid": "Select.0.40.16.64-
|
1103 |
"disabled": false,
|
1104 |
"hidden": false,
|
1105 |
"label": "Model Selection",
|
1106 |
-
"model_id": "
|
1107 |
"url_key": "",
|
1108 |
"value": "random_forest",
|
1109 |
"widget": "Select"
|
1110 |
},
|
1111 |
"application/vnd.jupyter.widget-view+json": {
|
1112 |
-
"model_id": "
|
1113 |
"version_major": 2,
|
1114 |
"version_minor": 0
|
1115 |
},
|
@@ -1217,7 +1217,7 @@
|
|
1217 |
},
|
1218 |
{
|
1219 |
"cell_type": "code",
|
1220 |
-
"execution_count":
|
1221 |
"metadata": {
|
1222 |
"slideshow": {
|
1223 |
"slide_type": "skip"
|
@@ -1243,8 +1243,8 @@
|
|
1243 |
"Number of missing values after imputation: 0\n",
|
1244 |
"Number of missing values before imputation: 6954\n",
|
1245 |
"Number of missing values after imputation: 0\n",
|
1246 |
-
"Selected method is:
|
1247 |
-
"Shape of the training set after feature selection
|
1248 |
]
|
1249 |
}
|
1250 |
],
|
@@ -1298,7 +1298,7 @@
|
|
1298 |
},
|
1299 |
{
|
1300 |
"cell_type": "code",
|
1301 |
-
"execution_count":
|
1302 |
"metadata": {
|
1303 |
"slideshow": {
|
1304 |
"slide_type": "skip"
|
@@ -1336,7 +1336,7 @@
|
|
1336 |
},
|
1337 |
{
|
1338 |
"cell_type": "code",
|
1339 |
-
"execution_count":
|
1340 |
"metadata": {
|
1341 |
"slideshow": {
|
1342 |
"slide_type": "slide"
|
@@ -1351,20 +1351,121 @@
|
|
1351 |
"Missing values threshold is: 80 - Variance threshold is:, 0.0 - Correlation threshold is: 1.0\n",
|
1352 |
"Outlier removal threshold is: none\n",
|
1353 |
"Scaling method is: none\n",
|
1354 |
-
"Imputation method is: mean\n"
|
|
|
|
|
1355 |
]
|
1356 |
},
|
1357 |
{
|
1358 |
-
"
|
1359 |
-
|
1360 |
-
|
1361 |
-
|
1362 |
-
|
1363 |
-
|
1364 |
-
|
1365 |
-
|
1366 |
-
|
1367 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1368 |
}
|
1369 |
],
|
1370 |
"source": [
|
|
|
26 |
},
|
27 |
{
|
28 |
"cell_type": "code",
|
29 |
+
"execution_count": 117,
|
30 |
"metadata": {
|
31 |
"slideshow": {
|
32 |
"slide_type": "skip"
|
|
|
53 |
},
|
54 |
{
|
55 |
"cell_type": "code",
|
56 |
+
"execution_count": 118,
|
57 |
"metadata": {
|
58 |
"slideshow": {
|
59 |
"slide_type": "skip"
|
|
|
64 |
"data": {
|
65 |
"application/mercury+json": {
|
66 |
"allow_download": true,
|
67 |
+
"code_uid": "App.0.40.24.1-rand92992328",
|
68 |
"continuous_update": false,
|
69 |
"description": "Recumpute everything dynamically",
|
70 |
"full_screen": true,
|
|
|
96 |
},
|
97 |
{
|
98 |
"cell_type": "code",
|
99 |
+
"execution_count": 119,
|
100 |
"metadata": {
|
101 |
"slideshow": {
|
102 |
"slide_type": "skip"
|
|
|
138 |
},
|
139 |
{
|
140 |
"cell_type": "code",
|
141 |
+
"execution_count": 120,
|
142 |
"metadata": {
|
143 |
"slideshow": {
|
144 |
"slide_type": "skip"
|
|
|
195 |
},
|
196 |
{
|
197 |
"cell_type": "code",
|
198 |
+
"execution_count": 121,
|
199 |
"metadata": {
|
200 |
"slideshow": {
|
201 |
"slide_type": "skip"
|
|
|
290 |
},
|
291 |
{
|
292 |
"cell_type": "code",
|
293 |
+
"execution_count": 122,
|
294 |
"metadata": {
|
295 |
"slideshow": {
|
296 |
"slide_type": "skip"
|
|
|
341 |
},
|
342 |
{
|
343 |
"cell_type": "code",
|
344 |
+
"execution_count": 123,
|
345 |
"metadata": {
|
346 |
"slideshow": {
|
347 |
"slide_type": "skip"
|
|
|
419 |
},
|
420 |
{
|
421 |
"cell_type": "code",
|
422 |
+
"execution_count": 124,
|
423 |
"metadata": {
|
424 |
"slideshow": {
|
425 |
"slide_type": "skip"
|
|
|
499 |
},
|
500 |
{
|
501 |
"cell_type": "code",
|
502 |
+
"execution_count": 125,
|
503 |
"metadata": {
|
504 |
"slideshow": {
|
505 |
"slide_type": "skip"
|
|
|
585 |
},
|
586 |
{
|
587 |
"cell_type": "code",
|
588 |
+
"execution_count": 126,
|
589 |
"metadata": {
|
590 |
"slideshow": {
|
591 |
"slide_type": "skip"
|
|
|
648 |
},
|
649 |
{
|
650 |
"cell_type": "code",
|
651 |
+
"execution_count": 127,
|
652 |
"metadata": {
|
653 |
"slideshow": {
|
654 |
"slide_type": "skip"
|
|
|
737 |
},
|
738 |
{
|
739 |
"cell_type": "code",
|
740 |
+
"execution_count": 128,
|
741 |
"metadata": {
|
742 |
"slideshow": {
|
743 |
"slide_type": "skip"
|
|
|
825 |
},
|
826 |
{
|
827 |
"cell_type": "code",
|
828 |
+
"execution_count": 129,
|
829 |
"metadata": {
|
830 |
"slideshow": {
|
831 |
"slide_type": "skip"
|
|
|
839 |
"yes",
|
840 |
"no"
|
841 |
],
|
842 |
+
"code_uid": "Select.0.40.16.25-rand7e848899",
|
843 |
"disabled": false,
|
844 |
"hidden": false,
|
845 |
"label": "Drop Duplicates",
|
846 |
+
"model_id": "78db72d25e074b869614de47137d0448",
|
847 |
"url_key": "",
|
848 |
"value": "yes",
|
849 |
"widget": "Select"
|
850 |
},
|
851 |
"application/vnd.jupyter.widget-view+json": {
|
852 |
+
"model_id": "78db72d25e074b869614de47137d0448",
|
853 |
"version_major": 2,
|
854 |
"version_minor": 0
|
855 |
},
|
|
|
863 |
{
|
864 |
"data": {
|
865 |
"application/mercury+json": {
|
866 |
+
"code_uid": "Text.0.40.15.28-rand8e5732e8",
|
867 |
"disabled": false,
|
868 |
"hidden": false,
|
869 |
"label": "Missing Value Threeshold",
|
870 |
+
"model_id": "f78ef6cc053648c19f15aa01597b534a",
|
871 |
"rows": 1,
|
872 |
"url_key": "",
|
873 |
"value": "80",
|
874 |
"widget": "Text"
|
875 |
},
|
876 |
"application/vnd.jupyter.widget-view+json": {
|
877 |
+
"model_id": "f78ef6cc053648c19f15aa01597b534a",
|
878 |
"version_major": 2,
|
879 |
"version_minor": 0
|
880 |
},
|
|
|
888 |
{
|
889 |
"data": {
|
890 |
"application/mercury+json": {
|
891 |
+
"code_uid": "Text.0.40.15.31-rand6f7ca014",
|
892 |
"disabled": false,
|
893 |
"hidden": false,
|
894 |
"label": "Variance Threshold",
|
895 |
+
"model_id": "5261497c6c9d48ff98150666a710b79f",
|
896 |
"rows": 1,
|
897 |
"url_key": "",
|
898 |
"value": "0",
|
899 |
"widget": "Text"
|
900 |
},
|
901 |
"application/vnd.jupyter.widget-view+json": {
|
902 |
+
"model_id": "5261497c6c9d48ff98150666a710b79f",
|
903 |
"version_major": 2,
|
904 |
"version_minor": 0
|
905 |
},
|
|
|
913 |
{
|
914 |
"data": {
|
915 |
"application/mercury+json": {
|
916 |
+
"code_uid": "Text.0.40.15.34-rand08bf9f01",
|
917 |
"disabled": false,
|
918 |
"hidden": false,
|
919 |
"label": "Correlation Threshold",
|
920 |
+
"model_id": "4368fac8a54944ec8869b93c28f79673",
|
921 |
"rows": 1,
|
922 |
"url_key": "",
|
923 |
"value": "1",
|
924 |
"widget": "Text"
|
925 |
},
|
926 |
"application/vnd.jupyter.widget-view+json": {
|
927 |
+
"model_id": "4368fac8a54944ec8869b93c28f79673",
|
928 |
"version_major": 2,
|
929 |
"version_minor": 0
|
930 |
},
|
|
|
944 |
4,
|
945 |
5
|
946 |
],
|
947 |
+
"code_uid": "Select.0.40.16.38-rand8c9dc1e9",
|
948 |
"disabled": false,
|
949 |
"hidden": false,
|
950 |
"label": "Outlier Removal Threshold",
|
951 |
+
"model_id": "7a670fc3850143b39f8d41bb867b09c2",
|
952 |
"url_key": "",
|
953 |
"value": "none",
|
954 |
"widget": "Select"
|
955 |
},
|
956 |
"application/vnd.jupyter.widget-view+json": {
|
957 |
+
"model_id": "7a670fc3850143b39f8d41bb867b09c2",
|
958 |
"version_major": 2,
|
959 |
"version_minor": 0
|
960 |
},
|
|
|
975 |
"minmax",
|
976 |
"robust"
|
977 |
],
|
978 |
+
"code_uid": "Select.0.40.16.46-rand3225540c",
|
979 |
"disabled": false,
|
980 |
"hidden": false,
|
981 |
"label": "Scaling Variables",
|
982 |
+
"model_id": "63bb246f2aef4cdb818b9db80076ad6b",
|
983 |
"url_key": "",
|
984 |
"value": "none",
|
985 |
"widget": "Select"
|
986 |
},
|
987 |
"application/vnd.jupyter.widget-view+json": {
|
988 |
+
"model_id": "63bb246f2aef4cdb818b9db80076ad6b",
|
989 |
"version_major": 2,
|
990 |
"version_minor": 0
|
991 |
},
|
|
|
1005 |
"knn",
|
1006 |
"most_frequent"
|
1007 |
],
|
1008 |
+
"code_uid": "Select.0.40.16.50-rand6b935ac8",
|
1009 |
"disabled": false,
|
1010 |
"hidden": false,
|
1011 |
"label": "Imputation Methods",
|
1012 |
+
"model_id": "343d094ce57041bea6fc249e1e6b3fc0",
|
1013 |
"url_key": "",
|
1014 |
"value": "mean",
|
1015 |
"widget": "Select"
|
1016 |
},
|
1017 |
"application/vnd.jupyter.widget-view+json": {
|
1018 |
+
"model_id": "343d094ce57041bea6fc249e1e6b3fc0",
|
1019 |
"version_major": 2,
|
1020 |
"version_minor": 0
|
1021 |
},
|
|
|
1036 |
"pca",
|
1037 |
"boruta"
|
1038 |
],
|
1039 |
+
"code_uid": "Select.0.40.16.55-rand0bacb10c",
|
1040 |
"disabled": false,
|
1041 |
"hidden": false,
|
1042 |
"label": "Feature Selection",
|
1043 |
+
"model_id": "6cb844c4413442c7af4907d9f0af5a79",
|
1044 |
"url_key": "",
|
1045 |
+
"value": "none",
|
1046 |
"widget": "Select"
|
1047 |
},
|
1048 |
"application/vnd.jupyter.widget-view+json": {
|
1049 |
+
"model_id": "6cb844c4413442c7af4907d9f0af5a79",
|
1050 |
"version_major": 2,
|
1051 |
"version_minor": 0
|
1052 |
},
|
|
|
1066 |
"undersampling",
|
1067 |
"rose"
|
1068 |
],
|
1069 |
+
"code_uid": "Select.0.40.16.59-randb88939bd",
|
1070 |
"disabled": false,
|
1071 |
"hidden": false,
|
1072 |
"label": "Imbalance Treatment",
|
1073 |
+
"model_id": "23f135fd27ca4174b4f80b53f9e2878b",
|
1074 |
"url_key": "",
|
1075 |
"value": "none",
|
1076 |
"widget": "Select"
|
1077 |
},
|
1078 |
"application/vnd.jupyter.widget-view+json": {
|
1079 |
+
"model_id": "23f135fd27ca4174b4f80b53f9e2878b",
|
1080 |
"version_major": 2,
|
1081 |
"version_minor": 0
|
1082 |
},
|
|
|
1099 |
"decision_tree",
|
1100 |
"xgboost"
|
1101 |
],
|
1102 |
+
"code_uid": "Select.0.40.16.64-rand2cb8e572",
|
1103 |
"disabled": false,
|
1104 |
"hidden": false,
|
1105 |
"label": "Model Selection",
|
1106 |
+
"model_id": "ac627c0a6ae64f34a97ce1b2f803d50a",
|
1107 |
"url_key": "",
|
1108 |
"value": "random_forest",
|
1109 |
"widget": "Select"
|
1110 |
},
|
1111 |
"application/vnd.jupyter.widget-view+json": {
|
1112 |
+
"model_id": "ac627c0a6ae64f34a97ce1b2f803d50a",
|
1113 |
"version_major": 2,
|
1114 |
"version_minor": 0
|
1115 |
},
|
|
|
1217 |
},
|
1218 |
{
|
1219 |
"cell_type": "code",
|
1220 |
+
"execution_count": 130,
|
1221 |
"metadata": {
|
1222 |
"slideshow": {
|
1223 |
"slide_type": "skip"
|
|
|
1243 |
"Number of missing values after imputation: 0\n",
|
1244 |
"Number of missing values before imputation: 6954\n",
|
1245 |
"Number of missing values after imputation: 0\n",
|
1246 |
+
"Selected method is: none\n",
|
1247 |
+
"Shape of the training set after no feature selection: (1175, 445)\n"
|
1248 |
]
|
1249 |
}
|
1250 |
],
|
|
|
1298 |
},
|
1299 |
{
|
1300 |
"cell_type": "code",
|
1301 |
+
"execution_count": 131,
|
1302 |
"metadata": {
|
1303 |
"slideshow": {
|
1304 |
"slide_type": "skip"
|
|
|
1336 |
},
|
1337 |
{
|
1338 |
"cell_type": "code",
|
1339 |
+
"execution_count": 132,
|
1340 |
"metadata": {
|
1341 |
"slideshow": {
|
1342 |
"slide_type": "slide"
|
|
|
1351 |
"Missing values threshold is: 80 - Variance threshold is:, 0.0 - Correlation threshold is: 1.0\n",
|
1352 |
"Outlier removal threshold is: none\n",
|
1353 |
"Scaling method is: none\n",
|
1354 |
+
"Imputation method is: mean\n",
|
1355 |
+
"Feature selection method is: none\n",
|
1356 |
+
"Imbalance treatment method is: none\n"
|
1357 |
]
|
1358 |
},
|
1359 |
{
|
1360 |
+
"data": {
|
1361 |
+
"text/html": [
|
1362 |
+
"<div>\n",
|
1363 |
+
"<style scoped>\n",
|
1364 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1365 |
+
" vertical-align: middle;\n",
|
1366 |
+
" }\n",
|
1367 |
+
"\n",
|
1368 |
+
" .dataframe tbody tr th {\n",
|
1369 |
+
" vertical-align: top;\n",
|
1370 |
+
" }\n",
|
1371 |
+
"\n",
|
1372 |
+
" .dataframe thead th {\n",
|
1373 |
+
" text-align: right;\n",
|
1374 |
+
" }\n",
|
1375 |
+
"</style>\n",
|
1376 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1377 |
+
" <thead>\n",
|
1378 |
+
" <tr style=\"text-align: right;\">\n",
|
1379 |
+
" <th></th>\n",
|
1380 |
+
" <th>Model</th>\n",
|
1381 |
+
" <th>Accuracy</th>\n",
|
1382 |
+
" <th>Precision</th>\n",
|
1383 |
+
" <th>Recall</th>\n",
|
1384 |
+
" <th>F1-score</th>\n",
|
1385 |
+
" </tr>\n",
|
1386 |
+
" </thead>\n",
|
1387 |
+
" <tbody>\n",
|
1388 |
+
" <tr>\n",
|
1389 |
+
" <th>0</th>\n",
|
1390 |
+
" <td>random_forest</td>\n",
|
1391 |
+
" <td>0.93</td>\n",
|
1392 |
+
" <td>0.0</td>\n",
|
1393 |
+
" <td>0.0</td>\n",
|
1394 |
+
" <td>0.0</td>\n",
|
1395 |
+
" </tr>\n",
|
1396 |
+
" </tbody>\n",
|
1397 |
+
"</table>\n",
|
1398 |
+
"</div>"
|
1399 |
+
],
|
1400 |
+
"text/plain": [
|
1401 |
+
" Model Accuracy Precision Recall F1-score\n",
|
1402 |
+
"0 random_forest 0.93 0.0 0.0 0.0"
|
1403 |
+
]
|
1404 |
+
},
|
1405 |
+
"metadata": {},
|
1406 |
+
"output_type": "display_data"
|
1407 |
+
},
|
1408 |
+
{
|
1409 |
+
"data": {
|
1410 |
+
"text/html": [
|
1411 |
+
"<div>\n",
|
1412 |
+
"<style scoped>\n",
|
1413 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1414 |
+
" vertical-align: middle;\n",
|
1415 |
+
" }\n",
|
1416 |
+
"\n",
|
1417 |
+
" .dataframe tbody tr th {\n",
|
1418 |
+
" vertical-align: top;\n",
|
1419 |
+
" }\n",
|
1420 |
+
"\n",
|
1421 |
+
" .dataframe thead th {\n",
|
1422 |
+
" text-align: right;\n",
|
1423 |
+
" }\n",
|
1424 |
+
"</style>\n",
|
1425 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1426 |
+
" <thead>\n",
|
1427 |
+
" <tr style=\"text-align: right;\">\n",
|
1428 |
+
" <th></th>\n",
|
1429 |
+
" <th>Model</th>\n",
|
1430 |
+
" <th>True Negatives</th>\n",
|
1431 |
+
" <th>False Positives</th>\n",
|
1432 |
+
" <th>False Negatives</th>\n",
|
1433 |
+
" <th>True Positives</th>\n",
|
1434 |
+
" </tr>\n",
|
1435 |
+
" </thead>\n",
|
1436 |
+
" <tbody>\n",
|
1437 |
+
" <tr>\n",
|
1438 |
+
" <th>0</th>\n",
|
1439 |
+
" <td>random_forest</td>\n",
|
1440 |
+
" <td>366</td>\n",
|
1441 |
+
" <td>0</td>\n",
|
1442 |
+
" <td>26</td>\n",
|
1443 |
+
" <td>0</td>\n",
|
1444 |
+
" </tr>\n",
|
1445 |
+
" </tbody>\n",
|
1446 |
+
"</table>\n",
|
1447 |
+
"</div>"
|
1448 |
+
],
|
1449 |
+
"text/plain": [
|
1450 |
+
" Model True Negatives False Positives False Negatives \\\n",
|
1451 |
+
"0 random_forest 366 0 26 \n",
|
1452 |
+
"\n",
|
1453 |
+
" True Positives \n",
|
1454 |
+
"0 0 "
|
1455 |
+
]
|
1456 |
+
},
|
1457 |
+
"metadata": {},
|
1458 |
+
"output_type": "display_data"
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"data": {
|
1462 |
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAUcAAAFMCAYAAABYjn6oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAr6ElEQVR4nO3deVxU5f4H8M8IDKDAiBAgCogbIpsIV8R9BZdUyszMfffmvucvl1tm7mFqmOWClLfUzDLzZu6KLCWCK6KmLMIgyirG5nB+f5ijI0djZDkz+Hm/XrzunWfOefjOvPDTM+d55jkyQRAEEBGRhlpSF0BEpIsYjkREIhiOREQiGI5ERCIYjkREIhiOREQiGI5ERCIMpS6gIkpLS5GWlgZzc3PIZDKpyyEiPSAIAu7fvw97e3vUqvX88aFeh2NaWhocHBykLoOI9FBKSgoaNmz43Of1OhzNzc0BAPKWIyEzkEtcDema5BNrpC6BdND9vDw0dXZQ58fz6HU4Pv4oLTOQMxypDAsLC6lLIB32T5fiOCFDRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguGow8YP6oDfdy3AndOrcef0apzYMRsB7VtqHOPibIs96yYi/dRqZISvwckds+FgZ6lxjJ+nM/63eSruRayF8tQqHPpqOkyMjarzpZCENm8KQYtmzqhrZoJ2bXwQHn5a6pL0gqHUBdDzpd7JwaINP+HP5HsAgGH9/LAneALavrMC8TfT4dzQGke3zcKOHyPw8aZfkJtfgBbOdigsKlH34efpjJ82voc123/DrJV7UPxQBc/mDVBaKkj1sqga7dm9C3Nnz8BnG0Lg3649tny1GUGv98a5C1fg6OgodXk6TSYIgt7+K8nLy4NCoYCxx3jIDORSl1MtUk+sxP+t+xE7foxE2IrRKClRYeyisOcef3LHbByNvoqPQn6pxip1Q/YfG6UuQXId2/nB27s11n++Sd3WysMV/foHYemy5RJWJp28vDzYWimQm5sLCwuL5x7Hj9V6olYtGQYF+qCOqRzRF25BJpOhVwc3XE/OwP7PJyPp6HKcCpuDfl081ee8ZmmGNp7OuJuVj+Ohs5B45BP8tmU62rVqLOEroepSXFyM2HMx6N4zQKO9e48AREVGSFSV/mA46ji3pva4e2YtcqPXYf0HgzF49le4ejMdNvXMYF7HBHNG98ThiCvo9++N2H/8PL5bOw4dfJoCAJwbWgMAPpjYB9t+iMCAySGIi0/Bwc1T0cTxNSlfFlWDe/fuQaVSwcbGVqPd1tYWd+6kS1SV/uA1Rx13LfEO/N5ZjrrmtRHUvRW++mg4AsZ9htz7BQCAAycuYsPO4wCAC9dS4efVGOPf6oDwmBuoVUsGANi6Nxxf748CAJxPuI0ubVwwcoA/Fm/YL82Lomolk8k0HguCUKaNyuLIUceVPFThZso9nLuSjMUb9uPitVRMHtIF97LzUVKiQvxNpcbxCTfT1bPVyrt5AID4m5qjhIRb6WVmtKnmsba2hoGBQZlRYkZGRpnRJJXFcNQzMshgLDdEyUMVYq4kobmT5h95MycbJCuzAQBJaZlIy8hB80Y2Gsc0dbJBsjKr2momacjlcni39sGxI4c12o8dPYy2/u0kqkp/8GO1DvtwSj/8duYKUtKzYV7HBIMCfdDJtxn6Tw4BAATvOIKvV45B+LkbOHn2GgLatUSfTu4IHP+Zuo/gHUewcFJfXLyWivMJtzGsnx9cGtni3blbpXpZVI2mzZiFsaOGo7WPL/za+mPrli+RkpyMcRMmSV2azmM46jAbK3Ns/XgE7KwtkJtfiEvXU9F/cgiORV8FAOw/fgFTl32HuWMCsHbeW7iWlIEhc7cgIu6muo+N/z0BE2MjrJo9EJaK2rh4LRWv/3sjbt2+J9XLomo06O3ByMrMxCfLPkK6Ugk3N3f8+PNBODk5SV2azpN8nWNISAhWr14NpVIJNzc3rFu3Dh07dizXua/iOkcqP65zJDF6sc5x165dmDFjBj744APExsaiY8eO6N27N5KTk6Usi4hI2nD89NNPMXbsWIwbNw6urq5Yt24dHBwcsGnTpn8+mYioCkkWjsXFxYiJiUFAgObq/YCAAEREiK/eLyoqQl5ensYPEVFVkCwcH6/et7Utu3o/PV189f7y5cuhUCjUPw4ODtVRKhG9giRf56jN6v0FCxYgNzdX/ZOSklIdJRLRK0iycHy8ev/ZUWJGRkaZ0eRjxsbGsLCw0PipCeop6iDp6HI41q8naR1uTe1x49elqG3CmX9dkZmZCUd7GyQlJkpax6WLF9GkUUM8ePBA0jqqk2ThKJfL4ePjg8OHNVfvHz58GO3avVqr9+eOCcDBUxfV31pZM3cgzuych5zoYER99365+pAbGeLT+YOQcmwF7kWsxZ51E9HApq7GMXXNTbF16Qikn1qN9FOrsXXpCCjMTNXPX76RhrOXkjB1WNdKe21UMatXLkefvv3g1KgRACA5ORkDg/rBSlEHDe2sMWvGNBQXF7+wj6KiIsycPhUN7axhpaiDt97oj9u3b2sck52djTEjh8PWSgFbKwXGjByOnJwc9fPuHh7w/VcbbPgsuLJfos6S9GP1rFmzsGXLFmzbtg3x8fGYOXMmkpOTMWnSq7N638TYCCOD/BG6L1LdJpPJEPZTFL7/7Vy5+1k9dyD6d/XEiAXb0X10MMxM5di7fpJ68wkACF0+Cp4uDTFgSggGTAmBp0tDbP14hEY/YfujMGFQR43zSBoFBQXYsX0rRo0ZBwBQqVR4s39fPHjwAEdPhCNs53f4cd9ezJ87+4X9zJ01A/t/2oewnd/h6Ilw5OfnY+CA16FSqdTHjBr+Li6cj8NPB37FTwd+xYXzcRg7arhGPyNGjsaXmzdpnFeTSfoNmcGDByMzMxMfffQRlEol3N3dcfDgq7V6P7B9SzxUqRB94Za6bfaq7wEA1pZ94N6swT/2YWFmglFB/hi7MAzHoxMAAGMWhuH6/5aim18LHImMh4uzLQLbu6HT8NX441ISAGDy0v/iZNgcNHOywfWkDADA4Yh41FPUQUefZjj5x7XKfrmkhUO//g+GhoZo6+8PADhy+DfEx1/B9YMpsLe3BwCsWLUWE8aOwodLl4leZsrNzUXo9q3YGvo1unXvAQDYtuMbNHN2wLGjR9AzIBBX4+Px26FfcTI8Cm38/AAAn3/xFbp09Me1hAQ0d3EBAPQMCERWZiZOnzqJLl27VcdbICnJJ2Tee+89JCYmoqioCDExMejUqZPUJVWrDq2b4tyVii1693Z1hNzIEEci49Vtyru5uPxnGtp6OQN4dLuEnPt/qYMRAH6/mIic+3+hrdeTzW9LHqpw8Voq2ns3qVBNVHHhp0+htY+v+nF0VCTc3NzVwQg8CqyioiLEnosR7SP2XAxKSkrQ46kNb+3t7eHm5q7e8DY6KhIKhUIdjADg17YtFAqFxqa4crkcHp5eOPOK3ING8nB81TnZ14Pybm6F+rCzskBRcQly/t7j8bGMzPuwtXo0mrC1ssDdrPwy597NyoetteaIIy0jB072VhWqiSouKSkR9es/CcI76emweWay0tLSEnK5/LnL39LT0yGXy2FpqblFnY2tLe78fc6dO+l4zcamzLmv2diU2e7MvkEDySeHqgvDUWImxnIUFj2skr5lMhme/uK82NfoZTIAz7QXFJWgtgnvTii1woICmJiYaLSJLXN7mc1rnz3nef3imXZTE1P8VfCXVr9LXzEcJZaZkw9Li9oV6iM9Mw/GciPUNTfVaH+tnhkyMh99i+hOZh5srMzLnGttaYY7mfc12iwVtXEvu+wok6qXlZU1snOy1Y9t7ezUo73HsrOzUVJS8tzlb3Z2diguLkZ2drZG+92MDPUo1NbWDhl37pQ5997du7B9ZlPc7OwsWFu/GrfYYDhK7PzV22jR2K5CfcTGJ6O45CG6t22hbrOztoBbE3tEnX800RN94RbqmteGr9uTya5/uTuhrnltRJ2/qdGfWxN7xCVoLvWg6ufl7Y2rV66oH/u19cfly5egVD7Z/f3I4d9gbGwM79Y+on14t/aBkZERjj614a1SqcTly5fUG976tfVHbm4u/vj9d/Uxv0dHIzc3t8ymuJcvX0KrVt6V8vp0HcNRYocj49GycX2NUV9jB2t4Nm8AW2sLmBobwbN5A3g2bwAjQwMAgP1rCsT9sFAddHn5hQj9MRIrZr2JLm2aw8ulIbZ9PBKXbqSp935MuHUHh85cxueLh6CNRyO08WiEzxe9i19OXlTPVAOAY/16sLdR4Pjf55F0evYMxJUrl9Wjvh49A+Dq2hJjRw1HXGwsjh87igXz52D02PHqmerU1FR4ubdQB51CocCo0WPx/rzZOH7sKOJiYzFm5DC4u3uoZ69buLoiILAXJk8aj+ioKERHRWHypPHo0/d19Uw1ACQlJiItNRVd/z6vpuNmtxK7fCMN5+KTMTCgNbbuPQMA2LR4KDr5NlMfE71rAQDApc9iJCuzYGhoABdnO5g+9U2WeWv2QqUqxTcrx8LU2AjHf0/AhOlfo7T0yfXE0f+3A2vnvYWfQyYDAH45eREzV+zRqOft3r44EnlVfasFko67hwda+/hi757dGDdhIgwMDPDD/l8wY+p76Na5PUxNTfH2O+9ixao16nMelpTgWkICCp66LrhqbTAMDA0xbMjbKCgoQNdu3fHl1lAYGBioj9kethOzZ0xDvz6PZrX7vt4fwes198Pcvetb9OgZ8MostZN8s9uKqCmb3QZ2aInlM9+Az1ufiE6aVBe5kSEu/bQYIxeEIvKZj9r6qCZsdvvr/w5iwfw5iIm7hFq1pPugV1RUBHfXZtjx9bdo1769ZHVUhvJudsuRow44FH4FTR1s0MBGgdt3ciSrw7F+PazceqhGBGNN0at3H9y4fh2pqamS7kKVnJSE+e9/oPfBqA2OHKnGqgkjR6p8enGbBCIiXcVwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISUa67D+7fv7/cHfbv3/+liyEi0hXlCsegoKBydSaTyaBSqSpSDxGRTihXOJaWllZ1HUREOqVC1xwLCwsrqw4iIp2idTiqVCosXboUDRo0gJmZGW7evAkAWLRoEbZu3VrpBRIRSUHrcFy2bBlCQ0OxatUqyOVydbuHhwe2bNlSqcUREUlF63AMCwvDl19+iaFDh8LAwEDd7unpiatXr1ZqcUREUtE6HFNTU9G0adMy7aWlpSgpKamUooiIpKZ1OLq5ueH06dNl2vfs2QNvb+9KKYqISGrlWsrztCVLlmD48OFITU1FaWkpfvjhByQkJCAsLAwHDhyoihqJiKqd1iPHfv36YdeuXTh48CBkMhkWL16M+Ph4/Pzzz+jZs2dV1EhEVO20HjkCQGBgIAIDAyu7FiIinfFS4QgAZ8+eRXx8PGQyGVxdXeHj41OZdRERSUrrcLx9+zaGDBmCM2fOoG7dugCAnJwctGvXDt9++y0cHBwqu0Yiomqn9TXHMWPGoKSkBPHx8cjKykJWVhbi4+MhCALGjh1bFTUSEVU7rUeOp0+fRkREBFxcXNRtLi4u2LBhA9q3b1+pxRERSUXrkaOjo6PoYu+HDx+iQYMGlVIUEZHUtA7HVatWYerUqTh79iwEQQDwaHJm+vTpWLNmTaUXSEQkhXJ9rLa0tIRMJlM/fvDgAfz8/GBo+Oj0hw8fwtDQEGPGjCn3xrhERLqsXOG4bt26Ki6DiEi3lCscR44cWdV1EBHplJdeBA4ABQUFZSZnLCwsKlQQEZEu0HpC5sGDB5gyZQpsbGxgZmYGS0tLjR8ioppA63CcN28ejh07hpCQEBgbG2PLli348MMPYW9vj7CwsKqokYio2mn9sfrnn39GWFgYunTpgjFjxqBjx45o2rQpnJycsHPnTgwdOrQq6iQiqlZajxyzsrLg7OwM4NH1xaysLABAhw4dcOrUqcqtjohIIlqHY+PGjZGYmAgAaNmyJXbv3g3g0Yjy8UYURET6TutwHD16NM6fPw8AWLBggfra48yZMzF37txKL5CISApaX3OcOXOm+v937doVV69exdmzZ9GkSRN4eXlVanFERFKp0DpH4NFGFI6OjpVRCxGRzihXOK5fv77cHU6bNu2liyEi0hXlCsfg4OBydSaTyRiORFQjlCscb926VdV1EBHpFK1nq4mIXgUMRyIiEQxHIiIRDEciIhEMRyIiES8VjqdPn8awYcPg7++P1NRUAMDXX3+N8PDwSi2OiEgqWofj3r17ERgYCFNTU8TGxqKoqAgAcP/+fXzyySeVXiARkRS0DsePP/4YX3zxBb766isYGRmp29u1a4dz585VanFERFLROhwTEhLQqVOnMu0WFhbIycmpjJqIiCSndTjWr18fN27cKNMeHh6Oxo0bV0pRRERS0zocJ06ciOnTpyM6OhoymQxpaWnYuXMn5syZg/fee68qaiQiqnZab1k2b9485ObmomvXrigsLESnTp1gbGyMOXPmYMqUKVVRIxFRtZMJgiC8zIl//fUXrly5gtLSUrRs2RJmZmaVXds/ysvLg0KhgLHHeMgM5NX++0m3Zf+xUeoSSAfl5eXB1kqB3NxcWFhYPPe4l97stnbt2vD19X3Z04mIdJrW4di1a1fIZLLnPn/s2LEKFUREpAu0DsdWrVppPC4pKUFcXBwuXbqEkSNHVlZdRESS0jocn7cr+H/+8x/k5+dXuCAiIl1QaRtPDBs2DNu2baus7oiIJFVp4RgZGQkTE5PK6o6ISFJaf6x+8803NR4LggClUomzZ89i0aJFlVYYEZGUtA5HhUKh8bhWrVpwcXHBRx99hICAgEorjIhISlqFo0qlwqhRo+Dh4YF69epVVU1ERJLT6pqjgYEBAgMDkZubW1X1EBHpBK0nZDw8PHDz5s2qqIWISGdoHY7Lli3DnDlzcODAASiVSuTl5Wn8EBHVBFpPyPTq1QsA0L9/f42vEQqCAJlMBpVKVXnVERFJROtwPH78eFXUQUSkU7QOR2dnZzg4OJTZfEIQBKSkpFRaYUREUtL6mqOzszPu3r1bpj0rKwvOzs6VUhQRkdS0DsfH1xaflZ+fz68PElGNUe6P1bNmzQIAyGQyLFq0CLVr11Y/p1KpEB0dXWY7MyIifVXucIyNjQXwaOR48eJFyOVPbksgl8vh5eWFOXPmVH6FREQSKHc4Pp6lHj16ND777LMX3nuBiEjfaT1bvX379qqog4hIp1Tafo5ERDUJw5GISATDkYhIBMORiEgEw5GISATDkYhIBMORiEgEw5GISATDkYhIBMORiEgEw5GISATDkYhIBMORiEgEw5GISATDkYhIBMORiEgEw5GISATDkYhIBMNRz8wZE4Dwb+YiI3wNko4ux+5Px6OZk02Z41ycbbFn3USkn1qNjPA1OLljNhzsLCWomKS2eVMIWjRzRl0zE7Rr44Pw8NNSl6QXGI56pmPrpvhi1yl0HrEGr/97IwwMDHBg0xTUNnlyN0jnhtY4um0Wrt1KR+D4z9Bm8HIs/+pXFBaVSFg5SWHP7l2YO3sG5r//AaL+iEW7Dh0R9HpvJCcnS12azpMJgiBIXcTLysvLg0KhgLHHeMgM5P98Qg1kbWmGlGMr0GNsMM6c+xMAELZiNEpKVBi7KEzi6qSV/cdGqUuQXMd2fvD2bo31n29St7XycEW//kFYumy5hJVJJy8vD7ZWCuTm5r7wLqocOeo5CzMTAEB27l8AAJlMhl4d3HA9OQP7P5+MpKPLcSpsDvp18ZSyTJJAcXExYs/FoHvPAI327j0CEBUZIVFV+oPhqOdWzh6IM+du4MqfSgCATT0zmNcxwZzRPXE44gr6/Xsj9h8/j+/WjkMHn6YSV0vV6d69e1CpVLCxsdVot7W1xZ076RJVpT+0vm816Y7g99+GRzN7dB8drG6rVevRf+8OnLiIDTuPAwAuXEuFn1djjH+rA8JjbkhSK0lHJpNpPBYEoUwblcWRo576dP4gvN7ZA4Hj1yM1I0fdfi87HyUlKsTfVGocn3AznbPVrxhra2sYGBiUGSVmZGSUGU1SWQxHPRQ8fxAGdPNCr4nrkZSWqfFcyUMVYq4kobmT5h9/MycbJCuzq7NMkphcLod3ax8cO3JYo/3Y0cNo699Ooqr0Bz9W65l1C97G4N6+GDTzS+Q/KIStlTkAIDe/UL1UJ3jHEXy9cgzCz93AybPXENCuJfp0ckfg+M+kLJ0kMG3GLIwdNRytfXzh19YfW7d8iZTkZIybMEnq0nQel/LomYJY8eUp4xd/jW9+jlY/HjGgLeaOCUADm7q4lpSBj7/4BQdOXKyuMnUCl/I8snlTCD5duwrpSiXc3Nyxam0wOnTsJHVZkinvUh5Jw/HUqVNYvXo1YmJioFQqsW/fPgQFBZX7/FcxHKn8GI4kRi/WOT548ABeXl7YuJF/xESkWyS95ti7d2/07t273McXFRWhqKhI/TgvL68qyiIi0q/Z6uXLl0OhUKh/HBwcpC6JiGoovQrHBQsWIDc3V/2TkpIidUlEVEPp1VIeY2NjGBsbS10GEb0C9GrkWFPVU9RB0tHlcKxfT9I63Jra48avSzW2PyNpZWZmwtHeBkmJiZLWceniRTRp1BAPHjyQtI7qxHDUAXPHBODgqYtIVmYBANbMHYgzO+chJzoYUd+9X64+5EaG+HT+IKQcW4F7EWuxZ91ENLCpq3FMXXNTbF06AumnViP91GpsXToCCjNT9fOXb6Th7KUkTB3WtdJeG1XM6pXL0advPzg1agQASE5OxsCgfrBS1EFDO2vMmjENxcXFL+yjqKgIM6dPRUM7a1gp6uCtN/rj9u3bGsdkZ2djzMjhsLVSwNZKgTEjhyMnJ0f9vLuHB3z/1QYbPgvGq0LScMzPz0dcXBzi4uIAALdu3UJcXNwrtRGnibERRgb5I3RfpLpNJpMh7KcofP/buXL3s3ruQPTv6okRC7aj++hgmJnKsXf9JNSq9WSDgdDlo+Dp0hADpoRgwJQQeLo0xNaPR2j0E7Y/ChMGddQ4j6RRUFCAHdu3YtSYcQAAlUqFN/v3xYMHD3D0RDjCdn6HH/ftxfy5s1/Yz9xZM7D/p30I2/kdjp4IR35+PgYOeB0qlUp9zKjh7+LC+Tj8dOBX/HTgV1w4H4exo4Zr9DNi5Gh8uXmTxnk1maThePbsWXh7e8Pb2xsAMGvWLHh7e2Px4sVSllWtAtu3xEOVCtEXbqnbZq/6Hpt3n8Kt25kvOPMJCzMTjAryx/uf7sPx6AScT7iNMQvD4N7UHt38WgB4dNuEwPZueO+jnYi+cAvRF25h8tL/om9nD43bLByOiEc9RR109GlWuS+UtHbo1//B0NAQbf39AQBHDv+G+Pgr2LbjG7Ty9ka37j2wYtVabN/61XOXteXm5iJ0+1asWLUW3br3QCtvb2zb8Q0uXbqIY0ePAACuxsfjt0O/ImTzFrT190dbf398/sVXOPjLAVxLSFD31TMgEFmZmTh96mTVv3gdIGk4dunSBYIglPkJDQ2Vsqxq1aF1U5y7UrGRsrerI+RGhjgSGa9uU97NxeU/09DWyxkA4OfpjJz7f+GPS0nqY36/mIic+3+hrVdjdVvJQxUuXktFe+8mFaqJKi789Cm09vFVP46OioSbmzvs7e3VbT0DAlFUVITYczGifcSei0FJSQl6PLXhrb29Pdzc3NUb3kZHRUKhUKCNn5/6GL+2baFQKDQ2xZXL5fDw9MKZV+QeNLzmKDEn+3pQ3s2tUB92VhYoKi5Bzv0CjfaMzPuwtXr09ShbKwvczcovc+7drHzYWmt+hSotIwdO9lYVqokqLikpEfXrPwnCO+npsLHV3G3J0tIScrkc6enim9emp6dDLpfD0lJzuzobW1vc+fucO3fS8ZpN2Zu0vWZjU2a7M/sGDSSfHKouDEeJmRjLUVj0sEr6lslkePqL82Jfo5fJADzTXlBUgtomRlVSE5VfYUEBTExMNNrENql9mc1rnz3nef3imXZTE1P8VfCXVr9LXzEcJZaZkw9Li9oV6iM9Mw/GciPUNTfVaH+tnhkyMh9di7qTmQebv7c3e5q1pRnuZN7XaLNU1Ma97LKjTKpeVlbWyM55sgenrZ2derT3WHZ2NkpKSmBrK755rZ2dHYqLi5GdrbmX592MDPUo1NbWDhl37pQ5997du7B9ZlPc7OwsWFu/9lKvR98wHCV2/upttGhsV6E+YuOTUVzyEN3btlC32VlbwK2JPaLOP5roib5wC3XNa8PXzUl9zL/cnVDXvDaizt/U6M+tiT3iEjSXelD18/L2xtUrV9SP/dr64/LlS1Aqn+zyfuTwbzA2NoZ3ax/RPrxb+8DIyAhHn9rwVqlU4vLlS+oNb/3a+iM3Nxd//P67+pjfo6ORm5tbZlPcy5cvoVUr70p5fbqO4Sixw5HxaNm4vsaor7GDNTybN4CttQVMjY3g2bwBPJs3gJGhAQDA/jUF4n5YqA66vPxChP4YiRWz3kSXNs3h5dIQ2z4eiUs30nAs+ioAIOHWHRw6cxmfLx6CNh6N0MajET5f9C5+OXkR15My1L/bsX492NsocPzv80g6PXsG4sqVy+pRX4+eAXB1bYmxo4YjLjYWx48dxYL5czB67Hj11lupqanwcm+hDjqFQoFRo8fi/XmzcfzYUcTFxmLMyGFwd/dAt+49AAAtXF0RENgLkyeNR3RUFKKjojB50nj06fs6mru4qOtJSkxEWmoquv59Xk2nV18frIku30jDufhkDAxoja17zwAANi0eik6+T5bSRO9aAABw6bMYycosGBoawMXZDqZPfZNl3pq9UKlK8c3KsTA1NsLx3xMwYfrXKC19cj1x9P/twNp5b+HnkMkAgF9OXsTMFXs06nm7ty+ORF7lLRV0gLuHB1r7+GLvnt0YN2EiDAwM8MP+XzBj6nvo1rk9TE1N8fY772LFqjXqcx6WlOBaQgIKnrouuGptMAwMDTFsyNsoKChA127d8eXWUBgYGKiP2R62E7NnTEO/Po9mtfu+3h/B6zW3Ety961v06BkAJycnvAq4E7gOCOzQEstnvgGftz4RnTSpLnIjQ1z6aTFGLghF5DMftfVRTdjs9tf/HcSC+XMQE3dJfWdJKRQVFcHdtRl2fP0t2rVvL1kdlaG8m91y5KgDDoVfQVMHGzSwUeD2nRzJ6nCsXw8rtx6qEcFYU/Tq3Qc3rl9HamqqpFv0JSclYf77H+h9MGqDI0eqsWrCyJEqn17cJoGISFcxHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRBhKXUBFCILw6H9VxRJXQrooLy9P6hJIB93/++/icX48j0z4pyN02O3bt+Hg4CB1GUSkh1JSUtCwYcPnPq/X4VhaWoq0tDSYm5tDJpNJXY7k8vLy4ODggJSUFFhYWEhdDukI/l1oEgQB9+/fh729PWrVev6VRb3+WF2rVq0XJv+rysLCgv8IqAz+XTyhUCj+8RhOyBARiWA4EhGJYDjWIMbGxliyZAmMjY2lLoV0CP8uXo5eT8gQEVUVjhyJiEQwHImIRDAciYhEMByJiEQwHGuIkJAQODs7w8TEBD4+Pjh9+rTUJZHETp06hX79+sHe3h4ymQw//vij1CXpFYZjDbBr1y7MmDEDH3zwAWJjY9GxY0f07t0bycnJUpdGEnrw4AG8vLywceNGqUvRS1zKUwP4+fmhdevW2LRpk7rN1dUVQUFBWL58uYSVka6QyWTYt28fgoKCpC5Fb3DkqOeKi4sRExODgIAAjfaAgABERERIVBWR/mM46rl79+5BpVLB1tZWo93W1hbp6ekSVUWk/xiONcSzW7YJgsBt3IgqgOGo56ytrWFgYFBmlJiRkVFmNElE5cdw1HNyuRw+Pj44fPiwRvvhw4fRrl07iaoi0n96vdktPTJr1iwMHz4cvr6+8Pf3x5dffonk5GRMmjRJ6tJIQvn5+bhx44b68a1btxAXF4d69erB0dFRwsr0A5fy1BAhISFYtWoVlEol3N3dERwcjE6dOkldFknoxIkT6Nq1a5n2kSNHIjQ0tPoL0jMMRyIiEbzmSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UiSatSoEdatW6d+LNV2/v/5z3/QqlWr5z5/4sQJyGQy5OTklLvPLl26YMaMGRWqKzQ0FHXr1q1QH/RyGI6kU5RKJXr37l2uY/8p0IgqghtPUIUVFxdDLpdXSl92dnaV0g9RRXHkSBq6dOmCKVOmYMqUKahbty6srKywcOFCPP0V/EaNGuHjjz/GqFGjoFAoMH78eABAREQEOnXqBFNTUzg4OGDatGl48OCB+ryMjAz069cPpqamcHZ2xs6dO8v8/mc/Vt++fRvvvPMO6tWrhzp16sDX1xfR0dEIDQ3Fhx9+iPPnz0Mmk0Emk6k3U8jNzcWECRNgY2MDCwsLdOvWDefPn9f4PStWrICtrS3Mzc0xduxYFBYWavU+ZWZmYsiQIWjYsCFq164NDw8PfPvtt2WOe/jw4Qvfy+LiYsybNw8NGjRAnTp14OfnhxMnTmhVC1UNhiOVsWPHDhgaGiI6Ohrr169HcHAwtmzZonHM6tWr4e7ujpiYGCxatAgXL15EYGAg3nzzTVy4cAG7du1CeHg4pkyZoj5n1KhRSExMxLFjx/D9998jJCQEGRkZz60jPz8fnTt3RlpaGvbv34/z589j3rx5KC0txeDBgzF79my4ublBqVRCqVRi8ODBEAQBffv2RXp6Og4ePIiYmBi0bt0a3bt3R1ZWFgBg9+7dWLJkCZYtW4azZ8+ifv36CAkJ0eo9KiwshI+PDw4cOIBLly5hwoQJGD58OKKjo7V6L0ePHo0zZ87gu+++w4ULFzBo0CD06tUL169f16oeqgIC0VM6d+4suLq6CqWlpeq2+fPnC66ururHTk5OQlBQkMZ5w4cPFyZMmKDRdvr0aaFWrVpCQUGBkJCQIAAQoqKi1M/Hx8cLAITg4GB1GwBh3759giAIwubNmwVzc3MhMzNTtNYlS5YIXl5eGm1Hjx4VLCwshMLCQo32Jk2aCJs3bxYEQRD8/f2FSZMmaTzv5+dXpq+nHT9+XAAgZGdnP/eYPn36CLNnz1Y//qf38saNG4JMJhNSU1M1+unevbuwYMECQRAEYfv27YJCoXju76Sqw2uOVEbbtm017j/j7++PtWvXQqVSwcDAAADg6+urcU5MTAxu3Lih8VFZEASUlpbi1q1buHbtGgwNDTXOa9GixQtnYuPi4uDt7Y169eqVu/aYmBjk5+fDyspKo72goAB//vknACA+Pr7MRsD+/v44fvx4uX+PSqXCihUrsGvXLqSmpqKoqAhFRUWoU6eOxnEvei/PnTsHQRDQvHlzjXOKiorK1E/Vj+FIL+XZECgtLcXEiRMxbdq0Msc6OjoiISEBQNkbgb2Iqamp1nWVlpaifv36otftKnNJzNq1axEcHIx169bBw8MDderUwYwZM1BcXKxVrQYGBoiJiVH/R+cxMzOzSquVXg7DkcqIiooq87hZs2Zl/gE/rXXr1rh8+TKaNm0q+ryrqysePnyIs2fPok2bNgCAhISEF64b9PT0xJYtW5CVlSU6epTL5VCpVGXqSE9Ph6GhIRo1avTcWqKiojBixAiN16iN06dPY8CAARg2bBiAR0F3/fp1uLq6ahz3ovfS29sbKpUKGRkZ6Nixo1a/n6oeJ2SojJSUFMyaNQsJCQn49ttvsWHDBkyfPv2F58yfPx+RkZGYPHky4uLicP36dezfvx9Tp04FALi4uKBXr14YP348oqOjERMTg3Hjxr1wdDhkyBDY2dkhKCgIZ86cwc2bN7F3715ERkYCeDRr/vi+KPfu3UNRURF69OgBf39/BAUF4dChQ0hMTERERAQWLlyIs2fPAgCmT5+Obdu2Ydu2bbh27RqWLFmCy5cva/UeNW3aFIcPH0ZERATi4+MxceJE0fuEv+i9bN68OYYOHYoRI0bghx9+wK1bt/DHH39g5cqVOHjwoFb1UBWQ+qIn6ZbOnTsL7733njBp0iTBwsJCsLS0FN5//32NSQUnJyeNSZTHfv/9d6Fnz56CmZmZUKdOHcHT01NYtmyZ+nmlUin07dtXMDY2FhwdHYWwsLAyfeGpCRlBEITExERh4MCBgoWFhVC7dm3B19dXiI6OFgRBEAoLC4WBAwcKdevWFQAI27dvFwRBEPLy8oSpU6cK9vb2gpGRkeDg4CAMHTpUSE5OVve7bNkywdraWjAzMxNGjhwpzJs3T6sJmczMTGHAgAGCmZmZYGNjIyxcuFAYMWKEMGDAAK3ey+LiYmHx4sVCo0aNBCMjI8HOzk544403hAsXLgiCwAkZKfEeMqShS5cuaNWqlcZX+oheRfxYTUQkguFIRCSCH6uJiERw5EhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQk4v8B7YgKY252X9IAAAAASUVORK5CYII=",
|
1463 |
+
"text/plain": [
|
1464 |
+
"<Figure size 350x350 with 1 Axes>"
|
1465 |
+
]
|
1466 |
+
},
|
1467 |
+
"metadata": {},
|
1468 |
+
"output_type": "display_data"
|
1469 |
}
|
1470 |
],
|
1471 |
"source": [
|