erjonb commited on
Commit
8c544be
·
1 Parent(s): 1f299e9

Upload P2 - Secom Notebook - Mercury.ipynb

Browse files
Files changed (1) hide show
  1. P2 - Secom Notebook - Mercury.ipynb +162 -61
P2 - Secom Notebook - Mercury.ipynb CHANGED
@@ -26,7 +26,7 @@
26
  },
27
  {
28
  "cell_type": "code",
29
- "execution_count": 97,
30
  "metadata": {
31
  "slideshow": {
32
  "slide_type": "skip"
@@ -53,7 +53,7 @@
53
  },
54
  {
55
  "cell_type": "code",
56
- "execution_count": 98,
57
  "metadata": {
58
  "slideshow": {
59
  "slide_type": "skip"
@@ -64,7 +64,7 @@
64
  "data": {
65
  "application/mercury+json": {
66
  "allow_download": true,
67
- "code_uid": "App.0.40.24.1-rand0254d4eb",
68
  "continuous_update": false,
69
  "description": "Recumpute everything dynamically",
70
  "full_screen": true,
@@ -96,7 +96,7 @@
96
  },
97
  {
98
  "cell_type": "code",
99
- "execution_count": 99,
100
  "metadata": {
101
  "slideshow": {
102
  "slide_type": "skip"
@@ -138,7 +138,7 @@
138
  },
139
  {
140
  "cell_type": "code",
141
- "execution_count": 100,
142
  "metadata": {
143
  "slideshow": {
144
  "slide_type": "skip"
@@ -195,7 +195,7 @@
195
  },
196
  {
197
  "cell_type": "code",
198
- "execution_count": 101,
199
  "metadata": {
200
  "slideshow": {
201
  "slide_type": "skip"
@@ -290,7 +290,7 @@
290
  },
291
  {
292
  "cell_type": "code",
293
- "execution_count": 102,
294
  "metadata": {
295
  "slideshow": {
296
  "slide_type": "skip"
@@ -341,7 +341,7 @@
341
  },
342
  {
343
  "cell_type": "code",
344
- "execution_count": 103,
345
  "metadata": {
346
  "slideshow": {
347
  "slide_type": "skip"
@@ -419,7 +419,7 @@
419
  },
420
  {
421
  "cell_type": "code",
422
- "execution_count": 104,
423
  "metadata": {
424
  "slideshow": {
425
  "slide_type": "skip"
@@ -499,7 +499,7 @@
499
  },
500
  {
501
  "cell_type": "code",
502
- "execution_count": 105,
503
  "metadata": {
504
  "slideshow": {
505
  "slide_type": "skip"
@@ -585,7 +585,7 @@
585
  },
586
  {
587
  "cell_type": "code",
588
- "execution_count": 106,
589
  "metadata": {
590
  "slideshow": {
591
  "slide_type": "skip"
@@ -648,7 +648,7 @@
648
  },
649
  {
650
  "cell_type": "code",
651
- "execution_count": 107,
652
  "metadata": {
653
  "slideshow": {
654
  "slide_type": "skip"
@@ -737,7 +737,7 @@
737
  },
738
  {
739
  "cell_type": "code",
740
- "execution_count": 108,
741
  "metadata": {
742
  "slideshow": {
743
  "slide_type": "skip"
@@ -825,7 +825,7 @@
825
  },
826
  {
827
  "cell_type": "code",
828
- "execution_count": 113,
829
  "metadata": {
830
  "slideshow": {
831
  "slide_type": "skip"
@@ -839,17 +839,17 @@
839
  "yes",
840
  "no"
841
  ],
842
- "code_uid": "Select.0.40.16.25-rand2694baac",
843
  "disabled": false,
844
  "hidden": false,
845
  "label": "Drop Duplicates",
846
- "model_id": "d2be0f72c8ad4556970977c13a04a1c8",
847
  "url_key": "",
848
  "value": "yes",
849
  "widget": "Select"
850
  },
851
  "application/vnd.jupyter.widget-view+json": {
852
- "model_id": "d2be0f72c8ad4556970977c13a04a1c8",
853
  "version_major": 2,
854
  "version_minor": 0
855
  },
@@ -863,18 +863,18 @@
863
  {
864
  "data": {
865
  "application/mercury+json": {
866
- "code_uid": "Text.0.40.15.28-rande1621478",
867
  "disabled": false,
868
  "hidden": false,
869
  "label": "Missing Value Threeshold",
870
- "model_id": "80b2d08ffcd84257b8bc791ed6e20d5a",
871
  "rows": 1,
872
  "url_key": "",
873
  "value": "80",
874
  "widget": "Text"
875
  },
876
  "application/vnd.jupyter.widget-view+json": {
877
- "model_id": "80b2d08ffcd84257b8bc791ed6e20d5a",
878
  "version_major": 2,
879
  "version_minor": 0
880
  },
@@ -888,18 +888,18 @@
888
  {
889
  "data": {
890
  "application/mercury+json": {
891
- "code_uid": "Text.0.40.15.31-rand4541ac63",
892
  "disabled": false,
893
  "hidden": false,
894
  "label": "Variance Threshold",
895
- "model_id": "be3aff94bc9946d283b7b34af9b61b1d",
896
  "rows": 1,
897
  "url_key": "",
898
  "value": "0",
899
  "widget": "Text"
900
  },
901
  "application/vnd.jupyter.widget-view+json": {
902
- "model_id": "be3aff94bc9946d283b7b34af9b61b1d",
903
  "version_major": 2,
904
  "version_minor": 0
905
  },
@@ -913,18 +913,18 @@
913
  {
914
  "data": {
915
  "application/mercury+json": {
916
- "code_uid": "Text.0.40.15.34-rand92107f0e",
917
  "disabled": false,
918
  "hidden": false,
919
  "label": "Correlation Threshold",
920
- "model_id": "20a2b896579147a4a8cf1f8593ca263c",
921
  "rows": 1,
922
  "url_key": "",
923
  "value": "1",
924
  "widget": "Text"
925
  },
926
  "application/vnd.jupyter.widget-view+json": {
927
- "model_id": "20a2b896579147a4a8cf1f8593ca263c",
928
  "version_major": 2,
929
  "version_minor": 0
930
  },
@@ -944,17 +944,17 @@
944
  4,
945
  5
946
  ],
947
- "code_uid": "Select.0.40.16.38-randf6cb87b9",
948
  "disabled": false,
949
  "hidden": false,
950
  "label": "Outlier Removal Threshold",
951
- "model_id": "013f6eeb57534a49abd399f13c4814aa",
952
  "url_key": "",
953
  "value": "none",
954
  "widget": "Select"
955
  },
956
  "application/vnd.jupyter.widget-view+json": {
957
- "model_id": "013f6eeb57534a49abd399f13c4814aa",
958
  "version_major": 2,
959
  "version_minor": 0
960
  },
@@ -975,17 +975,17 @@
975
  "minmax",
976
  "robust"
977
  ],
978
- "code_uid": "Select.0.40.16.46-rand035a3a64",
979
  "disabled": false,
980
  "hidden": false,
981
  "label": "Scaling Variables",
982
- "model_id": "4c799a2109f0475dad281094174aff03",
983
  "url_key": "",
984
  "value": "none",
985
  "widget": "Select"
986
  },
987
  "application/vnd.jupyter.widget-view+json": {
988
- "model_id": "4c799a2109f0475dad281094174aff03",
989
  "version_major": 2,
990
  "version_minor": 0
991
  },
@@ -1005,17 +1005,17 @@
1005
  "knn",
1006
  "most_frequent"
1007
  ],
1008
- "code_uid": "Select.0.40.16.50-rand1c821039",
1009
  "disabled": false,
1010
  "hidden": false,
1011
  "label": "Imputation Methods",
1012
- "model_id": "7c5bf031dc55488688a5878edb7cc55f",
1013
  "url_key": "",
1014
  "value": "mean",
1015
  "widget": "Select"
1016
  },
1017
  "application/vnd.jupyter.widget-view+json": {
1018
- "model_id": "7c5bf031dc55488688a5878edb7cc55f",
1019
  "version_major": 2,
1020
  "version_minor": 0
1021
  },
@@ -1036,17 +1036,17 @@
1036
  "pca",
1037
  "boruta"
1038
  ],
1039
- "code_uid": "Select.0.40.16.55-randf440b52a",
1040
  "disabled": false,
1041
  "hidden": false,
1042
  "label": "Feature Selection",
1043
- "model_id": "f2b440a394e6473dbcf3ab959393d76f",
1044
  "url_key": "",
1045
- "value": "lasso",
1046
  "widget": "Select"
1047
  },
1048
  "application/vnd.jupyter.widget-view+json": {
1049
- "model_id": "f2b440a394e6473dbcf3ab959393d76f",
1050
  "version_major": 2,
1051
  "version_minor": 0
1052
  },
@@ -1066,17 +1066,17 @@
1066
  "undersampling",
1067
  "rose"
1068
  ],
1069
- "code_uid": "Select.0.40.16.59-randd37e3f6b",
1070
  "disabled": false,
1071
  "hidden": false,
1072
  "label": "Imbalance Treatment",
1073
- "model_id": "59021cfbc5d8465ba0dae8da4581ba65",
1074
  "url_key": "",
1075
  "value": "none",
1076
  "widget": "Select"
1077
  },
1078
  "application/vnd.jupyter.widget-view+json": {
1079
- "model_id": "59021cfbc5d8465ba0dae8da4581ba65",
1080
  "version_major": 2,
1081
  "version_minor": 0
1082
  },
@@ -1099,17 +1099,17 @@
1099
  "decision_tree",
1100
  "xgboost"
1101
  ],
1102
- "code_uid": "Select.0.40.16.64-rand7458a327",
1103
  "disabled": false,
1104
  "hidden": false,
1105
  "label": "Model Selection",
1106
- "model_id": "2e45c8c32a4e44a6b612ad6943d9890e",
1107
  "url_key": "",
1108
  "value": "random_forest",
1109
  "widget": "Select"
1110
  },
1111
  "application/vnd.jupyter.widget-view+json": {
1112
- "model_id": "2e45c8c32a4e44a6b612ad6943d9890e",
1113
  "version_major": 2,
1114
  "version_minor": 0
1115
  },
@@ -1217,7 +1217,7 @@
1217
  },
1218
  {
1219
  "cell_type": "code",
1220
- "execution_count": 116,
1221
  "metadata": {
1222
  "slideshow": {
1223
  "slide_type": "skip"
@@ -1243,8 +1243,8 @@
1243
  "Number of missing values after imputation: 0\n",
1244
  "Number of missing values before imputation: 6954\n",
1245
  "Number of missing values after imputation: 0\n",
1246
- "Selected method is: lasso\n",
1247
- "Shape of the training set after feature selection with LassoCV: (1175, 6)\n"
1248
  ]
1249
  }
1250
  ],
@@ -1298,7 +1298,7 @@
1298
  },
1299
  {
1300
  "cell_type": "code",
1301
- "execution_count": null,
1302
  "metadata": {
1303
  "slideshow": {
1304
  "slide_type": "skip"
@@ -1336,7 +1336,7 @@
1336
  },
1337
  {
1338
  "cell_type": "code",
1339
- "execution_count": null,
1340
  "metadata": {
1341
  "slideshow": {
1342
  "slide_type": "slide"
@@ -1351,20 +1351,121 @@
1351
  "Missing values threshold is: 80 - Variance threshold is:, 0.0 - Correlation threshold is: 1.0\n",
1352
  "Outlier removal threshold is: none\n",
1353
  "Scaling method is: none\n",
1354
- "Imputation method is: mean\n"
 
 
1355
  ]
1356
  },
1357
  {
1358
- "ename": "NameError",
1359
- "evalue": "name 'feature_selection_var' is not defined",
1360
- "output_type": "error",
1361
- "traceback": [
1362
- "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
1363
- "\u001b[1;31mNameError\u001b[0m Traceback (most recent call last)",
1364
- "\u001b[1;32m~\\AppData\\Local\\Temp\\ipykernel_34908\\804542050.py\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mevaluation_score_output\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mevaluation_counts_output\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mevaluate_models\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0minput_model\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 2\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[1;31m# check if the model has already been evaluated and if not, append the results to the dataframe\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 4\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 5\u001b[0m \u001b[0mevaluation_score_df\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mpd\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mconcat\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m[\u001b[0m\u001b[0mevaluation_score_output\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mevaluation_score_df\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mignore_index\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mTrue\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
1365
- "\u001b[1;32m~\\AppData\\Local\\Temp\\ipykernel_34908\\293505729.py\u001b[0m in \u001b[0;36mevaluate_models\u001b[1;34m(model)\u001b[0m\n\u001b[0;32m 9\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'Scaling method is:'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mscale_model_var\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 10\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'Imputation method is:'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mimputation_var\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m---> 11\u001b[1;33m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'Feature selection method is:'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mfeature_selection_var\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m 12\u001b[0m \u001b[0mprint\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m'Imbalance treatment method is:'\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mimbalance_var\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 13\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
1366
- "\u001b[1;31mNameError\u001b[0m: name 'feature_selection_var' is not defined"
1367
- ]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1368
  }
1369
  ],
1370
  "source": [
 
26
  },
27
  {
28
  "cell_type": "code",
29
+ "execution_count": 117,
30
  "metadata": {
31
  "slideshow": {
32
  "slide_type": "skip"
 
53
  },
54
  {
55
  "cell_type": "code",
56
+ "execution_count": 118,
57
  "metadata": {
58
  "slideshow": {
59
  "slide_type": "skip"
 
64
  "data": {
65
  "application/mercury+json": {
66
  "allow_download": true,
67
+ "code_uid": "App.0.40.24.1-rand92992328",
68
  "continuous_update": false,
69
  "description": "Recumpute everything dynamically",
70
  "full_screen": true,
 
96
  },
97
  {
98
  "cell_type": "code",
99
+ "execution_count": 119,
100
  "metadata": {
101
  "slideshow": {
102
  "slide_type": "skip"
 
138
  },
139
  {
140
  "cell_type": "code",
141
+ "execution_count": 120,
142
  "metadata": {
143
  "slideshow": {
144
  "slide_type": "skip"
 
195
  },
196
  {
197
  "cell_type": "code",
198
+ "execution_count": 121,
199
  "metadata": {
200
  "slideshow": {
201
  "slide_type": "skip"
 
290
  },
291
  {
292
  "cell_type": "code",
293
+ "execution_count": 122,
294
  "metadata": {
295
  "slideshow": {
296
  "slide_type": "skip"
 
341
  },
342
  {
343
  "cell_type": "code",
344
+ "execution_count": 123,
345
  "metadata": {
346
  "slideshow": {
347
  "slide_type": "skip"
 
419
  },
420
  {
421
  "cell_type": "code",
422
+ "execution_count": 124,
423
  "metadata": {
424
  "slideshow": {
425
  "slide_type": "skip"
 
499
  },
500
  {
501
  "cell_type": "code",
502
+ "execution_count": 125,
503
  "metadata": {
504
  "slideshow": {
505
  "slide_type": "skip"
 
585
  },
586
  {
587
  "cell_type": "code",
588
+ "execution_count": 126,
589
  "metadata": {
590
  "slideshow": {
591
  "slide_type": "skip"
 
648
  },
649
  {
650
  "cell_type": "code",
651
+ "execution_count": 127,
652
  "metadata": {
653
  "slideshow": {
654
  "slide_type": "skip"
 
737
  },
738
  {
739
  "cell_type": "code",
740
+ "execution_count": 128,
741
  "metadata": {
742
  "slideshow": {
743
  "slide_type": "skip"
 
825
  },
826
  {
827
  "cell_type": "code",
828
+ "execution_count": 129,
829
  "metadata": {
830
  "slideshow": {
831
  "slide_type": "skip"
 
839
  "yes",
840
  "no"
841
  ],
842
+ "code_uid": "Select.0.40.16.25-rand7e848899",
843
  "disabled": false,
844
  "hidden": false,
845
  "label": "Drop Duplicates",
846
+ "model_id": "78db72d25e074b869614de47137d0448",
847
  "url_key": "",
848
  "value": "yes",
849
  "widget": "Select"
850
  },
851
  "application/vnd.jupyter.widget-view+json": {
852
+ "model_id": "78db72d25e074b869614de47137d0448",
853
  "version_major": 2,
854
  "version_minor": 0
855
  },
 
863
  {
864
  "data": {
865
  "application/mercury+json": {
866
+ "code_uid": "Text.0.40.15.28-rand8e5732e8",
867
  "disabled": false,
868
  "hidden": false,
869
  "label": "Missing Value Threeshold",
870
+ "model_id": "f78ef6cc053648c19f15aa01597b534a",
871
  "rows": 1,
872
  "url_key": "",
873
  "value": "80",
874
  "widget": "Text"
875
  },
876
  "application/vnd.jupyter.widget-view+json": {
877
+ "model_id": "f78ef6cc053648c19f15aa01597b534a",
878
  "version_major": 2,
879
  "version_minor": 0
880
  },
 
888
  {
889
  "data": {
890
  "application/mercury+json": {
891
+ "code_uid": "Text.0.40.15.31-rand6f7ca014",
892
  "disabled": false,
893
  "hidden": false,
894
  "label": "Variance Threshold",
895
+ "model_id": "5261497c6c9d48ff98150666a710b79f",
896
  "rows": 1,
897
  "url_key": "",
898
  "value": "0",
899
  "widget": "Text"
900
  },
901
  "application/vnd.jupyter.widget-view+json": {
902
+ "model_id": "5261497c6c9d48ff98150666a710b79f",
903
  "version_major": 2,
904
  "version_minor": 0
905
  },
 
913
  {
914
  "data": {
915
  "application/mercury+json": {
916
+ "code_uid": "Text.0.40.15.34-rand08bf9f01",
917
  "disabled": false,
918
  "hidden": false,
919
  "label": "Correlation Threshold",
920
+ "model_id": "4368fac8a54944ec8869b93c28f79673",
921
  "rows": 1,
922
  "url_key": "",
923
  "value": "1",
924
  "widget": "Text"
925
  },
926
  "application/vnd.jupyter.widget-view+json": {
927
+ "model_id": "4368fac8a54944ec8869b93c28f79673",
928
  "version_major": 2,
929
  "version_minor": 0
930
  },
 
944
  4,
945
  5
946
  ],
947
+ "code_uid": "Select.0.40.16.38-rand8c9dc1e9",
948
  "disabled": false,
949
  "hidden": false,
950
  "label": "Outlier Removal Threshold",
951
+ "model_id": "7a670fc3850143b39f8d41bb867b09c2",
952
  "url_key": "",
953
  "value": "none",
954
  "widget": "Select"
955
  },
956
  "application/vnd.jupyter.widget-view+json": {
957
+ "model_id": "7a670fc3850143b39f8d41bb867b09c2",
958
  "version_major": 2,
959
  "version_minor": 0
960
  },
 
975
  "minmax",
976
  "robust"
977
  ],
978
+ "code_uid": "Select.0.40.16.46-rand3225540c",
979
  "disabled": false,
980
  "hidden": false,
981
  "label": "Scaling Variables",
982
+ "model_id": "63bb246f2aef4cdb818b9db80076ad6b",
983
  "url_key": "",
984
  "value": "none",
985
  "widget": "Select"
986
  },
987
  "application/vnd.jupyter.widget-view+json": {
988
+ "model_id": "63bb246f2aef4cdb818b9db80076ad6b",
989
  "version_major": 2,
990
  "version_minor": 0
991
  },
 
1005
  "knn",
1006
  "most_frequent"
1007
  ],
1008
+ "code_uid": "Select.0.40.16.50-rand6b935ac8",
1009
  "disabled": false,
1010
  "hidden": false,
1011
  "label": "Imputation Methods",
1012
+ "model_id": "343d094ce57041bea6fc249e1e6b3fc0",
1013
  "url_key": "",
1014
  "value": "mean",
1015
  "widget": "Select"
1016
  },
1017
  "application/vnd.jupyter.widget-view+json": {
1018
+ "model_id": "343d094ce57041bea6fc249e1e6b3fc0",
1019
  "version_major": 2,
1020
  "version_minor": 0
1021
  },
 
1036
  "pca",
1037
  "boruta"
1038
  ],
1039
+ "code_uid": "Select.0.40.16.55-rand0bacb10c",
1040
  "disabled": false,
1041
  "hidden": false,
1042
  "label": "Feature Selection",
1043
+ "model_id": "6cb844c4413442c7af4907d9f0af5a79",
1044
  "url_key": "",
1045
+ "value": "none",
1046
  "widget": "Select"
1047
  },
1048
  "application/vnd.jupyter.widget-view+json": {
1049
+ "model_id": "6cb844c4413442c7af4907d9f0af5a79",
1050
  "version_major": 2,
1051
  "version_minor": 0
1052
  },
 
1066
  "undersampling",
1067
  "rose"
1068
  ],
1069
+ "code_uid": "Select.0.40.16.59-randb88939bd",
1070
  "disabled": false,
1071
  "hidden": false,
1072
  "label": "Imbalance Treatment",
1073
+ "model_id": "23f135fd27ca4174b4f80b53f9e2878b",
1074
  "url_key": "",
1075
  "value": "none",
1076
  "widget": "Select"
1077
  },
1078
  "application/vnd.jupyter.widget-view+json": {
1079
+ "model_id": "23f135fd27ca4174b4f80b53f9e2878b",
1080
  "version_major": 2,
1081
  "version_minor": 0
1082
  },
 
1099
  "decision_tree",
1100
  "xgboost"
1101
  ],
1102
+ "code_uid": "Select.0.40.16.64-rand2cb8e572",
1103
  "disabled": false,
1104
  "hidden": false,
1105
  "label": "Model Selection",
1106
+ "model_id": "ac627c0a6ae64f34a97ce1b2f803d50a",
1107
  "url_key": "",
1108
  "value": "random_forest",
1109
  "widget": "Select"
1110
  },
1111
  "application/vnd.jupyter.widget-view+json": {
1112
+ "model_id": "ac627c0a6ae64f34a97ce1b2f803d50a",
1113
  "version_major": 2,
1114
  "version_minor": 0
1115
  },
 
1217
  },
1218
  {
1219
  "cell_type": "code",
1220
+ "execution_count": 130,
1221
  "metadata": {
1222
  "slideshow": {
1223
  "slide_type": "skip"
 
1243
  "Number of missing values after imputation: 0\n",
1244
  "Number of missing values before imputation: 6954\n",
1245
  "Number of missing values after imputation: 0\n",
1246
+ "Selected method is: none\n",
1247
+ "Shape of the training set after no feature selection: (1175, 445)\n"
1248
  ]
1249
  }
1250
  ],
 
1298
  },
1299
  {
1300
  "cell_type": "code",
1301
+ "execution_count": 131,
1302
  "metadata": {
1303
  "slideshow": {
1304
  "slide_type": "skip"
 
1336
  },
1337
  {
1338
  "cell_type": "code",
1339
+ "execution_count": 132,
1340
  "metadata": {
1341
  "slideshow": {
1342
  "slide_type": "slide"
 
1351
  "Missing values threshold is: 80 - Variance threshold is:, 0.0 - Correlation threshold is: 1.0\n",
1352
  "Outlier removal threshold is: none\n",
1353
  "Scaling method is: none\n",
1354
+ "Imputation method is: mean\n",
1355
+ "Feature selection method is: none\n",
1356
+ "Imbalance treatment method is: none\n"
1357
  ]
1358
  },
1359
  {
1360
+ "data": {
1361
+ "text/html": [
1362
+ "<div>\n",
1363
+ "<style scoped>\n",
1364
+ " .dataframe tbody tr th:only-of-type {\n",
1365
+ " vertical-align: middle;\n",
1366
+ " }\n",
1367
+ "\n",
1368
+ " .dataframe tbody tr th {\n",
1369
+ " vertical-align: top;\n",
1370
+ " }\n",
1371
+ "\n",
1372
+ " .dataframe thead th {\n",
1373
+ " text-align: right;\n",
1374
+ " }\n",
1375
+ "</style>\n",
1376
+ "<table border=\"1\" class=\"dataframe\">\n",
1377
+ " <thead>\n",
1378
+ " <tr style=\"text-align: right;\">\n",
1379
+ " <th></th>\n",
1380
+ " <th>Model</th>\n",
1381
+ " <th>Accuracy</th>\n",
1382
+ " <th>Precision</th>\n",
1383
+ " <th>Recall</th>\n",
1384
+ " <th>F1-score</th>\n",
1385
+ " </tr>\n",
1386
+ " </thead>\n",
1387
+ " <tbody>\n",
1388
+ " <tr>\n",
1389
+ " <th>0</th>\n",
1390
+ " <td>random_forest</td>\n",
1391
+ " <td>0.93</td>\n",
1392
+ " <td>0.0</td>\n",
1393
+ " <td>0.0</td>\n",
1394
+ " <td>0.0</td>\n",
1395
+ " </tr>\n",
1396
+ " </tbody>\n",
1397
+ "</table>\n",
1398
+ "</div>"
1399
+ ],
1400
+ "text/plain": [
1401
+ " Model Accuracy Precision Recall F1-score\n",
1402
+ "0 random_forest 0.93 0.0 0.0 0.0"
1403
+ ]
1404
+ },
1405
+ "metadata": {},
1406
+ "output_type": "display_data"
1407
+ },
1408
+ {
1409
+ "data": {
1410
+ "text/html": [
1411
+ "<div>\n",
1412
+ "<style scoped>\n",
1413
+ " .dataframe tbody tr th:only-of-type {\n",
1414
+ " vertical-align: middle;\n",
1415
+ " }\n",
1416
+ "\n",
1417
+ " .dataframe tbody tr th {\n",
1418
+ " vertical-align: top;\n",
1419
+ " }\n",
1420
+ "\n",
1421
+ " .dataframe thead th {\n",
1422
+ " text-align: right;\n",
1423
+ " }\n",
1424
+ "</style>\n",
1425
+ "<table border=\"1\" class=\"dataframe\">\n",
1426
+ " <thead>\n",
1427
+ " <tr style=\"text-align: right;\">\n",
1428
+ " <th></th>\n",
1429
+ " <th>Model</th>\n",
1430
+ " <th>True Negatives</th>\n",
1431
+ " <th>False Positives</th>\n",
1432
+ " <th>False Negatives</th>\n",
1433
+ " <th>True Positives</th>\n",
1434
+ " </tr>\n",
1435
+ " </thead>\n",
1436
+ " <tbody>\n",
1437
+ " <tr>\n",
1438
+ " <th>0</th>\n",
1439
+ " <td>random_forest</td>\n",
1440
+ " <td>366</td>\n",
1441
+ " <td>0</td>\n",
1442
+ " <td>26</td>\n",
1443
+ " <td>0</td>\n",
1444
+ " </tr>\n",
1445
+ " </tbody>\n",
1446
+ "</table>\n",
1447
+ "</div>"
1448
+ ],
1449
+ "text/plain": [
1450
+ " Model True Negatives False Positives False Negatives \\\n",
1451
+ "0 random_forest 366 0 26 \n",
1452
+ "\n",
1453
+ " True Positives \n",
1454
+ "0 0 "
1455
+ ]
1456
+ },
1457
+ "metadata": {},
1458
+ "output_type": "display_data"
1459
+ },
1460
+ {
1461
+ "data": {
1462
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAUcAAAFMCAYAAABYjn6oAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAr6ElEQVR4nO3deVxU5f4H8M8IDKDAiBAgCogbIpsIV8R9BZdUyszMfffmvucvl1tm7mFqmOWClLfUzDLzZu6KLCWCK6KmLMIgyirG5nB+f5ijI0djZDkz+Hm/XrzunWfOefjOvPDTM+d55jkyQRAEEBGRhlpSF0BEpIsYjkREIhiOREQiGI5ERCIYjkREIhiOREQiGI5ERCIMpS6gIkpLS5GWlgZzc3PIZDKpyyEiPSAIAu7fvw97e3vUqvX88aFeh2NaWhocHBykLoOI9FBKSgoaNmz43Of1OhzNzc0BAPKWIyEzkEtcDema5BNrpC6BdND9vDw0dXZQ58fz6HU4Pv4oLTOQMxypDAsLC6lLIB32T5fiOCFDRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguGow8YP6oDfdy3AndOrcef0apzYMRsB7VtqHOPibIs96yYi/dRqZISvwckds+FgZ6lxjJ+nM/63eSruRayF8tQqHPpqOkyMjarzpZCENm8KQYtmzqhrZoJ2bXwQHn5a6pL0gqHUBdDzpd7JwaINP+HP5HsAgGH9/LAneALavrMC8TfT4dzQGke3zcKOHyPw8aZfkJtfgBbOdigsKlH34efpjJ82voc123/DrJV7UPxQBc/mDVBaKkj1sqga7dm9C3Nnz8BnG0Lg3649tny1GUGv98a5C1fg6OgodXk6TSYIgt7+K8nLy4NCoYCxx3jIDORSl1MtUk+sxP+t+xE7foxE2IrRKClRYeyisOcef3LHbByNvoqPQn6pxip1Q/YfG6UuQXId2/nB27s11n++Sd3WysMV/foHYemy5RJWJp28vDzYWimQm5sLCwuL5x7Hj9V6olYtGQYF+qCOqRzRF25BJpOhVwc3XE/OwP7PJyPp6HKcCpuDfl081ee8ZmmGNp7OuJuVj+Ohs5B45BP8tmU62rVqLOEroepSXFyM2HMx6N4zQKO9e48AREVGSFSV/mA46ji3pva4e2YtcqPXYf0HgzF49le4ejMdNvXMYF7HBHNG98ThiCvo9++N2H/8PL5bOw4dfJoCAJwbWgMAPpjYB9t+iMCAySGIi0/Bwc1T0cTxNSlfFlWDe/fuQaVSwcbGVqPd1tYWd+6kS1SV/uA1Rx13LfEO/N5ZjrrmtRHUvRW++mg4AsZ9htz7BQCAAycuYsPO4wCAC9dS4efVGOPf6oDwmBuoVUsGANi6Nxxf748CAJxPuI0ubVwwcoA/Fm/YL82Lomolk8k0HguCUKaNyuLIUceVPFThZso9nLuSjMUb9uPitVRMHtIF97LzUVKiQvxNpcbxCTfT1bPVyrt5AID4m5qjhIRb6WVmtKnmsba2hoGBQZlRYkZGRpnRJJXFcNQzMshgLDdEyUMVYq4kobmT5h95MycbJCuzAQBJaZlIy8hB80Y2Gsc0dbJBsjKr2momacjlcni39sGxI4c12o8dPYy2/u0kqkp/8GO1DvtwSj/8duYKUtKzYV7HBIMCfdDJtxn6Tw4BAATvOIKvV45B+LkbOHn2GgLatUSfTu4IHP+Zuo/gHUewcFJfXLyWivMJtzGsnx9cGtni3blbpXpZVI2mzZiFsaOGo7WPL/za+mPrli+RkpyMcRMmSV2azmM46jAbK3Ns/XgE7KwtkJtfiEvXU9F/cgiORV8FAOw/fgFTl32HuWMCsHbeW7iWlIEhc7cgIu6muo+N/z0BE2MjrJo9EJaK2rh4LRWv/3sjbt2+J9XLomo06O3ByMrMxCfLPkK6Ugk3N3f8+PNBODk5SV2azpN8nWNISAhWr14NpVIJNzc3rFu3Dh07dizXua/iOkcqP65zJDF6sc5x165dmDFjBj744APExsaiY8eO6N27N5KTk6Usi4hI2nD89NNPMXbsWIwbNw6urq5Yt24dHBwcsGnTpn8+mYioCkkWjsXFxYiJiUFAgObq/YCAAEREiK/eLyoqQl5ensYPEVFVkCwcH6/et7Utu3o/PV189f7y5cuhUCjUPw4ODtVRKhG9giRf56jN6v0FCxYgNzdX/ZOSklIdJRLRK0iycHy8ev/ZUWJGRkaZ0eRjxsbGsLCw0PipCeop6iDp6HI41q8naR1uTe1x49elqG3CmX9dkZmZCUd7GyQlJkpax6WLF9GkUUM8ePBA0jqqk2ThKJfL4ePjg8OHNVfvHz58GO3avVqr9+eOCcDBUxfV31pZM3cgzuych5zoYER99365+pAbGeLT+YOQcmwF7kWsxZ51E9HApq7GMXXNTbF16Qikn1qN9FOrsXXpCCjMTNXPX76RhrOXkjB1WNdKe21UMatXLkefvv3g1KgRACA5ORkDg/rBSlEHDe2sMWvGNBQXF7+wj6KiIsycPhUN7axhpaiDt97oj9u3b2sck52djTEjh8PWSgFbKwXGjByOnJwc9fPuHh7w/VcbbPgsuLJfos6S9GP1rFmzsGXLFmzbtg3x8fGYOXMmkpOTMWnSq7N638TYCCOD/BG6L1LdJpPJEPZTFL7/7Vy5+1k9dyD6d/XEiAXb0X10MMxM5di7fpJ68wkACF0+Cp4uDTFgSggGTAmBp0tDbP14hEY/YfujMGFQR43zSBoFBQXYsX0rRo0ZBwBQqVR4s39fPHjwAEdPhCNs53f4cd9ezJ87+4X9zJ01A/t/2oewnd/h6Ilw5OfnY+CA16FSqdTHjBr+Li6cj8NPB37FTwd+xYXzcRg7arhGPyNGjsaXmzdpnFeTSfoNmcGDByMzMxMfffQRlEol3N3dcfDgq7V6P7B9SzxUqRB94Za6bfaq7wEA1pZ94N6swT/2YWFmglFB/hi7MAzHoxMAAGMWhuH6/5aim18LHImMh4uzLQLbu6HT8NX441ISAGDy0v/iZNgcNHOywfWkDADA4Yh41FPUQUefZjj5x7XKfrmkhUO//g+GhoZo6+8PADhy+DfEx1/B9YMpsLe3BwCsWLUWE8aOwodLl4leZsrNzUXo9q3YGvo1unXvAQDYtuMbNHN2wLGjR9AzIBBX4+Px26FfcTI8Cm38/AAAn3/xFbp09Me1hAQ0d3EBAPQMCERWZiZOnzqJLl27VcdbICnJJ2Tee+89JCYmoqioCDExMejUqZPUJVWrDq2b4tyVii1693Z1hNzIEEci49Vtyru5uPxnGtp6OQN4dLuEnPt/qYMRAH6/mIic+3+hrdeTzW9LHqpw8Voq2ns3qVBNVHHhp0+htY+v+nF0VCTc3NzVwQg8CqyioiLEnosR7SP2XAxKSkrQ46kNb+3t7eHm5q7e8DY6KhIKhUIdjADg17YtFAqFxqa4crkcHp5eOPOK3ING8nB81TnZ14Pybm6F+rCzskBRcQly/t7j8bGMzPuwtXo0mrC1ssDdrPwy597NyoetteaIIy0jB072VhWqiSouKSkR9es/CcI76emweWay0tLSEnK5/LnL39LT0yGXy2FpqblFnY2tLe78fc6dO+l4zcamzLmv2diU2e7MvkEDySeHqgvDUWImxnIUFj2skr5lMhme/uK82NfoZTIAz7QXFJWgtgnvTii1woICmJiYaLSJLXN7mc1rnz3nef3imXZTE1P8VfCXVr9LXzEcJZaZkw9Li9oV6iM9Mw/GciPUNTfVaH+tnhkyMh99i+hOZh5srMzLnGttaYY7mfc12iwVtXEvu+wok6qXlZU1snOy1Y9t7ezUo73HsrOzUVJS8tzlb3Z2diguLkZ2drZG+92MDPUo1NbWDhl37pQ5997du7B9ZlPc7OwsWFu/GrfYYDhK7PzV22jR2K5CfcTGJ6O45CG6t22hbrOztoBbE3tEnX800RN94RbqmteGr9uTya5/uTuhrnltRJ2/qdGfWxN7xCVoLvWg6ufl7Y2rV66oH/u19cfly5egVD7Z/f3I4d9gbGwM79Y+on14t/aBkZERjj614a1SqcTly5fUG976tfVHbm4u/vj9d/Uxv0dHIzc3t8ymuJcvX0KrVt6V8vp0HcNRYocj49GycX2NUV9jB2t4Nm8AW2sLmBobwbN5A3g2bwAjQwMAgP1rCsT9sFAddHn5hQj9MRIrZr2JLm2aw8ulIbZ9PBKXbqSp935MuHUHh85cxueLh6CNRyO08WiEzxe9i19OXlTPVAOAY/16sLdR4Pjf55F0evYMxJUrl9Wjvh49A+Dq2hJjRw1HXGwsjh87igXz52D02PHqmerU1FR4ubdQB51CocCo0WPx/rzZOH7sKOJiYzFm5DC4u3uoZ69buLoiILAXJk8aj+ioKERHRWHypPHo0/d19Uw1ACQlJiItNRVd/z6vpuNmtxK7fCMN5+KTMTCgNbbuPQMA2LR4KDr5NlMfE71rAQDApc9iJCuzYGhoABdnO5g+9U2WeWv2QqUqxTcrx8LU2AjHf0/AhOlfo7T0yfXE0f+3A2vnvYWfQyYDAH45eREzV+zRqOft3r44EnlVfasFko67hwda+/hi757dGDdhIgwMDPDD/l8wY+p76Na5PUxNTfH2O+9ixao16nMelpTgWkICCp66LrhqbTAMDA0xbMjbKCgoQNdu3fHl1lAYGBioj9kethOzZ0xDvz6PZrX7vt4fwes198Pcvetb9OgZ8MostZN8s9uKqCmb3QZ2aInlM9+Az1ufiE6aVBe5kSEu/bQYIxeEIvKZj9r6qCZsdvvr/w5iwfw5iIm7hFq1pPugV1RUBHfXZtjx9bdo1769ZHVUhvJudsuRow44FH4FTR1s0MBGgdt3ciSrw7F+PazceqhGBGNN0at3H9y4fh2pqamS7kKVnJSE+e9/oPfBqA2OHKnGqgkjR6p8enGbBCIiXcVwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISwXAkIhLBcCQiEsFwJCISUa67D+7fv7/cHfbv3/+liyEi0hXlCsegoKBydSaTyaBSqSpSDxGRTihXOJaWllZ1HUREOqVC1xwLCwsrqw4iIp2idTiqVCosXboUDRo0gJmZGW7evAkAWLRoEbZu3VrpBRIRSUHrcFy2bBlCQ0OxatUqyOVydbuHhwe2bNlSqcUREUlF63AMCwvDl19+iaFDh8LAwEDd7unpiatXr1ZqcUREUtE6HFNTU9G0adMy7aWlpSgpKamUooiIpKZ1OLq5ueH06dNl2vfs2QNvb+9KKYqISGrlWsrztCVLlmD48OFITU1FaWkpfvjhByQkJCAsLAwHDhyoihqJiKqd1iPHfv36YdeuXTh48CBkMhkWL16M+Ph4/Pzzz+jZs2dV1EhEVO20HjkCQGBgIAIDAyu7FiIinfFS4QgAZ8+eRXx8PGQyGVxdXeHj41OZdRERSUrrcLx9+zaGDBmCM2fOoG7dugCAnJwctGvXDt9++y0cHBwqu0Yiomqn9TXHMWPGoKSkBPHx8cjKykJWVhbi4+MhCALGjh1bFTUSEVU7rUeOp0+fRkREBFxcXNRtLi4u2LBhA9q3b1+pxRERSUXrkaOjo6PoYu+HDx+iQYMGlVIUEZHUtA7HVatWYerUqTh79iwEQQDwaHJm+vTpWLNmTaUXSEQkhXJ9rLa0tIRMJlM/fvDgAfz8/GBo+Oj0hw8fwtDQEGPGjCn3xrhERLqsXOG4bt26Ki6DiEi3lCscR44cWdV1EBHplJdeBA4ABQUFZSZnLCwsKlQQEZEu0HpC5sGDB5gyZQpsbGxgZmYGS0tLjR8ioppA63CcN28ejh07hpCQEBgbG2PLli348MMPYW9vj7CwsKqokYio2mn9sfrnn39GWFgYunTpgjFjxqBjx45o2rQpnJycsHPnTgwdOrQq6iQiqlZajxyzsrLg7OwM4NH1xaysLABAhw4dcOrUqcqtjohIIlqHY+PGjZGYmAgAaNmyJXbv3g3g0Yjy8UYURET6TutwHD16NM6fPw8AWLBggfra48yZMzF37txKL5CISApaX3OcOXOm+v937doVV69exdmzZ9GkSRN4eXlVanFERFKp0DpH4NFGFI6OjpVRCxGRzihXOK5fv77cHU6bNu2liyEi0hXlCsfg4OBydSaTyRiORFQjlCscb926VdV1EBHpFK1nq4mIXgUMRyIiEQxHIiIRDEciIhEMRyIiES8VjqdPn8awYcPg7++P1NRUAMDXX3+N8PDwSi2OiEgqWofj3r17ERgYCFNTU8TGxqKoqAgAcP/+fXzyySeVXiARkRS0DsePP/4YX3zxBb766isYGRmp29u1a4dz585VanFERFLROhwTEhLQqVOnMu0WFhbIycmpjJqIiCSndTjWr18fN27cKNMeHh6Oxo0bV0pRRERS0zocJ06ciOnTpyM6OhoymQxpaWnYuXMn5syZg/fee68qaiQiqnZab1k2b9485ObmomvXrigsLESnTp1gbGyMOXPmYMqUKVVRIxFRtZMJgiC8zIl//fUXrly5gtLSUrRs2RJmZmaVXds/ysvLg0KhgLHHeMgM5NX++0m3Zf+xUeoSSAfl5eXB1kqB3NxcWFhYPPe4l97stnbt2vD19X3Z04mIdJrW4di1a1fIZLLnPn/s2LEKFUREpAu0DsdWrVppPC4pKUFcXBwuXbqEkSNHVlZdRESS0jocn7cr+H/+8x/k5+dXuCAiIl1QaRtPDBs2DNu2baus7oiIJFVp4RgZGQkTE5PK6o6ISFJaf6x+8803NR4LggClUomzZ89i0aJFlVYYEZGUtA5HhUKh8bhWrVpwcXHBRx99hICAgEorjIhISlqFo0qlwqhRo+Dh4YF69epVVU1ERJLT6pqjgYEBAgMDkZubW1X1EBHpBK0nZDw8PHDz5s2qqIWISGdoHY7Lli3DnDlzcODAASiVSuTl5Wn8EBHVBFpPyPTq1QsA0L9/f42vEQqCAJlMBpVKVXnVERFJROtwPH78eFXUQUSkU7QOR2dnZzg4OJTZfEIQBKSkpFRaYUREUtL6mqOzszPu3r1bpj0rKwvOzs6VUhQRkdS0DsfH1xaflZ+fz68PElGNUe6P1bNmzQIAyGQyLFq0CLVr11Y/p1KpEB0dXWY7MyIifVXucIyNjQXwaOR48eJFyOVPbksgl8vh5eWFOXPmVH6FREQSKHc4Pp6lHj16ND777LMX3nuBiEjfaT1bvX379qqog4hIp1Tafo5ERDUJw5GISATDkYhIBMORiEgEw5GISATDkYhIBMORiEgEw5GISATDkYhIBMORiEgEw5GISATDkYhIBMORiEgEw5GISATDkYhIBMORiEgEw5GISATDkYhIBMNRz8wZE4Dwb+YiI3wNko4ux+5Px6OZk02Z41ycbbFn3USkn1qNjPA1OLljNhzsLCWomKS2eVMIWjRzRl0zE7Rr44Pw8NNSl6QXGI56pmPrpvhi1yl0HrEGr/97IwwMDHBg0xTUNnlyN0jnhtY4um0Wrt1KR+D4z9Bm8HIs/+pXFBaVSFg5SWHP7l2YO3sG5r//AaL+iEW7Dh0R9HpvJCcnS12azpMJgiBIXcTLysvLg0KhgLHHeMgM5P98Qg1kbWmGlGMr0GNsMM6c+xMAELZiNEpKVBi7KEzi6qSV/cdGqUuQXMd2fvD2bo31n29St7XycEW//kFYumy5hJVJJy8vD7ZWCuTm5r7wLqocOeo5CzMTAEB27l8AAJlMhl4d3HA9OQP7P5+MpKPLcSpsDvp18ZSyTJJAcXExYs/FoHvPAI327j0CEBUZIVFV+oPhqOdWzh6IM+du4MqfSgCATT0zmNcxwZzRPXE44gr6/Xsj9h8/j+/WjkMHn6YSV0vV6d69e1CpVLCxsdVot7W1xZ076RJVpT+0vm816Y7g99+GRzN7dB8drG6rVevRf+8OnLiIDTuPAwAuXEuFn1djjH+rA8JjbkhSK0lHJpNpPBYEoUwblcWRo576dP4gvN7ZA4Hj1yM1I0fdfi87HyUlKsTfVGocn3AznbPVrxhra2sYGBiUGSVmZGSUGU1SWQxHPRQ8fxAGdPNCr4nrkZSWqfFcyUMVYq4kobmT5h9/MycbJCuzq7NMkphcLod3ax8cO3JYo/3Y0cNo699Ooqr0Bz9W65l1C97G4N6+GDTzS+Q/KIStlTkAIDe/UL1UJ3jHEXy9cgzCz93AybPXENCuJfp0ckfg+M+kLJ0kMG3GLIwdNRytfXzh19YfW7d8iZTkZIybMEnq0nQel/LomYJY8eUp4xd/jW9+jlY/HjGgLeaOCUADm7q4lpSBj7/4BQdOXKyuMnUCl/I8snlTCD5duwrpSiXc3Nyxam0wOnTsJHVZkinvUh5Jw/HUqVNYvXo1YmJioFQqsW/fPgQFBZX7/FcxHKn8GI4kRi/WOT548ABeXl7YuJF/xESkWyS95ti7d2/07t273McXFRWhqKhI/TgvL68qyiIi0q/Z6uXLl0OhUKh/HBwcpC6JiGoovQrHBQsWIDc3V/2TkpIidUlEVEPp1VIeY2NjGBsbS10GEb0C9GrkWFPVU9RB0tHlcKxfT9I63Jra48avSzW2PyNpZWZmwtHeBkmJiZLWceniRTRp1BAPHjyQtI7qxHDUAXPHBODgqYtIVmYBANbMHYgzO+chJzoYUd+9X64+5EaG+HT+IKQcW4F7EWuxZ91ENLCpq3FMXXNTbF06AumnViP91GpsXToCCjNT9fOXb6Th7KUkTB3WtdJeG1XM6pXL0advPzg1agQASE5OxsCgfrBS1EFDO2vMmjENxcXFL+yjqKgIM6dPRUM7a1gp6uCtN/rj9u3bGsdkZ2djzMjhsLVSwNZKgTEjhyMnJ0f9vLuHB3z/1QYbPgvGq0LScMzPz0dcXBzi4uIAALdu3UJcXNwrtRGnibERRgb5I3RfpLpNJpMh7KcofP/buXL3s3ruQPTv6okRC7aj++hgmJnKsXf9JNSq9WSDgdDlo+Dp0hADpoRgwJQQeLo0xNaPR2j0E7Y/ChMGddQ4j6RRUFCAHdu3YtSYcQAAlUqFN/v3xYMHD3D0RDjCdn6HH/ftxfy5s1/Yz9xZM7D/p30I2/kdjp4IR35+PgYOeB0qlUp9zKjh7+LC+Tj8dOBX/HTgV1w4H4exo4Zr9DNi5Gh8uXmTxnk1maThePbsWXh7e8Pb2xsAMGvWLHh7e2Px4sVSllWtAtu3xEOVCtEXbqnbZq/6Hpt3n8Kt25kvOPMJCzMTjAryx/uf7sPx6AScT7iNMQvD4N7UHt38WgB4dNuEwPZueO+jnYi+cAvRF25h8tL/om9nD43bLByOiEc9RR109GlWuS+UtHbo1//B0NAQbf39AQBHDv+G+Pgr2LbjG7Ty9ka37j2wYtVabN/61XOXteXm5iJ0+1asWLUW3br3QCtvb2zb8Q0uXbqIY0ePAACuxsfjt0O/ImTzFrT190dbf398/sVXOPjLAVxLSFD31TMgEFmZmTh96mTVv3gdIGk4dunSBYIglPkJDQ2Vsqxq1aF1U5y7UrGRsrerI+RGhjgSGa9uU97NxeU/09DWyxkA4OfpjJz7f+GPS0nqY36/mIic+3+hrVdjdVvJQxUuXktFe+8mFaqJKi789Cm09vFVP46OioSbmzvs7e3VbT0DAlFUVITYczGifcSei0FJSQl6PLXhrb29Pdzc3NUb3kZHRUKhUKCNn5/6GL+2baFQKDQ2xZXL5fDw9MKZV+QeNLzmKDEn+3pQ3s2tUB92VhYoKi5Bzv0CjfaMzPuwtXr09ShbKwvczcovc+7drHzYWmt+hSotIwdO9lYVqokqLikpEfXrPwnCO+npsLHV3G3J0tIScrkc6enim9emp6dDLpfD0lJzuzobW1vc+fucO3fS8ZpN2Zu0vWZjU2a7M/sGDSSfHKouDEeJmRjLUVj0sEr6lslkePqL82Jfo5fJADzTXlBUgtomRlVSE5VfYUEBTExMNNrENql9mc1rnz3nef3imXZTE1P8VfCXVr9LXzEcJZaZkw9Li9oV6iM9Mw/GciPUNTfVaH+tnhkyMh9di7qTmQebv7c3e5q1pRnuZN7XaLNU1Ma97LKjTKpeVlbWyM55sgenrZ2derT3WHZ2NkpKSmBrK755rZ2dHYqLi5GdrbmX592MDPUo1NbWDhl37pQ5997du7B9ZlPc7OwsWFu/9lKvR98wHCV2/upttGhsV6E+YuOTUVzyEN3btlC32VlbwK2JPaLOP5roib5wC3XNa8PXzUl9zL/cnVDXvDaizt/U6M+tiT3iEjSXelD18/L2xtUrV9SP/dr64/LlS1Aqn+zyfuTwbzA2NoZ3ax/RPrxb+8DIyAhHn9rwVqlU4vLlS+oNb/3a+iM3Nxd//P67+pjfo6ORm5tbZlPcy5cvoVUr70p5fbqO4Sixw5HxaNm4vsaor7GDNTybN4CttQVMjY3g2bwBPJs3gJGhAQDA/jUF4n5YqA66vPxChP4YiRWz3kSXNs3h5dIQ2z4eiUs30nAs+ioAIOHWHRw6cxmfLx6CNh6N0MajET5f9C5+OXkR15My1L/bsX492NsocPzv80g6PXsG4sqVy+pRX4+eAXB1bYmxo4YjLjYWx48dxYL5czB67Hj11lupqanwcm+hDjqFQoFRo8fi/XmzcfzYUcTFxmLMyGFwd/dAt+49AAAtXF0RENgLkyeNR3RUFKKjojB50nj06fs6mru4qOtJSkxEWmoquv59Xk2nV18frIku30jDufhkDAxoja17zwAANi0eik6+T5bSRO9aAABw6bMYycosGBoawMXZDqZPfZNl3pq9UKlK8c3KsTA1NsLx3xMwYfrXKC19cj1x9P/twNp5b+HnkMkAgF9OXsTMFXs06nm7ty+ORF7lLRV0gLuHB1r7+GLvnt0YN2EiDAwM8MP+XzBj6nvo1rk9TE1N8fY772LFqjXqcx6WlOBaQgIKnrouuGptMAwMDTFsyNsoKChA127d8eXWUBgYGKiP2R62E7NnTEO/Po9mtfu+3h/B6zW3Ety961v06BkAJycnvAq4E7gOCOzQEstnvgGftz4RnTSpLnIjQ1z6aTFGLghF5DMftfVRTdjs9tf/HcSC+XMQE3dJfWdJKRQVFcHdtRl2fP0t2rVvL1kdlaG8m91y5KgDDoVfQVMHGzSwUeD2nRzJ6nCsXw8rtx6qEcFYU/Tq3Qc3rl9HamqqpFv0JSclYf77H+h9MGqDI0eqsWrCyJEqn17cJoGISFcxHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRDAciYhEMByJiEQwHImIRBhKXUBFCILw6H9VxRJXQrooLy9P6hJIB93/++/icX48j0z4pyN02O3bt+Hg4CB1GUSkh1JSUtCwYcPnPq/X4VhaWoq0tDSYm5tDJpNJXY7k8vLy4ODggJSUFFhYWEhdDukI/l1oEgQB9+/fh729PWrVev6VRb3+WF2rVq0XJv+rysLCgv8IqAz+XTyhUCj+8RhOyBARiWA4EhGJYDjWIMbGxliyZAmMjY2lLoV0CP8uXo5eT8gQEVUVjhyJiEQwHImIRDAciYhEMByJiEQwHGuIkJAQODs7w8TEBD4+Pjh9+rTUJZHETp06hX79+sHe3h4ymQw//vij1CXpFYZjDbBr1y7MmDEDH3zwAWJjY9GxY0f07t0bycnJUpdGEnrw4AG8vLywceNGqUvRS1zKUwP4+fmhdevW2LRpk7rN1dUVQUFBWL58uYSVka6QyWTYt28fgoKCpC5Fb3DkqOeKi4sRExODgIAAjfaAgABERERIVBWR/mM46rl79+5BpVLB1tZWo93W1hbp6ekSVUWk/xiONcSzW7YJgsBt3IgqgOGo56ytrWFgYFBmlJiRkVFmNElE5cdw1HNyuRw+Pj44fPiwRvvhw4fRrl07iaoi0n96vdktPTJr1iwMHz4cvr6+8Pf3x5dffonk5GRMmjRJ6tJIQvn5+bhx44b68a1btxAXF4d69erB0dFRwsr0A5fy1BAhISFYtWoVlEol3N3dERwcjE6dOkldFknoxIkT6Nq1a5n2kSNHIjQ0tPoL0jMMRyIiEbzmSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UiSatSoEdatW6d+LNV2/v/5z3/QqlWr5z5/4sQJyGQy5OTklLvPLl26YMaMGRWqKzQ0FHXr1q1QH/RyGI6kU5RKJXr37l2uY/8p0IgqghtPUIUVFxdDLpdXSl92dnaV0g9RRXHkSBq6dOmCKVOmYMqUKahbty6srKywcOFCPP0V/EaNGuHjjz/GqFGjoFAoMH78eABAREQEOnXqBFNTUzg4OGDatGl48OCB+ryMjAz069cPpqamcHZ2xs6dO8v8/mc/Vt++fRvvvPMO6tWrhzp16sDX1xfR0dEIDQ3Fhx9+iPPnz0Mmk0Emk6k3U8jNzcWECRNgY2MDCwsLdOvWDefPn9f4PStWrICtrS3Mzc0xduxYFBYWavU+ZWZmYsiQIWjYsCFq164NDw8PfPvtt2WOe/jw4Qvfy+LiYsybNw8NGjRAnTp14OfnhxMnTmhVC1UNhiOVsWPHDhgaGiI6Ohrr169HcHAwtmzZonHM6tWr4e7ujpiYGCxatAgXL15EYGAg3nzzTVy4cAG7du1CeHg4pkyZoj5n1KhRSExMxLFjx/D9998jJCQEGRkZz60jPz8fnTt3RlpaGvbv34/z589j3rx5KC0txeDBgzF79my4ublBqVRCqVRi8ODBEAQBffv2RXp6Og4ePIiYmBi0bt0a3bt3R1ZWFgBg9+7dWLJkCZYtW4azZ8+ifv36CAkJ0eo9KiwshI+PDw4cOIBLly5hwoQJGD58OKKjo7V6L0ePHo0zZ87gu+++w4ULFzBo0CD06tUL169f16oeqgIC0VM6d+4suLq6CqWlpeq2+fPnC66ururHTk5OQlBQkMZ5w4cPFyZMmKDRdvr0aaFWrVpCQUGBkJCQIAAQoqKi1M/Hx8cLAITg4GB1GwBh3759giAIwubNmwVzc3MhMzNTtNYlS5YIXl5eGm1Hjx4VLCwshMLCQo32Jk2aCJs3bxYEQRD8/f2FSZMmaTzv5+dXpq+nHT9+XAAgZGdnP/eYPn36CLNnz1Y//qf38saNG4JMJhNSU1M1+unevbuwYMECQRAEYfv27YJCoXju76Sqw2uOVEbbtm017j/j7++PtWvXQqVSwcDAAADg6+urcU5MTAxu3Lih8VFZEASUlpbi1q1buHbtGgwNDTXOa9GixQtnYuPi4uDt7Y169eqVu/aYmBjk5+fDyspKo72goAB//vknACA+Pr7MRsD+/v44fvx4uX+PSqXCihUrsGvXLqSmpqKoqAhFRUWoU6eOxnEvei/PnTsHQRDQvHlzjXOKiorK1E/Vj+FIL+XZECgtLcXEiRMxbdq0Msc6OjoiISEBQNkbgb2Iqamp1nWVlpaifv36otftKnNJzNq1axEcHIx169bBw8MDderUwYwZM1BcXKxVrQYGBoiJiVH/R+cxMzOzSquVXg7DkcqIiooq87hZs2Zl/gE/rXXr1rh8+TKaNm0q+ryrqysePnyIs2fPok2bNgCAhISEF64b9PT0xJYtW5CVlSU6epTL5VCpVGXqSE9Ph6GhIRo1avTcWqKiojBixAiN16iN06dPY8CAARg2bBiAR0F3/fp1uLq6ahz3ovfS29sbKpUKGRkZ6Nixo1a/n6oeJ2SojJSUFMyaNQsJCQn49ttvsWHDBkyfPv2F58yfPx+RkZGYPHky4uLicP36dezfvx9Tp04FALi4uKBXr14YP348oqOjERMTg3Hjxr1wdDhkyBDY2dkhKCgIZ86cwc2bN7F3715ERkYCeDRr/vi+KPfu3UNRURF69OgBf39/BAUF4dChQ0hMTERERAQWLlyIs2fPAgCmT5+Obdu2Ydu2bbh27RqWLFmCy5cva/UeNW3aFIcPH0ZERATi4+MxceJE0fuEv+i9bN68OYYOHYoRI0bghx9+wK1bt/DHH39g5cqVOHjwoFb1UBWQ+qIn6ZbOnTsL7733njBp0iTBwsJCsLS0FN5//32NSQUnJyeNSZTHfv/9d6Fnz56CmZmZUKdOHcHT01NYtmyZ+nmlUin07dtXMDY2FhwdHYWwsLAyfeGpCRlBEITExERh4MCBgoWFhVC7dm3B19dXiI6OFgRBEAoLC4WBAwcKdevWFQAI27dvFwRBEPLy8oSpU6cK9vb2gpGRkeDg4CAMHTpUSE5OVve7bNkywdraWjAzMxNGjhwpzJs3T6sJmczMTGHAgAGCmZmZYGNjIyxcuFAYMWKEMGDAAK3ey+LiYmHx4sVCo0aNBCMjI8HOzk544403hAsXLgiCwAkZKfEeMqShS5cuaNWqlcZX+oheRfxYTUQkguFIRCSCH6uJiERw5EhEJILhSEQkguFIRCSC4UhEJILhSEQkguFIRCSC4UhEJILhSEQk4v8B7YgKY252X9IAAAAASUVORK5CYII=",
1463
+ "text/plain": [
1464
+ "<Figure size 350x350 with 1 Axes>"
1465
+ ]
1466
+ },
1467
+ "metadata": {},
1468
+ "output_type": "display_data"
1469
  }
1470
  ],
1471
  "source": [