Upload P2 - Secom Notebook2 - Mercury.ipynb
Browse files- P2 - Secom Notebook2 - Mercury.ipynb +1571 -0
P2 - Secom Notebook2 - Mercury.ipynb
ADDED
@@ -0,0 +1,1571 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"attachments": {},
|
5 |
+
"cell_type": "markdown",
|
6 |
+
"metadata": {
|
7 |
+
"slideshow": {
|
8 |
+
"slide_type": "skip"
|
9 |
+
}
|
10 |
+
},
|
11 |
+
"source": [
|
12 |
+
"# **Classifying products in Semiconductor Industry**"
|
13 |
+
]
|
14 |
+
},
|
15 |
+
{
|
16 |
+
"attachments": {},
|
17 |
+
"cell_type": "markdown",
|
18 |
+
"metadata": {
|
19 |
+
"slideshow": {
|
20 |
+
"slide_type": "skip"
|
21 |
+
}
|
22 |
+
},
|
23 |
+
"source": [
|
24 |
+
"#### **Import the data**"
|
25 |
+
]
|
26 |
+
},
|
27 |
+
{
|
28 |
+
"cell_type": "code",
|
29 |
+
"execution_count": 85,
|
30 |
+
"metadata": {},
|
31 |
+
"outputs": [],
|
32 |
+
"source": [
|
33 |
+
"# import pandas for data manipulation\n",
|
34 |
+
"# import numpy for numerical computation\n",
|
35 |
+
"# import seaborn for data visualization\n",
|
36 |
+
"# import matplotlib for data visualization\n",
|
37 |
+
"# import stats for statistical analysis\n",
|
38 |
+
"# import train_test_split for splitting data into training and testing sets\n",
|
39 |
+
"\n",
|
40 |
+
"import mercury as mr\n",
|
41 |
+
"import pandas as pd\n",
|
42 |
+
"import numpy as np\n",
|
43 |
+
"import seaborn as sns\n",
|
44 |
+
"import matplotlib.pyplot as plt\n",
|
45 |
+
"from scipy import stats\n",
|
46 |
+
"from sklearn.model_selection import train_test_split\n",
|
47 |
+
"import warnings\n",
|
48 |
+
"warnings.filterwarnings('ignore')\n",
|
49 |
+
"from mlxtend.plotting import plot_confusion_matrix\n",
|
50 |
+
"from sklearn.metrics import confusion_matrix, accuracy_score, precision_score, recall_score, f1_score\n",
|
51 |
+
"from mlxtend.plotting import plot_confusion_matrix"
|
52 |
+
]
|
53 |
+
},
|
54 |
+
{
|
55 |
+
"cell_type": "code",
|
56 |
+
"execution_count": 86,
|
57 |
+
"metadata": {},
|
58 |
+
"outputs": [
|
59 |
+
{
|
60 |
+
"data": {
|
61 |
+
"application/mercury+json": {
|
62 |
+
"allow_download": true,
|
63 |
+
"code_uid": "App.0.40.24.1-rand8c10e2d9",
|
64 |
+
"continuous_update": false,
|
65 |
+
"description": "Recumpute everything dynamically",
|
66 |
+
"full_screen": true,
|
67 |
+
"model_id": "mercury-app",
|
68 |
+
"notify": "{}",
|
69 |
+
"output": "app",
|
70 |
+
"schedule": "",
|
71 |
+
"show_code": false,
|
72 |
+
"show_prompt": false,
|
73 |
+
"show_sidebar": true,
|
74 |
+
"static_notebook": false,
|
75 |
+
"title": "Secom Web App Demo",
|
76 |
+
"widget": "App"
|
77 |
+
},
|
78 |
+
"text/html": [
|
79 |
+
"<h3>Mercury Application</h3><small>This output won't appear in the web app.</small>"
|
80 |
+
],
|
81 |
+
"text/plain": [
|
82 |
+
"mercury.App"
|
83 |
+
]
|
84 |
+
},
|
85 |
+
"metadata": {},
|
86 |
+
"output_type": "display_data"
|
87 |
+
}
|
88 |
+
],
|
89 |
+
"source": [
|
90 |
+
"app = mr.App(title=\"Secom Web App Demo\", description=\"Recumpute everything dynamically\", continuous_update=False)"
|
91 |
+
]
|
92 |
+
},
|
93 |
+
{
|
94 |
+
"cell_type": "code",
|
95 |
+
"execution_count": 87,
|
96 |
+
"metadata": {},
|
97 |
+
"outputs": [],
|
98 |
+
"source": [
|
99 |
+
"# Read the features data from the the url of csv into pandas dataframes and rename the columns to F1, F2, F3, etc.\n",
|
100 |
+
"# Read the labels data from the url of csv into pandas dataframes and rename the columns to pass/fail and date/time\n",
|
101 |
+
"\n",
|
102 |
+
"#url_data = 'https://archive.ics.uci.edu/ml/machine-learning-databases/secom/secom.data'\n",
|
103 |
+
"#url_labels = 'https://archive.ics.uci.edu/ml/machine-learning-databases/secom/secom_labels.data'\n",
|
104 |
+
"\n",
|
105 |
+
"url_data = 'secom_data.csv'\n",
|
106 |
+
"url_labels = 'secom_labels.csv'\n",
|
107 |
+
"\n",
|
108 |
+
"features = pd.read_csv(url_data, delimiter=' ', header=None)\n",
|
109 |
+
"labels = pd.read_csv(url_labels, delimiter=' ', names=['pass/fail', 'date_time'])\n",
|
110 |
+
"\n",
|
111 |
+
"prefix = 'F'\n",
|
112 |
+
"new_column_names = [prefix + str(i) for i in range(1, len(features.columns)+1)]\n",
|
113 |
+
"features.columns = new_column_names\n",
|
114 |
+
"\n",
|
115 |
+
"labels['pass/fail'] = labels['pass/fail'].replace({-1: 0, 1: 1})\n"
|
116 |
+
]
|
117 |
+
},
|
118 |
+
{
|
119 |
+
"attachments": {},
|
120 |
+
"cell_type": "markdown",
|
121 |
+
"metadata": {
|
122 |
+
"slideshow": {
|
123 |
+
"slide_type": "skip"
|
124 |
+
}
|
125 |
+
},
|
126 |
+
"source": [
|
127 |
+
"#### **Split the data**"
|
128 |
+
]
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"cell_type": "code",
|
132 |
+
"execution_count": 88,
|
133 |
+
"metadata": {},
|
134 |
+
"outputs": [
|
135 |
+
{
|
136 |
+
"data": {
|
137 |
+
"application/mercury+json": {
|
138 |
+
"code_uid": "Text.0.40.15.11-rand39f89858",
|
139 |
+
"disabled": false,
|
140 |
+
"hidden": false,
|
141 |
+
"label": "Test Size Ratio",
|
142 |
+
"model_id": "271115d337014695a05d7e83307b4cc4",
|
143 |
+
"rows": 1,
|
144 |
+
"url_key": "",
|
145 |
+
"value": "0.25",
|
146 |
+
"widget": "Text"
|
147 |
+
},
|
148 |
+
"application/vnd.jupyter.widget-view+json": {
|
149 |
+
"model_id": "271115d337014695a05d7e83307b4cc4",
|
150 |
+
"version_major": 2,
|
151 |
+
"version_minor": 0
|
152 |
+
},
|
153 |
+
"text/plain": [
|
154 |
+
"mercury.Text"
|
155 |
+
]
|
156 |
+
},
|
157 |
+
"metadata": {},
|
158 |
+
"output_type": "display_data"
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"data": {
|
162 |
+
"application/mercury+json": {
|
163 |
+
"code_uid": "Text.0.40.15.14-randf159337c",
|
164 |
+
"disabled": false,
|
165 |
+
"hidden": false,
|
166 |
+
"label": "Random State Integer",
|
167 |
+
"model_id": "87a237754fa24e11a17700de955552a8",
|
168 |
+
"rows": 1,
|
169 |
+
"url_key": "",
|
170 |
+
"value": "13",
|
171 |
+
"widget": "Text"
|
172 |
+
},
|
173 |
+
"application/vnd.jupyter.widget-view+json": {
|
174 |
+
"model_id": "87a237754fa24e11a17700de955552a8",
|
175 |
+
"version_major": 2,
|
176 |
+
"version_minor": 0
|
177 |
+
},
|
178 |
+
"text/plain": [
|
179 |
+
"mercury.Text"
|
180 |
+
]
|
181 |
+
},
|
182 |
+
"metadata": {},
|
183 |
+
"output_type": "display_data"
|
184 |
+
}
|
185 |
+
],
|
186 |
+
"source": [
|
187 |
+
"# if there is a date/time column, drop it from the features and labels dataframes, else continue\n",
|
188 |
+
"\n",
|
189 |
+
"if 'date_time' in labels.columns:\n",
|
190 |
+
" labels = labels.drop(['date_time'], axis=1)\n",
|
191 |
+
"\n",
|
192 |
+
"\n",
|
193 |
+
"# Split the dataset and the labels into training and testing sets\n",
|
194 |
+
"# use stratify to ensure that the training and testing sets have the same percentage of pass and fail labels\n",
|
195 |
+
"# use random_state to ensure that the same random split is generated each time the code is run\n",
|
196 |
+
"\n",
|
197 |
+
"test_size_num = mr.Text(label=\"Test Size Ratio\", value='0.25') # \n",
|
198 |
+
"test_size_num = float(test_size_num.value)\n",
|
199 |
+
"\n",
|
200 |
+
"random_state_num = mr.Text(label=\"Random State Integer\", value='13') # \n",
|
201 |
+
"random_state_num = int(random_state_num.value)\n",
|
202 |
+
"\n",
|
203 |
+
"\n",
|
204 |
+
"X_train, X_test, y_train, y_test = train_test_split(\n",
|
205 |
+
" features, labels, test_size = test_size_num, stratify=labels, random_state=random_state_num)\n",
|
206 |
+
"\n"
|
207 |
+
]
|
208 |
+
},
|
209 |
+
{
|
210 |
+
"attachments": {},
|
211 |
+
"cell_type": "markdown",
|
212 |
+
"metadata": {
|
213 |
+
"slideshow": {
|
214 |
+
"slide_type": "skip"
|
215 |
+
}
|
216 |
+
},
|
217 |
+
"source": [
|
218 |
+
"#### **Feature Removal**"
|
219 |
+
]
|
220 |
+
},
|
221 |
+
{
|
222 |
+
"cell_type": "code",
|
223 |
+
"execution_count": 89,
|
224 |
+
"metadata": {},
|
225 |
+
"outputs": [],
|
226 |
+
"source": [
|
227 |
+
"def columns_to_drop(df,drop_duplicates='yes', missing_values_threshold=100, variance_threshold=0, \n",
|
228 |
+
" correlation_threshold=1.1):\n",
|
229 |
+
" \n",
|
230 |
+
" print('------------------------------------------')\n",
|
231 |
+
" print('FEATURE REMOVAL')\n",
|
232 |
+
" \n",
|
233 |
+
" print('Shape of the dataframe is: ', df.shape)\n",
|
234 |
+
"\n",
|
235 |
+
" # Drop duplicated columns\n",
|
236 |
+
" if drop_duplicates == 'yes':\n",
|
237 |
+
" new_column_names = df.columns\n",
|
238 |
+
" df = df.T.drop_duplicates().T\n",
|
239 |
+
" print('the number of columns dropped due to duplications is: ', len(new_column_names) - len(df.columns))\n",
|
240 |
+
" drop_duplicated = list(set(new_column_names) - set(df.columns))\n",
|
241 |
+
"\n",
|
242 |
+
" elif drop_duplicates == 'no':\n",
|
243 |
+
" df = df.T.T\n",
|
244 |
+
" print('No columns were dropped due to duplications') \n",
|
245 |
+
"\n",
|
246 |
+
" # Print the percentage of columns in df with missing values more than or equal to threshold\n",
|
247 |
+
" print('the number of columns dropped due to missing values is: ', len(df.isnull().mean()[df.isnull().mean() > missing_values_threshold/100].index))\n",
|
248 |
+
" \n",
|
249 |
+
" # Print into a list the columns to be dropped due to missing values\n",
|
250 |
+
" drop_missing = list(df.isnull().mean()[df.isnull().mean() > missing_values_threshold/100].index)\n",
|
251 |
+
"\n",
|
252 |
+
" # Drop columns with more than or equal to threshold missing values from df\n",
|
253 |
+
" df.drop(drop_missing, axis=1, inplace=True)\n",
|
254 |
+
" \n",
|
255 |
+
" # Print the number of columns in df with variance less than threshold\n",
|
256 |
+
" print('the number of columns dropped due to low variance is: ', len(df.var()[df.var() <= variance_threshold].index))\n",
|
257 |
+
"\n",
|
258 |
+
" # Print into a list the columns to be dropped due to low variance\n",
|
259 |
+
" drop_variance = list(df.var()[df.var() <= variance_threshold].index)\n",
|
260 |
+
"\n",
|
261 |
+
" # Drop columns with more than or equal to threshold variance from df\n",
|
262 |
+
" df.drop(drop_variance, axis=1, inplace=True)\n",
|
263 |
+
"\n",
|
264 |
+
" # Print the number of columns in df with more than or equal to threshold correlation\n",
|
265 |
+
" \n",
|
266 |
+
" # Create correlation matrix and round it to 4 decimal places\n",
|
267 |
+
" corr_matrix = df.corr().abs().round(4)\n",
|
268 |
+
" upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool))\n",
|
269 |
+
" to_drop = [column for column in upper.columns if any(upper[column] >= correlation_threshold)]\n",
|
270 |
+
" print('the number of columns dropped due to high correlation is: ', len(to_drop))\n",
|
271 |
+
"\n",
|
272 |
+
" # Print into a list the columns to be dropped due to high correlation\n",
|
273 |
+
" drop_correlation = [column for column in upper.columns if any(upper[column] >= correlation_threshold)]\n",
|
274 |
+
"\n",
|
275 |
+
" # Drop columns with more than or equal to threshold correlation from df\n",
|
276 |
+
" df.drop(to_drop, axis=1, inplace=True)\n",
|
277 |
+
" \n",
|
278 |
+
" if drop_duplicates == 'yes':\n",
|
279 |
+
" dropped = (drop_duplicated+drop_missing+drop_variance+drop_correlation)\n",
|
280 |
+
"\n",
|
281 |
+
" elif drop_duplicates =='no':\n",
|
282 |
+
" dropped = (drop_missing+drop_variance+drop_correlation)\n",
|
283 |
+
" \n",
|
284 |
+
" print('Total number of columns to be dropped is: ', len(dropped))\n",
|
285 |
+
" print('New shape of the dataframe is: ', df.shape)\n",
|
286 |
+
"\n",
|
287 |
+
" global drop_duplicates_var\n",
|
288 |
+
" drop_duplicates_var = drop_duplicates\n",
|
289 |
+
" \n",
|
290 |
+
" global missing_values_threshold_var\n",
|
291 |
+
" missing_values_threshold_var = missing_values_threshold\n",
|
292 |
+
"\n",
|
293 |
+
" global variance_threshold_var\n",
|
294 |
+
" variance_threshold_var = variance_threshold\n",
|
295 |
+
"\n",
|
296 |
+
" global correlation_threshold_var\n",
|
297 |
+
" correlation_threshold_var = correlation_threshold\n",
|
298 |
+
" \n",
|
299 |
+
" print(type(dropped))\n",
|
300 |
+
" return dropped"
|
301 |
+
]
|
302 |
+
},
|
303 |
+
{
|
304 |
+
"attachments": {},
|
305 |
+
"cell_type": "markdown",
|
306 |
+
"metadata": {
|
307 |
+
"slideshow": {
|
308 |
+
"slide_type": "skip"
|
309 |
+
}
|
310 |
+
},
|
311 |
+
"source": [
|
312 |
+
"#### **Outlier Removal**"
|
313 |
+
]
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"cell_type": "code",
|
317 |
+
"execution_count": 90,
|
318 |
+
"metadata": {},
|
319 |
+
"outputs": [],
|
320 |
+
"source": [
|
321 |
+
"def outlier_removal(z_df, z_threshold=4):\n",
|
322 |
+
" \n",
|
323 |
+
" global outlier_var\n",
|
324 |
+
"\n",
|
325 |
+
" print('------------------------------------------')\n",
|
326 |
+
" print('OUTLIER REMOVAL')\n",
|
327 |
+
"\n",
|
328 |
+
" if z_threshold == 'none':\n",
|
329 |
+
" print('No outliers were removed')\n",
|
330 |
+
" outlier_var = 'none'\n",
|
331 |
+
" return z_df\n",
|
332 |
+
" \n",
|
333 |
+
" else:\n",
|
334 |
+
" print('The z-score threshold is:', z_threshold)\n",
|
335 |
+
"\n",
|
336 |
+
" z_df_copy = z_df.copy()\n",
|
337 |
+
"\n",
|
338 |
+
" z_scores = np.abs(stats.zscore(z_df_copy))\n",
|
339 |
+
"\n",
|
340 |
+
" # Identify the outliers in the dataset using the z-score method\n",
|
341 |
+
" outliers_mask = z_scores > z_threshold\n",
|
342 |
+
" z_df_copy[outliers_mask] = np.nan\n",
|
343 |
+
"\n",
|
344 |
+
" outliers_count = np.count_nonzero(outliers_mask)\n",
|
345 |
+
" print('The number of outliers removed from the dataset is:', outliers_count)\n",
|
346 |
+
"\n",
|
347 |
+
" outlier_var = z_threshold\n",
|
348 |
+
"\n",
|
349 |
+
" print(type(z_df_copy))\n",
|
350 |
+
" return z_df_copy"
|
351 |
+
]
|
352 |
+
},
|
353 |
+
{
|
354 |
+
"attachments": {},
|
355 |
+
"cell_type": "markdown",
|
356 |
+
"metadata": {
|
357 |
+
"slideshow": {
|
358 |
+
"slide_type": "skip"
|
359 |
+
}
|
360 |
+
},
|
361 |
+
"source": [
|
362 |
+
"#### **Scaling Methods**"
|
363 |
+
]
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"cell_type": "code",
|
367 |
+
"execution_count": 91,
|
368 |
+
"metadata": {},
|
369 |
+
"outputs": [],
|
370 |
+
"source": [
|
371 |
+
"# define a function to scale the dataframe using different scaling models\n",
|
372 |
+
"\n",
|
373 |
+
"def scale_dataframe(scale_model,df_fit, df_transform):\n",
|
374 |
+
" \n",
|
375 |
+
" global scale_model_var\n",
|
376 |
+
"\n",
|
377 |
+
" print('------------------------------------------')\n",
|
378 |
+
" print('SCALING THE DATAFRAME')\n",
|
379 |
+
"\n",
|
380 |
+
" if scale_model == 'robust':\n",
|
381 |
+
" from sklearn.preprocessing import RobustScaler\n",
|
382 |
+
" scaler = RobustScaler()\n",
|
383 |
+
" scaler.fit(df_fit)\n",
|
384 |
+
" df_scaled = scaler.transform(df_transform)\n",
|
385 |
+
" df_scaled = pd.DataFrame(df_scaled, columns=df_transform.columns)\n",
|
386 |
+
" print('The dataframe has been scaled using the robust scaling model')\n",
|
387 |
+
" scale_model_var = 'robust'\n",
|
388 |
+
" return df_scaled\n",
|
389 |
+
" \n",
|
390 |
+
" elif scale_model == 'standard':\n",
|
391 |
+
" from sklearn.preprocessing import StandardScaler\n",
|
392 |
+
" scaler = StandardScaler()\n",
|
393 |
+
" scaler.fit(df_fit)\n",
|
394 |
+
" df_scaled = scaler.transform(df_transform)\n",
|
395 |
+
" df_scaled = pd.DataFrame(df_scaled, columns=df_transform.columns)\n",
|
396 |
+
" print('The dataframe has been scaled using the standard scaling model')\n",
|
397 |
+
" scale_model_var = 'standard'\n",
|
398 |
+
" return df_scaled\n",
|
399 |
+
" \n",
|
400 |
+
" elif scale_model == 'normal':\n",
|
401 |
+
" from sklearn.preprocessing import Normalizer\n",
|
402 |
+
" scaler = Normalizer()\n",
|
403 |
+
" scaler.fit(df_fit)\n",
|
404 |
+
" df_scaled = scaler.transform(df_transform)\n",
|
405 |
+
" df_scaled = pd.DataFrame(df_scaled, columns=df_transform.columns)\n",
|
406 |
+
" print('The dataframe has been scaled using the normal scaling model')\n",
|
407 |
+
" scale_model_var = 'normal'\n",
|
408 |
+
" return df_scaled\n",
|
409 |
+
" \n",
|
410 |
+
" elif scale_model == 'minmax':\n",
|
411 |
+
" from sklearn.preprocessing import MinMaxScaler\n",
|
412 |
+
" scaler = MinMaxScaler()\n",
|
413 |
+
" scaler.fit(df_fit)\n",
|
414 |
+
" df_scaled = scaler.transform(df_transform)\n",
|
415 |
+
" df_scaled = pd.DataFrame(df_scaled, columns=df_transform.columns)\n",
|
416 |
+
" print('The dataframe has been scaled using the minmax scaling model')\n",
|
417 |
+
" scale_model_var = 'minmax'\n",
|
418 |
+
" return df_scaled\n",
|
419 |
+
" \n",
|
420 |
+
" elif scale_model == 'none':\n",
|
421 |
+
" print('The dataframe has not been scaled')\n",
|
422 |
+
" scale_model_var = 'none'\n",
|
423 |
+
" return df_transform\n",
|
424 |
+
" \n",
|
425 |
+
" else:\n",
|
426 |
+
" print('Please choose a valid scaling model: robust, standard, normal, or minmax')\n",
|
427 |
+
" return None"
|
428 |
+
]
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"attachments": {},
|
432 |
+
"cell_type": "markdown",
|
433 |
+
"metadata": {
|
434 |
+
"slideshow": {
|
435 |
+
"slide_type": "skip"
|
436 |
+
}
|
437 |
+
},
|
438 |
+
"source": [
|
439 |
+
"#### **Missing Value Imputation**"
|
440 |
+
]
|
441 |
+
},
|
442 |
+
{
|
443 |
+
"cell_type": "code",
|
444 |
+
"execution_count": 92,
|
445 |
+
"metadata": {},
|
446 |
+
"outputs": [],
|
447 |
+
"source": [
|
448 |
+
"# define a function to impute missing values using different imputation models\n",
|
449 |
+
"\n",
|
450 |
+
"def impute_missing_values(imputation, df_fit, df_transform, n_neighbors=5):\n",
|
451 |
+
"\n",
|
452 |
+
" print('------------------------------------------')\n",
|
453 |
+
" print('IMPUTATION PROCESS')\n",
|
454 |
+
" print('Number of missing values before imputation: ', df_transform.isnull().sum().sum())\n",
|
455 |
+
"\n",
|
456 |
+
" global imputation_var\n",
|
457 |
+
"\n",
|
458 |
+
" if imputation == 'knn':\n",
|
459 |
+
"\n",
|
460 |
+
" from sklearn.impute import KNNImputer\n",
|
461 |
+
" imputer = KNNImputer(n_neighbors=n_neighbors)\n",
|
462 |
+
" imputer.fit(df_fit)\n",
|
463 |
+
" df_imputed = imputer.transform(df_transform)\n",
|
464 |
+
" df_imputed = pd.DataFrame(df_imputed, columns=df_transform.columns)\n",
|
465 |
+
" print('knn imputation has been applied') \n",
|
466 |
+
" print('Number of missing values after imputation: ', df_imputed.isnull().sum().sum())\n",
|
467 |
+
" imputation_var = 'knn'\n",
|
468 |
+
" return df_imputed\n",
|
469 |
+
" \n",
|
470 |
+
" elif imputation == 'mean':\n",
|
471 |
+
"\n",
|
472 |
+
" from sklearn.impute import SimpleImputer\n",
|
473 |
+
" imputer = SimpleImputer(strategy='mean')\n",
|
474 |
+
" imputer.fit(df_fit)\n",
|
475 |
+
" df_imputed = imputer.transform(df_transform)\n",
|
476 |
+
" df_imputed = pd.DataFrame(df_imputed, columns=df_transform.columns)\n",
|
477 |
+
" print('mean imputation has been applied')\n",
|
478 |
+
" print('Number of missing values after imputation: ', df_imputed.isnull().sum().sum())\n",
|
479 |
+
" imputation_var = 'mean'\n",
|
480 |
+
" return df_imputed\n",
|
481 |
+
" \n",
|
482 |
+
" elif imputation == 'median':\n",
|
483 |
+
"\n",
|
484 |
+
" from sklearn.impute import SimpleImputer\n",
|
485 |
+
" imputer = SimpleImputer(strategy='median')\n",
|
486 |
+
" imputer.fit(df_fit)\n",
|
487 |
+
" df_imputed = imputer.transform(df_transform)\n",
|
488 |
+
" df_imputed = pd.DataFrame(df_imputed, columns=df_transform.columns)\n",
|
489 |
+
" print('median imputation has been applied')\n",
|
490 |
+
" print('Number of missing values after imputation: ', df_imputed.isnull().sum().sum())\n",
|
491 |
+
" imputation_var = 'median'\n",
|
492 |
+
" return df_imputed\n",
|
493 |
+
" \n",
|
494 |
+
" elif imputation == 'most_frequent':\n",
|
495 |
+
" \n",
|
496 |
+
" from sklearn.impute import SimpleImputer\n",
|
497 |
+
" imputer = SimpleImputer(strategy='most_frequent')\n",
|
498 |
+
" imputer.fit(df_fit)\n",
|
499 |
+
" df_imputed = imputer.transform(df_transform)\n",
|
500 |
+
" df_imputed = pd.DataFrame(df_imputed, columns=df_transform.columns)\n",
|
501 |
+
" print('most frequent imputation has been applied')\n",
|
502 |
+
" print('Number of missing values after imputation: ', df_imputed.isnull().sum().sum())\n",
|
503 |
+
" imputation_var = 'most_frequent'\n",
|
504 |
+
" return df_imputed\n",
|
505 |
+
" \n",
|
506 |
+
" else:\n",
|
507 |
+
" print('Please choose an imputation model from the following: knn, mean, median, most_frequent')\n",
|
508 |
+
" df_imputed = df_transform.copy()\n",
|
509 |
+
" return df_imputed\n"
|
510 |
+
]
|
511 |
+
},
|
512 |
+
{
|
513 |
+
"attachments": {},
|
514 |
+
"cell_type": "markdown",
|
515 |
+
"metadata": {
|
516 |
+
"slideshow": {
|
517 |
+
"slide_type": "skip"
|
518 |
+
}
|
519 |
+
},
|
520 |
+
"source": [
|
521 |
+
"#### **Feature Reduction / Selection**"
|
522 |
+
]
|
523 |
+
},
|
524 |
+
{
|
525 |
+
"cell_type": "code",
|
526 |
+
"execution_count": 93,
|
527 |
+
"metadata": {},
|
528 |
+
"outputs": [],
|
529 |
+
"source": [
|
530 |
+
"def feature_selection(method, X_train, y_train):\n",
|
531 |
+
"\n",
|
532 |
+
" global feature_selection_var\n",
|
533 |
+
" global selected_features\n",
|
534 |
+
"\n",
|
535 |
+
" print('------------------------------------------')\n",
|
536 |
+
" print('FEATURE SELECTION')\n",
|
537 |
+
"\n",
|
538 |
+
" # if method is boruta, run boruta feature selection and return the selected features and the training set with only the selected features\n",
|
539 |
+
"\n",
|
540 |
+
" if method == 'boruta':\n",
|
541 |
+
" print('Selected method is: ', method)\n",
|
542 |
+
" from boruta import BorutaPy\n",
|
543 |
+
" from sklearn.ensemble import RandomForestClassifier\n",
|
544 |
+
" rf = RandomForestClassifier(n_estimators=100, n_jobs=-1)\n",
|
545 |
+
" boruta_selector = BorutaPy(rf,n_estimators='auto', verbose=0, random_state=42)\n",
|
546 |
+
" boruta_selector.fit(X_train.values, y_train.values.ravel())\n",
|
547 |
+
" selected_feature_indices = boruta_selector.support_\n",
|
548 |
+
" selected_columns = X_train.columns[selected_feature_indices]\n",
|
549 |
+
" X_train_filtered = X_train.iloc[:, selected_feature_indices]\n",
|
550 |
+
" print('Shape of the training set after feature selection with Boruta: ', X_train_filtered.shape)\n",
|
551 |
+
" return X_train_filtered, selected_columns\n",
|
552 |
+
" \n",
|
553 |
+
" if method == 'none':\n",
|
554 |
+
" print('Selected method is: ', method)\n",
|
555 |
+
" X_train_filtered = X_train\n",
|
556 |
+
" print('Shape of the training set after no feature selection: ', X_train_filtered.shape)\n",
|
557 |
+
" feature_selection_var = 'none'\n",
|
558 |
+
" selected_features = X_train_filtered.columns\n",
|
559 |
+
" return X_train_filtered, selected_features \n",
|
560 |
+
" \n",
|
561 |
+
" if method == 'lasso':\n",
|
562 |
+
" print('Selected method is: ', method)\n",
|
563 |
+
" from sklearn.linear_model import LassoCV\n",
|
564 |
+
" from sklearn.feature_selection import SelectFromModel\n",
|
565 |
+
" lasso = LassoCV().fit(X_train, y_train)\n",
|
566 |
+
" model = SelectFromModel(lasso, prefit=True)\n",
|
567 |
+
" X_train_filtered = model.transform(X_train)\n",
|
568 |
+
" selected_features = X_train.columns[model.get_support()]\n",
|
569 |
+
" print('Shape of the training set after feature selection with LassoCV: ', X_train_filtered.shape)\n",
|
570 |
+
" feature_selection_var = 'lasso'\n",
|
571 |
+
" return X_train_filtered, selected_features\n",
|
572 |
+
" \n",
|
573 |
+
" if method == 'pca':\n",
|
574 |
+
" print('Selected method is: ', method)\n",
|
575 |
+
" from sklearn.decomposition import PCA\n",
|
576 |
+
" pca = PCA(n_components=15)\n",
|
577 |
+
" X_train_pca = pca.fit_transform(X_train)\n",
|
578 |
+
" selected_features = X_train.columns[pca.explained_variance_ratio_.argsort()[::-1]][:15]\n",
|
579 |
+
" print('Shape of the training set after feature selection with PCA: ', X_train_pca.shape)\n",
|
580 |
+
" feature_selection_var = 'pca'\n",
|
581 |
+
" return X_train_pca, selected_features\n",
|
582 |
+
" \n",
|
583 |
+
" if method == 'rfe':\n",
|
584 |
+
" print('Selected method is: ', method)\n",
|
585 |
+
" from sklearn.feature_selection import RFE\n",
|
586 |
+
" from sklearn.ensemble import RandomForestClassifier\n",
|
587 |
+
" rfe_selector = RFE(estimator=RandomForestClassifier(n_estimators=100, n_jobs=-1), n_features_to_select=15, step=10, verbose=0)\n",
|
588 |
+
" rfe_selector.fit(X_train, y_train)\n",
|
589 |
+
" selected_features = X_train.columns[rfe_selector.support_]\n",
|
590 |
+
" X_train_filtered = X_train.iloc[:, rfe_selector.support_]\n",
|
591 |
+
" print('Shape of the training set after feature selection with RFE: ', X_train_filtered.shape)\n",
|
592 |
+
" feature_selection_var = 'rfe'\n",
|
593 |
+
" return X_train_filtered, selected_features\n",
|
594 |
+
" "
|
595 |
+
]
|
596 |
+
},
|
597 |
+
{
|
598 |
+
"attachments": {},
|
599 |
+
"cell_type": "markdown",
|
600 |
+
"metadata": {
|
601 |
+
"slideshow": {
|
602 |
+
"slide_type": "skip"
|
603 |
+
}
|
604 |
+
},
|
605 |
+
"source": [
|
606 |
+
"#### **Imbalance Treatment**"
|
607 |
+
]
|
608 |
+
},
|
609 |
+
{
|
610 |
+
"cell_type": "code",
|
611 |
+
"execution_count": 94,
|
612 |
+
"metadata": {},
|
613 |
+
"outputs": [],
|
614 |
+
"source": [
|
615 |
+
"#define a function to oversample and understamble the imbalance in the training set\n",
|
616 |
+
"\n",
|
617 |
+
"def imbalance_treatment(method, X_train, y_train):\n",
|
618 |
+
"\n",
|
619 |
+
" global imbalance_var\n",
|
620 |
+
"\n",
|
621 |
+
" print('------------------------------------------')\n",
|
622 |
+
" print('IMBALANCE TREATMENT')\n",
|
623 |
+
"\n",
|
624 |
+
" if method == 'smote': \n",
|
625 |
+
" from imblearn.over_sampling import SMOTE\n",
|
626 |
+
" sm = SMOTE(random_state=42)\n",
|
627 |
+
" X_train_res, y_train_res = sm.fit_resample(X_train, y_train)\n",
|
628 |
+
" print('Shape of the training set after oversampling with SMOTE: ', X_train_res.shape)\n",
|
629 |
+
" print('Value counts of the target variable after oversampling with SMOTE: \\n', y_train_res.value_counts())\n",
|
630 |
+
" imbalance_var = 'smote'\n",
|
631 |
+
" return X_train_res, y_train_res\n",
|
632 |
+
" \n",
|
633 |
+
" if method == 'undersampling':\n",
|
634 |
+
" from imblearn.under_sampling import RandomUnderSampler\n",
|
635 |
+
" rus = RandomUnderSampler(random_state=42)\n",
|
636 |
+
" X_train_res, y_train_res = rus.fit_resample(X_train, y_train)\n",
|
637 |
+
" print('Shape of the training set after undersampling with RandomUnderSampler: ', X_train_res.shape)\n",
|
638 |
+
" print('Value counts of the target variable after undersampling with RandomUnderSampler: \\n', y_train_res.value_counts())\n",
|
639 |
+
" imbalance_var = 'undersampling'\n",
|
640 |
+
" return X_train_res, y_train_res\n",
|
641 |
+
" \n",
|
642 |
+
" if method == 'rose':\n",
|
643 |
+
" from imblearn.over_sampling import RandomOverSampler\n",
|
644 |
+
" ros = RandomOverSampler(random_state=42)\n",
|
645 |
+
" X_train_res, y_train_res = ros.fit_resample(X_train, y_train)\n",
|
646 |
+
" print('Shape of the training set after oversampling with RandomOverSampler: ', X_train_res.shape)\n",
|
647 |
+
" print('Value counts of the target variable after oversampling with RandomOverSampler: \\n', y_train_res.value_counts())\n",
|
648 |
+
" imbalance_var = 'rose'\n",
|
649 |
+
" return X_train_res, y_train_res\n",
|
650 |
+
" \n",
|
651 |
+
" \n",
|
652 |
+
" if method == 'none':\n",
|
653 |
+
" X_train_res = X_train\n",
|
654 |
+
" y_train_res = y_train\n",
|
655 |
+
" print('Shape of the training set after no resampling: ', X_train_res.shape)\n",
|
656 |
+
" print('Value counts of the target variable after no resampling: \\n', y_train_res.value_counts())\n",
|
657 |
+
" imbalance_var = 'none'\n",
|
658 |
+
" return X_train_res, y_train_res\n",
|
659 |
+
" \n",
|
660 |
+
" else:\n",
|
661 |
+
" print('Please choose a valid resampling method: smote, rose, undersampling or none')\n",
|
662 |
+
" X_train_res = X_train\n",
|
663 |
+
" y_train_res = y_train\n",
|
664 |
+
" return X_train_res, y_train_res"
|
665 |
+
]
|
666 |
+
},
|
667 |
+
{
|
668 |
+
"attachments": {},
|
669 |
+
"cell_type": "markdown",
|
670 |
+
"metadata": {
|
671 |
+
"slideshow": {
|
672 |
+
"slide_type": "skip"
|
673 |
+
}
|
674 |
+
},
|
675 |
+
"source": [
|
676 |
+
"#### **Training Models**"
|
677 |
+
]
|
678 |
+
},
|
679 |
+
{
|
680 |
+
"cell_type": "code",
|
681 |
+
"execution_count": 95,
|
682 |
+
"metadata": {},
|
683 |
+
"outputs": [],
|
684 |
+
"source": [
|
685 |
+
"# define a function where you can choose the model you want to use to train the data\n",
|
686 |
+
"\n",
|
687 |
+
"def train_model(model, X_train, y_train, X_test, y_test):\n",
|
688 |
+
"\n",
|
689 |
+
" global model_var\n",
|
690 |
+
"\n",
|
691 |
+
" if model == 'random_forest':\n",
|
692 |
+
" from sklearn.ensemble import RandomForestClassifier\n",
|
693 |
+
" rfc = RandomForestClassifier(n_estimators=100, random_state=13)\n",
|
694 |
+
" rfc.fit(X_train, y_train)\n",
|
695 |
+
" y_pred = rfc.predict(X_test)\n",
|
696 |
+
" model_var = 'random_forest'\n",
|
697 |
+
" return y_pred\n",
|
698 |
+
"\n",
|
699 |
+
" if model == 'logistic_regression':\n",
|
700 |
+
" from sklearn.linear_model import LogisticRegression\n",
|
701 |
+
" lr = LogisticRegression()\n",
|
702 |
+
" lr.fit(X_train, y_train)\n",
|
703 |
+
" y_pred = lr.predict(X_test)\n",
|
704 |
+
" model_var = 'logistic_regression'\n",
|
705 |
+
" return y_pred\n",
|
706 |
+
" \n",
|
707 |
+
" if model == 'knn':\n",
|
708 |
+
" from sklearn.neighbors import KNeighborsClassifier\n",
|
709 |
+
" knn = KNeighborsClassifier(n_neighbors=5)\n",
|
710 |
+
" knn.fit(X_train, y_train)\n",
|
711 |
+
" y_pred = knn.predict(X_test)\n",
|
712 |
+
" model_var = 'knn'\n",
|
713 |
+
" return y_pred\n",
|
714 |
+
" \n",
|
715 |
+
" if model == 'svm':\n",
|
716 |
+
" from sklearn.svm import SVC\n",
|
717 |
+
" svm = SVC()\n",
|
718 |
+
" svm.fit(X_train, y_train)\n",
|
719 |
+
" y_pred = svm.predict(X_test)\n",
|
720 |
+
" model_var = 'svm'\n",
|
721 |
+
" return y_pred\n",
|
722 |
+
" \n",
|
723 |
+
" if model == 'naive_bayes':\n",
|
724 |
+
" from sklearn.naive_bayes import GaussianNB\n",
|
725 |
+
" nb = GaussianNB()\n",
|
726 |
+
" nb.fit(X_train, y_train)\n",
|
727 |
+
" y_pred = nb.predict(X_test)\n",
|
728 |
+
" model_var = 'naive_bayes'\n",
|
729 |
+
" return y_pred\n",
|
730 |
+
" \n",
|
731 |
+
" if model == 'decision_tree':\n",
|
732 |
+
" from sklearn.tree import DecisionTreeClassifier\n",
|
733 |
+
" dt = DecisionTreeClassifier()\n",
|
734 |
+
" dt.fit(X_train, y_train)\n",
|
735 |
+
" y_pred = dt.predict(X_test)\n",
|
736 |
+
" model_var = 'decision_tree'\n",
|
737 |
+
" return y_pred\n",
|
738 |
+
" \n",
|
739 |
+
" if model == 'xgboost':\n",
|
740 |
+
" from xgboost import XGBClassifier\n",
|
741 |
+
" xgb = XGBClassifier()\n",
|
742 |
+
" xgb.fit(X_train, y_train)\n",
|
743 |
+
" y_pred = xgb.predict(X_test)\n",
|
744 |
+
" model_var = 'xgboost'\n",
|
745 |
+
" return y_pred\n",
|
746 |
+
" \n",
|
747 |
+
" else:\n",
|
748 |
+
" print('Please choose a model from the following: random_forest, logistic_regression, knn, svm, naive_bayes, decision_tree, xgboost')\n",
|
749 |
+
" return None"
|
750 |
+
]
|
751 |
+
},
|
752 |
+
{
|
753 |
+
"cell_type": "code",
|
754 |
+
"execution_count": 96,
|
755 |
+
"metadata": {},
|
756 |
+
"outputs": [],
|
757 |
+
"source": [
|
758 |
+
"evaluation_score_df = pd.DataFrame(columns=['Model', 'Accuracy', 'Precision', 'Recall', 'F1-score', 'model_variables'])\n",
|
759 |
+
"evaluation_count_df = pd.DataFrame(columns=['Model', 'True Negatives', 'False Positives', 'False Negatives', 'True Positives', 'model_variables'])"
|
760 |
+
]
|
761 |
+
},
|
762 |
+
{
|
763 |
+
"attachments": {},
|
764 |
+
"cell_type": "markdown",
|
765 |
+
"metadata": {
|
766 |
+
"slideshow": {
|
767 |
+
"slide_type": "skip"
|
768 |
+
}
|
769 |
+
},
|
770 |
+
"source": [
|
771 |
+
"#### **Evaluation Function**"
|
772 |
+
]
|
773 |
+
},
|
774 |
+
{
|
775 |
+
"cell_type": "code",
|
776 |
+
"execution_count": 101,
|
777 |
+
"metadata": {},
|
778 |
+
"outputs": [],
|
779 |
+
"source": [
|
780 |
+
"#define a function that prints the strings below\n",
|
781 |
+
"def evaluate_models(model='random_forest'):\n",
|
782 |
+
" \n",
|
783 |
+
" print('--------------------------------------------------')\n",
|
784 |
+
"\n",
|
785 |
+
" all_models = ['random_forest', 'logistic_regression', 'knn', 'svm', 'naive_bayes', 'decision_tree', 'xgboost']\n",
|
786 |
+
" evaluation_score_append = []\n",
|
787 |
+
" evaluation_count_append = []\n",
|
788 |
+
" \n",
|
789 |
+
" for selected_model in all_models:\n",
|
790 |
+
" \n",
|
791 |
+
" if model == 'all' or model == selected_model:\n",
|
792 |
+
"\n",
|
793 |
+
" evaluation_score = []\n",
|
794 |
+
" evaluation_count = []\n",
|
795 |
+
"\n",
|
796 |
+
" y_pred = globals()['y_pred_' + selected_model] # Get the prediction variable dynamically\n",
|
797 |
+
"\n",
|
798 |
+
" def namestr(obj, namespace):\n",
|
799 |
+
" return [name for name in namespace if namespace[name] is obj]\n",
|
800 |
+
"\n",
|
801 |
+
" model_name = namestr(y_pred, globals())[0]\n",
|
802 |
+
" model_name = model_name.replace('y_pred_', '') \n",
|
803 |
+
"\n",
|
804 |
+
" cm = confusion_matrix(y_test, y_pred)\n",
|
805 |
+
"\n",
|
806 |
+
" # create a dataframe with the results for each model\n",
|
807 |
+
"\n",
|
808 |
+
" evaluation_score.append(model_name)\n",
|
809 |
+
" evaluation_score.append(round(accuracy_score(y_test, y_pred), 2))\n",
|
810 |
+
" evaluation_score.append(round(precision_score(y_test, y_pred, zero_division=0), 2))\n",
|
811 |
+
" evaluation_score.append(round(recall_score(y_test, y_pred), 2))\n",
|
812 |
+
" evaluation_score.append(round(f1_score(y_test, y_pred), 2))\n",
|
813 |
+
" evaluation_score_append.append(evaluation_score)\n",
|
814 |
+
"\n",
|
815 |
+
"\n",
|
816 |
+
" # create a dataframe with the true positives, true negatives, false positives and false negatives for each model\n",
|
817 |
+
"\n",
|
818 |
+
" evaluation_count.append(model_name)\n",
|
819 |
+
" evaluation_count.append(cm[0][0])\n",
|
820 |
+
" evaluation_count.append(cm[0][1])\n",
|
821 |
+
" evaluation_count.append(cm[1][0])\n",
|
822 |
+
" evaluation_count.append(cm[1][1])\n",
|
823 |
+
" evaluation_count_append.append(evaluation_count)\n",
|
824 |
+
"\n",
|
825 |
+
" \n",
|
826 |
+
" evaluation_score_append = pd.DataFrame(evaluation_score_append, \n",
|
827 |
+
" columns=['Model', 'Accuracy', 'Precision', 'Recall', 'F1-score'])\n",
|
828 |
+
" \n",
|
829 |
+
" evaluation_score_append['drop duplicates'] = drop_duplicates_var\n",
|
830 |
+
" evaluation_score_append['missing values th'] = missing_values_threshold_var\n",
|
831 |
+
" evaluation_score_append['variance th'] = variance_threshold_var\n",
|
832 |
+
" evaluation_score_append['correlation th'] = correlation_threshold_var\n",
|
833 |
+
" evaluation_score_append['outlier removal th'] = outlier_var\n",
|
834 |
+
" evaluation_score_append['scaling method'] = scale_model_var\n",
|
835 |
+
" evaluation_score_append['imputation method'] = imputation_var\n",
|
836 |
+
" evaluation_score_append['feature selection'] = feature_selection_var\n",
|
837 |
+
" evaluation_score_append['imbalance treatment'] = imbalance_var\n",
|
838 |
+
"\n",
|
839 |
+
"\n",
|
840 |
+
" evaluation_score_append['model_variables'] = drop_duplicates_var + '_' + str(missing_values_threshold_var) + '_' + str(\n",
|
841 |
+
" variance_threshold_var) + '_' + str(correlation_threshold_var) + '_' + str(\n",
|
842 |
+
" outlier_var) + '_' + scale_model_var + '_' + imputation_var + '_' + feature_selection_var + '_' + imbalance_var\n",
|
843 |
+
" \n",
|
844 |
+
"\n",
|
845 |
+
" evaluation_count_append = pd.DataFrame(evaluation_count_append,\n",
|
846 |
+
" columns=['Model', 'True Negatives', 'False Positives', 'False Negatives', 'True Positives'])\n",
|
847 |
+
" \n",
|
848 |
+
" evaluation_count_append['drop duplicates'] = drop_duplicates_var\n",
|
849 |
+
" evaluation_count_append['missing values th'] = missing_values_threshold_var\n",
|
850 |
+
" evaluation_count_append['variance th'] = variance_threshold_var\n",
|
851 |
+
" evaluation_count_append['correlation th'] = correlation_threshold_var\n",
|
852 |
+
" evaluation_count_append['outlier removal th'] = outlier_var\n",
|
853 |
+
" evaluation_count_append['scaling method'] = scale_model_var\n",
|
854 |
+
" evaluation_count_append['imputation method'] = imputation_var\n",
|
855 |
+
" evaluation_count_append['feature selection'] = feature_selection_var\n",
|
856 |
+
" evaluation_count_append['imbalance treatment'] = imbalance_var\n",
|
857 |
+
" \n",
|
858 |
+
" evaluation_count_append['model_variables'] = drop_duplicates_var + '_' + str(missing_values_threshold_var) + '_' + str(\n",
|
859 |
+
" variance_threshold_var) + '_' + str(correlation_threshold_var) + '_' + str(\n",
|
860 |
+
" outlier_var) + '_' + scale_model_var + '_' + imputation_var + '_' + feature_selection_var + '_' + imbalance_var\n",
|
861 |
+
" \n",
|
862 |
+
" return evaluation_score_append, evaluation_count_append"
|
863 |
+
]
|
864 |
+
},
|
865 |
+
{
|
866 |
+
"attachments": {},
|
867 |
+
"cell_type": "markdown",
|
868 |
+
"metadata": {
|
869 |
+
"slideshow": {
|
870 |
+
"slide_type": "skip"
|
871 |
+
}
|
872 |
+
},
|
873 |
+
"source": [
|
874 |
+
"### **Input Variables**"
|
875 |
+
]
|
876 |
+
},
|
877 |
+
{
|
878 |
+
"cell_type": "code",
|
879 |
+
"execution_count": 103,
|
880 |
+
"metadata": {},
|
881 |
+
"outputs": [
|
882 |
+
{
|
883 |
+
"data": {
|
884 |
+
"application/mercury+json": {
|
885 |
+
"code_uid": "Text.0.40.15.8-rand3ea159f1",
|
886 |
+
"disabled": false,
|
887 |
+
"hidden": false,
|
888 |
+
"label": "Missing Value Threeshold",
|
889 |
+
"model_id": "1f155017a0e64a71ba2f1a737d93c61d",
|
890 |
+
"rows": 1,
|
891 |
+
"url_key": "",
|
892 |
+
"value": "50",
|
893 |
+
"widget": "Text"
|
894 |
+
},
|
895 |
+
"application/vnd.jupyter.widget-view+json": {
|
896 |
+
"model_id": "1f155017a0e64a71ba2f1a737d93c61d",
|
897 |
+
"version_major": 2,
|
898 |
+
"version_minor": 0
|
899 |
+
},
|
900 |
+
"text/plain": [
|
901 |
+
"mercury.Text"
|
902 |
+
]
|
903 |
+
},
|
904 |
+
"metadata": {},
|
905 |
+
"output_type": "display_data"
|
906 |
+
},
|
907 |
+
{
|
908 |
+
"data": {
|
909 |
+
"application/mercury+json": {
|
910 |
+
"code_uid": "Text.0.40.15.11-rand7772c265",
|
911 |
+
"disabled": false,
|
912 |
+
"hidden": false,
|
913 |
+
"label": "Variance Threshold",
|
914 |
+
"model_id": "6ae03558245f4658abc409261e88e273",
|
915 |
+
"rows": 1,
|
916 |
+
"url_key": "",
|
917 |
+
"value": "0.05",
|
918 |
+
"widget": "Text"
|
919 |
+
},
|
920 |
+
"application/vnd.jupyter.widget-view+json": {
|
921 |
+
"model_id": "6ae03558245f4658abc409261e88e273",
|
922 |
+
"version_major": 2,
|
923 |
+
"version_minor": 0
|
924 |
+
},
|
925 |
+
"text/plain": [
|
926 |
+
"mercury.Text"
|
927 |
+
]
|
928 |
+
},
|
929 |
+
"metadata": {},
|
930 |
+
"output_type": "display_data"
|
931 |
+
},
|
932 |
+
{
|
933 |
+
"data": {
|
934 |
+
"application/mercury+json": {
|
935 |
+
"code_uid": "Text.0.40.15.14-rand52a68a07",
|
936 |
+
"disabled": false,
|
937 |
+
"hidden": false,
|
938 |
+
"label": "Correlation Threshold",
|
939 |
+
"model_id": "325fdc5cafb046c89be6440a2a0e855c",
|
940 |
+
"rows": 1,
|
941 |
+
"url_key": "",
|
942 |
+
"value": "0.95",
|
943 |
+
"widget": "Text"
|
944 |
+
},
|
945 |
+
"application/vnd.jupyter.widget-view+json": {
|
946 |
+
"model_id": "325fdc5cafb046c89be6440a2a0e855c",
|
947 |
+
"version_major": 2,
|
948 |
+
"version_minor": 0
|
949 |
+
},
|
950 |
+
"text/plain": [
|
951 |
+
"mercury.Text"
|
952 |
+
]
|
953 |
+
},
|
954 |
+
"metadata": {},
|
955 |
+
"output_type": "display_data"
|
956 |
+
},
|
957 |
+
{
|
958 |
+
"data": {
|
959 |
+
"application/mercury+json": {
|
960 |
+
"choices": [
|
961 |
+
"none",
|
962 |
+
3,
|
963 |
+
4,
|
964 |
+
5
|
965 |
+
],
|
966 |
+
"code_uid": "Select.0.40.16.18-randd219fc2a",
|
967 |
+
"disabled": false,
|
968 |
+
"hidden": false,
|
969 |
+
"label": "Outlier Removal Threshold",
|
970 |
+
"model_id": "96591acea02b43f9a366ddfdfff1dfb5",
|
971 |
+
"url_key": "",
|
972 |
+
"value": 5,
|
973 |
+
"widget": "Select"
|
974 |
+
},
|
975 |
+
"application/vnd.jupyter.widget-view+json": {
|
976 |
+
"model_id": "96591acea02b43f9a366ddfdfff1dfb5",
|
977 |
+
"version_major": 2,
|
978 |
+
"version_minor": 0
|
979 |
+
},
|
980 |
+
"text/plain": [
|
981 |
+
"mercury.Select"
|
982 |
+
]
|
983 |
+
},
|
984 |
+
"metadata": {},
|
985 |
+
"output_type": "display_data"
|
986 |
+
},
|
987 |
+
{
|
988 |
+
"data": {
|
989 |
+
"application/mercury+json": {
|
990 |
+
"choices": [
|
991 |
+
"none",
|
992 |
+
"standard",
|
993 |
+
"minmax",
|
994 |
+
"robust"
|
995 |
+
],
|
996 |
+
"code_uid": "Select.0.40.16.25-rand7528f0a1",
|
997 |
+
"disabled": false,
|
998 |
+
"hidden": false,
|
999 |
+
"label": "Scaling Variables",
|
1000 |
+
"model_id": "8fc6da55b85c4993bf420c86d2a23a2d",
|
1001 |
+
"url_key": "",
|
1002 |
+
"value": "standard",
|
1003 |
+
"widget": "Select"
|
1004 |
+
},
|
1005 |
+
"application/vnd.jupyter.widget-view+json": {
|
1006 |
+
"model_id": "8fc6da55b85c4993bf420c86d2a23a2d",
|
1007 |
+
"version_major": 2,
|
1008 |
+
"version_minor": 0
|
1009 |
+
},
|
1010 |
+
"text/plain": [
|
1011 |
+
"mercury.Select"
|
1012 |
+
]
|
1013 |
+
},
|
1014 |
+
"metadata": {},
|
1015 |
+
"output_type": "display_data"
|
1016 |
+
},
|
1017 |
+
{
|
1018 |
+
"data": {
|
1019 |
+
"application/mercury+json": {
|
1020 |
+
"choices": [
|
1021 |
+
"mean",
|
1022 |
+
"median",
|
1023 |
+
"knn",
|
1024 |
+
"most_frequent"
|
1025 |
+
],
|
1026 |
+
"code_uid": "Select.0.40.16.29-randb1225c9d",
|
1027 |
+
"disabled": false,
|
1028 |
+
"hidden": false,
|
1029 |
+
"label": "Imputation Methods",
|
1030 |
+
"model_id": "193450229f4543079d7a53267d8c1fe1",
|
1031 |
+
"url_key": "",
|
1032 |
+
"value": "median",
|
1033 |
+
"widget": "Select"
|
1034 |
+
},
|
1035 |
+
"application/vnd.jupyter.widget-view+json": {
|
1036 |
+
"model_id": "193450229f4543079d7a53267d8c1fe1",
|
1037 |
+
"version_major": 2,
|
1038 |
+
"version_minor": 0
|
1039 |
+
},
|
1040 |
+
"text/plain": [
|
1041 |
+
"mercury.Select"
|
1042 |
+
]
|
1043 |
+
},
|
1044 |
+
"metadata": {},
|
1045 |
+
"output_type": "display_data"
|
1046 |
+
},
|
1047 |
+
{
|
1048 |
+
"data": {
|
1049 |
+
"application/mercury+json": {
|
1050 |
+
"choices": [
|
1051 |
+
"none",
|
1052 |
+
"lasso",
|
1053 |
+
"rfe",
|
1054 |
+
"pca",
|
1055 |
+
"boruta"
|
1056 |
+
],
|
1057 |
+
"code_uid": "Select.0.40.16.34-rand9ae51452",
|
1058 |
+
"disabled": false,
|
1059 |
+
"hidden": false,
|
1060 |
+
"label": "Feature Selection",
|
1061 |
+
"model_id": "e556e5025dc14e9e867125680d35025f",
|
1062 |
+
"url_key": "",
|
1063 |
+
"value": "lasso",
|
1064 |
+
"widget": "Select"
|
1065 |
+
},
|
1066 |
+
"application/vnd.jupyter.widget-view+json": {
|
1067 |
+
"model_id": "e556e5025dc14e9e867125680d35025f",
|
1068 |
+
"version_major": 2,
|
1069 |
+
"version_minor": 0
|
1070 |
+
},
|
1071 |
+
"text/plain": [
|
1072 |
+
"mercury.Select"
|
1073 |
+
]
|
1074 |
+
},
|
1075 |
+
"metadata": {},
|
1076 |
+
"output_type": "display_data"
|
1077 |
+
},
|
1078 |
+
{
|
1079 |
+
"data": {
|
1080 |
+
"application/mercury+json": {
|
1081 |
+
"choices": [
|
1082 |
+
"none",
|
1083 |
+
"smote",
|
1084 |
+
"undersampling",
|
1085 |
+
"rose"
|
1086 |
+
],
|
1087 |
+
"code_uid": "Select.0.40.16.38-rand84f919f9",
|
1088 |
+
"disabled": false,
|
1089 |
+
"hidden": false,
|
1090 |
+
"label": "Imbalance Treatment",
|
1091 |
+
"model_id": "29560b71dbf84b45a2a487c92c077ad4",
|
1092 |
+
"url_key": "",
|
1093 |
+
"value": "smote",
|
1094 |
+
"widget": "Select"
|
1095 |
+
},
|
1096 |
+
"application/vnd.jupyter.widget-view+json": {
|
1097 |
+
"model_id": "29560b71dbf84b45a2a487c92c077ad4",
|
1098 |
+
"version_major": 2,
|
1099 |
+
"version_minor": 0
|
1100 |
+
},
|
1101 |
+
"text/plain": [
|
1102 |
+
"mercury.Select"
|
1103 |
+
]
|
1104 |
+
},
|
1105 |
+
"metadata": {},
|
1106 |
+
"output_type": "display_data"
|
1107 |
+
},
|
1108 |
+
{
|
1109 |
+
"data": {
|
1110 |
+
"application/mercury+json": {
|
1111 |
+
"choices": [
|
1112 |
+
"random_forest",
|
1113 |
+
"logistic_regression",
|
1114 |
+
"knn",
|
1115 |
+
"svm",
|
1116 |
+
"naive_bayes",
|
1117 |
+
"decision_tree",
|
1118 |
+
"xgboost"
|
1119 |
+
],
|
1120 |
+
"code_uid": "Select.0.40.16.42-rand98b2dc54",
|
1121 |
+
"disabled": false,
|
1122 |
+
"hidden": false,
|
1123 |
+
"label": "Model Selection",
|
1124 |
+
"model_id": "d90f6d906955444e9abf735d40442d91",
|
1125 |
+
"url_key": "",
|
1126 |
+
"value": "random_forest",
|
1127 |
+
"widget": "Select"
|
1128 |
+
},
|
1129 |
+
"application/vnd.jupyter.widget-view+json": {
|
1130 |
+
"model_id": "d90f6d906955444e9abf735d40442d91",
|
1131 |
+
"version_major": 2,
|
1132 |
+
"version_minor": 0
|
1133 |
+
},
|
1134 |
+
"text/plain": [
|
1135 |
+
"mercury.Select"
|
1136 |
+
]
|
1137 |
+
},
|
1138 |
+
"metadata": {},
|
1139 |
+
"output_type": "display_data"
|
1140 |
+
},
|
1141 |
+
{
|
1142 |
+
"name": "stdout",
|
1143 |
+
"output_type": "stream",
|
1144 |
+
"text": [
|
1145 |
+
"------------------------------------------\n",
|
1146 |
+
"FEATURE REMOVAL\n",
|
1147 |
+
"Shape of the dataframe is: (1175, 590)\n",
|
1148 |
+
"the number of columns dropped due to duplications is: 104\n",
|
1149 |
+
"the number of columns dropped due to missing values is: 28\n",
|
1150 |
+
"the number of columns dropped due to low variance is: 189\n",
|
1151 |
+
"the number of columns dropped due to high correlation is: 90\n",
|
1152 |
+
"Total number of columns to be dropped is: 411\n",
|
1153 |
+
"New shape of the dataframe is: (1175, 179)\n",
|
1154 |
+
"<class 'list'>\n",
|
1155 |
+
"------------------------------------------\n",
|
1156 |
+
"OUTLIER REMOVAL\n",
|
1157 |
+
"The z-score threshold is: 5\n",
|
1158 |
+
"The number of outliers removed from the dataset is: 163\n",
|
1159 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
1160 |
+
"------------------------------------------\n",
|
1161 |
+
"SCALING THE DATAFRAME\n",
|
1162 |
+
"The dataframe has been scaled using the standard scaling model\n",
|
1163 |
+
"------------------------------------------\n",
|
1164 |
+
"SCALING THE DATAFRAME\n",
|
1165 |
+
"The dataframe has been scaled using the standard scaling model\n",
|
1166 |
+
"------------------------------------------\n",
|
1167 |
+
"IMPUTATION PROCESS\n",
|
1168 |
+
"Number of missing values before imputation: 3380\n",
|
1169 |
+
"median imputation has been applied\n",
|
1170 |
+
"Number of missing values after imputation: 0\n",
|
1171 |
+
"------------------------------------------\n",
|
1172 |
+
"IMPUTATION PROCESS\n",
|
1173 |
+
"Number of missing values before imputation: 1196\n",
|
1174 |
+
"median imputation has been applied\n",
|
1175 |
+
"Number of missing values after imputation: 0\n",
|
1176 |
+
"------------------------------------------\n",
|
1177 |
+
"FEATURE SELECTION\n",
|
1178 |
+
"Selected method is: lasso\n",
|
1179 |
+
"Shape of the training set after feature selection with LassoCV: (1175, 14)\n",
|
1180 |
+
"------------------------------------------\n",
|
1181 |
+
"IMBALANCE TREATMENT\n",
|
1182 |
+
"Shape of the training set after oversampling with SMOTE: (2194, 14)\n",
|
1183 |
+
"Value counts of the target variable after oversampling with SMOTE: \n",
|
1184 |
+
" pass/fail\n",
|
1185 |
+
"0 1097\n",
|
1186 |
+
"1 1097\n",
|
1187 |
+
"dtype: int64\n"
|
1188 |
+
]
|
1189 |
+
}
|
1190 |
+
],
|
1191 |
+
"source": [
|
1192 |
+
"# input train and test sets\n",
|
1193 |
+
"input_train_set = X_train\n",
|
1194 |
+
"input_test_set = X_test\n",
|
1195 |
+
"\n",
|
1196 |
+
"# Start widget section\n",
|
1197 |
+
"\n",
|
1198 |
+
"input_drop_duplicates = 'yes'\n",
|
1199 |
+
"input_missing_values_threshold = mr.Text(label=\"Missing Value Threeshold\", value='50')\n",
|
1200 |
+
"input_missing_values_threshold = int(input_missing_values_threshold.value)\n",
|
1201 |
+
"\n",
|
1202 |
+
"input_variance_threshold = mr.Text(label=\"Variance Threshold\", value='0.05') # \n",
|
1203 |
+
"input_variance_threshold = float(input_variance_threshold.value)\n",
|
1204 |
+
"\n",
|
1205 |
+
"input_correlation_threshold = mr.Text(label=\"Correlation Threshold\", value='0.95') # \n",
|
1206 |
+
"input_correlation_threshold = float(input_correlation_threshold.value)\n",
|
1207 |
+
"\n",
|
1208 |
+
"# input outlier removal variables\n",
|
1209 |
+
"input_outlier_removal_threshold = mr.Select(label=\"Outlier Removal Threshold\", value=5, choices=['none', 3, 4, 5]) # 'none' or zscore from 0 to 100\n",
|
1210 |
+
"if input_outlier_removal_threshold.value != 'none':\n",
|
1211 |
+
" input_outlier_removal_threshold = int(input_outlier_removal_threshold.value)\n",
|
1212 |
+
"elif input_outlier_removal_threshold.value == 'none':\n",
|
1213 |
+
" input_outlier_removal_threshold = str(input_outlier_removal_threshold.value)\n",
|
1214 |
+
"\n",
|
1215 |
+
"# input scaling variables\n",
|
1216 |
+
"input_scale_model = mr.Select(label=\"Scaling Variables\", value=\"standard\", choices=['none', 'standard', 'minmax', 'robust']) # 'none', 'normal', 'standard', 'minmax', 'robust'\n",
|
1217 |
+
"input_scale_model = str(input_scale_model.value)\n",
|
1218 |
+
"\n",
|
1219 |
+
"# input imputation variables\n",
|
1220 |
+
"input_imputation_method = mr.Select(label=\"Imputation Methods\", value=\"median\", choices=['mean', 'median', 'knn', 'most_frequent']) # 'mean', 'median', 'knn', 'most_frequent'\n",
|
1221 |
+
"input_n_neighbors = 5 # only for knn imputation\n",
|
1222 |
+
"input_imputation_method = str(input_imputation_method.value)\n",
|
1223 |
+
"\n",
|
1224 |
+
"# import feature selection variables\n",
|
1225 |
+
"input_feature_selection = mr.Select(label=\"Feature Selection\", value=\"lasso\", choices=['none', 'lasso', 'rfe', 'pca', 'boruta']) # 'none', 'lasso', 'rfe', 'pca', 'boruta'\n",
|
1226 |
+
"input_feature_selection = str(input_feature_selection.value)\n",
|
1227 |
+
"\n",
|
1228 |
+
"# input imbalance treatment variables\n",
|
1229 |
+
"input_imbalance_treatment = mr.Select(label=\"Imbalance Treatment\", value=\"smote\", choices=['none', 'smote', 'undersampling', 'rose']) # 'none', 'smote', 'undersampling', 'rose'\n",
|
1230 |
+
"input_imbalance_treatment = str(input_imbalance_treatment.value)\n",
|
1231 |
+
"\n",
|
1232 |
+
"# input model\n",
|
1233 |
+
"input_model = mr.Select(label=\"Model Selection\", value=\"random_forest\", choices=['random_forest', 'logistic_regression', 'knn', 'svm', 'naive_bayes','decision_tree','xgboost'])\n",
|
1234 |
+
"input_model = str(input_model.value)\n",
|
1235 |
+
"\n",
|
1236 |
+
"# remove features using the function list_columns_to_drop\n",
|
1237 |
+
"\n",
|
1238 |
+
"dropped = columns_to_drop(input_train_set, input_drop_duplicates, input_missing_values_threshold, input_variance_threshold, input_correlation_threshold)\n",
|
1239 |
+
"\n",
|
1240 |
+
"# drop the columns from the training and testing sets and save the new sets as new variables\n",
|
1241 |
+
"\n",
|
1242 |
+
"X_train2 = input_train_set.drop(dropped, axis=1)\n",
|
1243 |
+
"X_test2 = input_test_set.drop(dropped, axis=1)\n",
|
1244 |
+
"\n",
|
1245 |
+
"\n",
|
1246 |
+
"# remove outliers from train dataset\n",
|
1247 |
+
"\n",
|
1248 |
+
"X_train_dropped_outliers = outlier_removal(X_train2, input_outlier_removal_threshold)\n",
|
1249 |
+
"\n",
|
1250 |
+
"# scale the training and testing sets\n",
|
1251 |
+
"\n",
|
1252 |
+
"X_train_scaled = scale_dataframe(input_scale_model, X_train_dropped_outliers, X_train_dropped_outliers)\n",
|
1253 |
+
"X_test_scaled = scale_dataframe(input_scale_model, X_train_dropped_outliers, X_test2)\n",
|
1254 |
+
"\n",
|
1255 |
+
"# impute the missing values in the training and testing sets using the function impute_missing_values\n",
|
1256 |
+
"\n",
|
1257 |
+
"X_train_imputed = impute_missing_values(input_imputation_method,X_train_scaled, X_train_scaled, input_n_neighbors)\n",
|
1258 |
+
"X_test_imputed = impute_missing_values(input_imputation_method,X_train_scaled, X_test_scaled, input_n_neighbors)\n",
|
1259 |
+
"\n",
|
1260 |
+
"# select features\n",
|
1261 |
+
"\n",
|
1262 |
+
"X_train_selected, selected_features = feature_selection(input_feature_selection, X_train_imputed, y_train)\n",
|
1263 |
+
"\n",
|
1264 |
+
"X_train_selected = pd.DataFrame(X_train_selected, columns=selected_features)\n",
|
1265 |
+
"X_test_selected = X_test_imputed[selected_features]\n",
|
1266 |
+
"\n",
|
1267 |
+
"# treat imbalance in the training set using the function oversample\n",
|
1268 |
+
"\n",
|
1269 |
+
"X_train_res, y_train_res = imbalance_treatment(input_imbalance_treatment, X_train_selected, y_train)\n",
|
1270 |
+
"\n",
|
1271 |
+
"# train the model using the function train_model and save the predictions as new variables\n",
|
1272 |
+
"\n",
|
1273 |
+
"y_pred_random_forest = train_model('random_forest', X_train_res, y_train_res, X_test_selected, y_test)\n",
|
1274 |
+
"y_pred_logistic_regression = train_model('logistic_regression', X_train_res, y_train_res, X_test_selected, y_test)\n",
|
1275 |
+
"y_pred_knn = train_model('knn', X_train_res, y_train_res, X_test_selected, y_test)\n",
|
1276 |
+
"y_pred_svm = train_model('svm', X_train_res, y_train_res, X_test_selected, y_test)\n",
|
1277 |
+
"y_pred_naive_bayes = train_model('naive_bayes', X_train_res, y_train_res, X_test_selected, y_test)\n",
|
1278 |
+
"y_pred_decision_tree = train_model('decision_tree', X_train_res, y_train_res, X_test_selected, y_test)\n",
|
1279 |
+
"y_pred_xgboost = train_model('xgboost', X_train_res, y_train_res, X_test_selected, y_test)"
|
1280 |
+
]
|
1281 |
+
},
|
1282 |
+
{
|
1283 |
+
"cell_type": "code",
|
1284 |
+
"execution_count": 113,
|
1285 |
+
"metadata": {},
|
1286 |
+
"outputs": [
|
1287 |
+
{
|
1288 |
+
"name": "stdout",
|
1289 |
+
"output_type": "stream",
|
1290 |
+
"text": [
|
1291 |
+
"--------------------------------------------------\n"
|
1292 |
+
]
|
1293 |
+
},
|
1294 |
+
{
|
1295 |
+
"data": {
|
1296 |
+
"text/html": [
|
1297 |
+
"<div>\n",
|
1298 |
+
"<style scoped>\n",
|
1299 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1300 |
+
" vertical-align: middle;\n",
|
1301 |
+
" }\n",
|
1302 |
+
"\n",
|
1303 |
+
" .dataframe tbody tr th {\n",
|
1304 |
+
" vertical-align: top;\n",
|
1305 |
+
" }\n",
|
1306 |
+
"\n",
|
1307 |
+
" .dataframe thead th {\n",
|
1308 |
+
" text-align: right;\n",
|
1309 |
+
" }\n",
|
1310 |
+
"</style>\n",
|
1311 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1312 |
+
" <thead>\n",
|
1313 |
+
" <tr style=\"text-align: right;\">\n",
|
1314 |
+
" <th></th>\n",
|
1315 |
+
" <th>Model</th>\n",
|
1316 |
+
" <th>True Negatives</th>\n",
|
1317 |
+
" <th>False Positives</th>\n",
|
1318 |
+
" <th>False Negatives</th>\n",
|
1319 |
+
" <th>True Positives</th>\n",
|
1320 |
+
" <th>drop duplicates</th>\n",
|
1321 |
+
" <th>missing values th</th>\n",
|
1322 |
+
" <th>variance th</th>\n",
|
1323 |
+
" <th>correlation th</th>\n",
|
1324 |
+
" <th>outlier removal th</th>\n",
|
1325 |
+
" <th>scaling method</th>\n",
|
1326 |
+
" <th>imputation method</th>\n",
|
1327 |
+
" <th>feature selection</th>\n",
|
1328 |
+
" <th>imbalance treatment</th>\n",
|
1329 |
+
" <th>model_variables</th>\n",
|
1330 |
+
" </tr>\n",
|
1331 |
+
" </thead>\n",
|
1332 |
+
" <tbody>\n",
|
1333 |
+
" <tr>\n",
|
1334 |
+
" <th>0</th>\n",
|
1335 |
+
" <td>random_forest</td>\n",
|
1336 |
+
" <td>344</td>\n",
|
1337 |
+
" <td>22</td>\n",
|
1338 |
+
" <td>22</td>\n",
|
1339 |
+
" <td>4</td>\n",
|
1340 |
+
" <td>yes</td>\n",
|
1341 |
+
" <td>50</td>\n",
|
1342 |
+
" <td>0.05</td>\n",
|
1343 |
+
" <td>0.95</td>\n",
|
1344 |
+
" <td>5</td>\n",
|
1345 |
+
" <td>standard</td>\n",
|
1346 |
+
" <td>median</td>\n",
|
1347 |
+
" <td>lasso</td>\n",
|
1348 |
+
" <td>smote</td>\n",
|
1349 |
+
" <td>yes_50_0.05_0.95_5_standard_median_lasso_smote</td>\n",
|
1350 |
+
" </tr>\n",
|
1351 |
+
" </tbody>\n",
|
1352 |
+
"</table>\n",
|
1353 |
+
"</div>"
|
1354 |
+
],
|
1355 |
+
"text/plain": [
|
1356 |
+
" Model True Negatives False Positives False Negatives \\\n",
|
1357 |
+
"0 random_forest 344 22 22 \n",
|
1358 |
+
"\n",
|
1359 |
+
" True Positives drop duplicates missing values th variance th \\\n",
|
1360 |
+
"0 4 yes 50 0.05 \n",
|
1361 |
+
"\n",
|
1362 |
+
" correlation th outlier removal th scaling method imputation method \\\n",
|
1363 |
+
"0 0.95 5 standard median \n",
|
1364 |
+
"\n",
|
1365 |
+
" feature selection imbalance treatment \\\n",
|
1366 |
+
"0 lasso smote \n",
|
1367 |
+
"\n",
|
1368 |
+
" model_variables \n",
|
1369 |
+
"0 yes_50_0.05_0.95_5_standard_median_lasso_smote "
|
1370 |
+
]
|
1371 |
+
},
|
1372 |
+
"metadata": {},
|
1373 |
+
"output_type": "display_data"
|
1374 |
+
},
|
1375 |
+
{
|
1376 |
+
"data": {
|
1377 |
+
"text/html": [
|
1378 |
+
"<div>\n",
|
1379 |
+
"<style scoped>\n",
|
1380 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1381 |
+
" vertical-align: middle;\n",
|
1382 |
+
" }\n",
|
1383 |
+
"\n",
|
1384 |
+
" .dataframe tbody tr th {\n",
|
1385 |
+
" vertical-align: top;\n",
|
1386 |
+
" }\n",
|
1387 |
+
"\n",
|
1388 |
+
" .dataframe thead th {\n",
|
1389 |
+
" text-align: right;\n",
|
1390 |
+
" }\n",
|
1391 |
+
"</style>\n",
|
1392 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1393 |
+
" <thead>\n",
|
1394 |
+
" <tr style=\"text-align: right;\">\n",
|
1395 |
+
" <th></th>\n",
|
1396 |
+
" <th>Model</th>\n",
|
1397 |
+
" <th>Accuracy</th>\n",
|
1398 |
+
" <th>Precision</th>\n",
|
1399 |
+
" <th>Recall</th>\n",
|
1400 |
+
" <th>F1-score</th>\n",
|
1401 |
+
" <th>drop duplicates</th>\n",
|
1402 |
+
" <th>missing values th</th>\n",
|
1403 |
+
" <th>variance th</th>\n",
|
1404 |
+
" <th>correlation th</th>\n",
|
1405 |
+
" <th>outlier removal th</th>\n",
|
1406 |
+
" <th>scaling method</th>\n",
|
1407 |
+
" <th>imputation method</th>\n",
|
1408 |
+
" <th>feature selection</th>\n",
|
1409 |
+
" <th>imbalance treatment</th>\n",
|
1410 |
+
" <th>model_variables</th>\n",
|
1411 |
+
" </tr>\n",
|
1412 |
+
" </thead>\n",
|
1413 |
+
" <tbody>\n",
|
1414 |
+
" <tr>\n",
|
1415 |
+
" <th>0</th>\n",
|
1416 |
+
" <td>random_forest</td>\n",
|
1417 |
+
" <td>0.89</td>\n",
|
1418 |
+
" <td>0.15</td>\n",
|
1419 |
+
" <td>0.15</td>\n",
|
1420 |
+
" <td>0.15</td>\n",
|
1421 |
+
" <td>yes</td>\n",
|
1422 |
+
" <td>50</td>\n",
|
1423 |
+
" <td>0.05</td>\n",
|
1424 |
+
" <td>0.95</td>\n",
|
1425 |
+
" <td>5</td>\n",
|
1426 |
+
" <td>standard</td>\n",
|
1427 |
+
" <td>median</td>\n",
|
1428 |
+
" <td>lasso</td>\n",
|
1429 |
+
" <td>smote</td>\n",
|
1430 |
+
" <td>yes_50_0.05_0.95_5_standard_median_lasso_smote</td>\n",
|
1431 |
+
" </tr>\n",
|
1432 |
+
" </tbody>\n",
|
1433 |
+
"</table>\n",
|
1434 |
+
"</div>"
|
1435 |
+
],
|
1436 |
+
"text/plain": [
|
1437 |
+
" Model Accuracy Precision Recall F1-score drop duplicates \\\n",
|
1438 |
+
"0 random_forest 0.89 0.15 0.15 0.15 yes \n",
|
1439 |
+
"\n",
|
1440 |
+
" missing values th variance th correlation th outlier removal th \\\n",
|
1441 |
+
"0 50 0.05 0.95 5 \n",
|
1442 |
+
"\n",
|
1443 |
+
" scaling method imputation method feature selection imbalance treatment \\\n",
|
1444 |
+
"0 standard median lasso smote \n",
|
1445 |
+
"\n",
|
1446 |
+
" model_variables \n",
|
1447 |
+
"0 yes_50_0.05_0.95_5_standard_median_lasso_smote "
|
1448 |
+
]
|
1449 |
+
},
|
1450 |
+
"metadata": {},
|
1451 |
+
"output_type": "display_data"
|
1452 |
+
}
|
1453 |
+
],
|
1454 |
+
"source": [
|
1455 |
+
"evaluation_score_output, evaluation_counts_output = evaluate_models(input_model)"
|
1456 |
+
]
|
1457 |
+
},
|
1458 |
+
{
|
1459 |
+
"attachments": {},
|
1460 |
+
"cell_type": "markdown",
|
1461 |
+
"metadata": {
|
1462 |
+
"slideshow": {
|
1463 |
+
"slide_type": "skip"
|
1464 |
+
}
|
1465 |
+
},
|
1466 |
+
"source": [
|
1467 |
+
"#### **Confusion Matrix**"
|
1468 |
+
]
|
1469 |
+
},
|
1470 |
+
{
|
1471 |
+
"cell_type": "code",
|
1472 |
+
"execution_count": 125,
|
1473 |
+
"metadata": {},
|
1474 |
+
"outputs": [
|
1475 |
+
{
|
1476 |
+
"data": {
|
1477 |
+
"text/html": [
|
1478 |
+
"<div>\n",
|
1479 |
+
"<style scoped>\n",
|
1480 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1481 |
+
" vertical-align: middle;\n",
|
1482 |
+
" }\n",
|
1483 |
+
"\n",
|
1484 |
+
" .dataframe tbody tr th {\n",
|
1485 |
+
" vertical-align: top;\n",
|
1486 |
+
" }\n",
|
1487 |
+
"\n",
|
1488 |
+
" .dataframe thead th {\n",
|
1489 |
+
" text-align: right;\n",
|
1490 |
+
" }\n",
|
1491 |
+
"</style>\n",
|
1492 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1493 |
+
" <thead>\n",
|
1494 |
+
" <tr style=\"text-align: right;\">\n",
|
1495 |
+
" <th></th>\n",
|
1496 |
+
" <th>Accuracy</th>\n",
|
1497 |
+
" <th>Precision</th>\n",
|
1498 |
+
" <th>Recall</th>\n",
|
1499 |
+
" <th>F1-score</th>\n",
|
1500 |
+
" </tr>\n",
|
1501 |
+
" </thead>\n",
|
1502 |
+
" <tbody>\n",
|
1503 |
+
" <tr>\n",
|
1504 |
+
" <th>0</th>\n",
|
1505 |
+
" <td>0.89</td>\n",
|
1506 |
+
" <td>0.15</td>\n",
|
1507 |
+
" <td>0.15</td>\n",
|
1508 |
+
" <td>0.15</td>\n",
|
1509 |
+
" </tr>\n",
|
1510 |
+
" </tbody>\n",
|
1511 |
+
"</table>\n",
|
1512 |
+
"</div>"
|
1513 |
+
],
|
1514 |
+
"text/plain": [
|
1515 |
+
" Accuracy Precision Recall F1-score\n",
|
1516 |
+
"0 0.89 0.15 0.15 0.15"
|
1517 |
+
]
|
1518 |
+
},
|
1519 |
+
"metadata": {},
|
1520 |
+
"output_type": "display_data"
|
1521 |
+
},
|
1522 |
+
{
|
1523 |
+
"data": {
|
1524 |
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAbsAAAHACAYAAAA7jMYcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAvz0lEQVR4nO3deXxM9/7H8fckkQVJJNQSElJKg9hLUTtBW6pcF23tLW1Ray1XVTe13ZZWr972Uqr1U6r0qrptKWrXiqWW2GpJJCElJKIRWeb3h3baaRaGSaa+eT0fj3ncO2fOnPlMHtJXzsyZORar1WoVAAAGc3P1AAAA5DdiBwAwHrEDABiP2AEAjEfsAADGI3YAAOMROwCA8YgdAMB4Hq4e4HZkZWUpLi5Ovr6+slgsrh4HAFCArFarLl++rKCgILm55b3vdkfHLi4uTsHBwa4eAwDgQjExMapQoUKe69zRsfP19ZUkeVbvK4u7p4unAQpe9MZ/unoEwGUuJyerSmiwrQV5uaNj99tLlxZ3T2KHQsnPz8/VIwAudzNvY3GACgDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETvYear7A/p+6QSd2zxT5zbP1MYPRyuiafUc150zsadS97yjoY+1zHV7n7/zjFL3vKNOLWvl08RA/po5faqa3n+f7grwVUhQaXXv1kVHjxyx3Z6enq6JE8apQZ1wlfQvptCQIA3s10dxcXEunBp/RuxgJ/bcJU2a8181fXymmj4+Uxu/P6pPZw1S2N1l7dbr1LKW7guvpLiES7lua9jjrWS15vPAQD7bvOk7Pf3MEH23ZYdW/2+tMjMy9PCDEbpy5Yok6ZdfftHePbs1fuIkbf9+tz5ZtkLHjh1V90c7u3hy/JGHqwfAX8uaTQfsrr/0ry/0VPcH1LBWqKJOnJUkBd3lr1nju6vTs//SyjnP5Lid8Krl9dwTrfXAEzN0at3UfJ8byC+rvvzK7vp78xYoJKi09uyO1APNmsvf319ffrXWbp03Z89RsyYNFR0drZCQkIIcF7kgdsiVm5tF3drVUzEfT+388aQkyWKxaP5rfTTrw29t8fszH+8i+nBqP42cvkznLlwuyJGBfJeclCRJCggIzH2d5CRZLBaVKFGigKbCjRA7ZFOjSpA2fjha3p4eSklNU4/R/9HhX8M2un87ZWRm6V9LNuZ6/xmju2nHvpNavXF/AU0MFAyr1apxz49Sk6YPqEbNmjmuc/XqVU36x3j16PmY/Pz8CnhC5IbYIZujp86pUc+pKuFbVF3a1NF/XumtiCffko9XEQ3p1VJNHpue630fahGulg2r6v6e0wpwYqBgjHxuqPbv/1HfbtyS4+3p6enq/XhPZWVl6a135hbwdMiLxWq9cw8hSE5Olr+/v7zCn5LF3dPV4xjry38P1YmY8zpy8qymj+6qrKzf/8l4eLgrMzNLZ85d1L0PTdbMMd30bK8WOa6zdc9Pav/UW654Csa6+MM7rh6h0Bg5fJi+WPW51q3fpEqhodluT09P1+O9/q5TJ07of2vXq2TJki6YsnBJTk5WmZL+SkpKuuFeNHt2uCGLLPLy9ND/ffmD1u88YnfbF3OH6P++/F6L/rtDkvTPBd9owcptdutELp+osW98pi+/sz/4BbgTWK1WjRw+TKv+u1LfrNuYZ+h+On5MX63dQOj+gogd7Lw8tJO+2XpIMWcvyreYt7q3r6/mDe5R5yFzlZh0RYlJV+zWT8/I1LnzyTp2OkGSdO7C5RwPSomJv6jTcRcK5DkAzjRi2BAt/eT/9OmK/6q4r6/Onr3+/rW/v798fHyUkZGhx3r8TXv27NaKz1crMzPTtk5gYKA8PXnV6a+A2MFO6ZK+mv9aH5Ut5aeklKs6cCxWnYfM1fqdh109GuAS77/3riQpok1L++XzFqh3336KPXNGq79YJUlq1KCO3Tpfr9ug5i3s7wfXcPl7dnPnztXMmTMVHx+vGjVqaPbs2WrWrNlN3Zf37FDY8Z4dCjNH3rNz6TeoLF26VCNGjNDEiRO1Z88eNWvWTB07dlR0dLQrxwIAGMalsXvzzTc1cOBAPfnkkwoLC9Ps2bMVHBysd99915VjAQAM47LYXbt2TZGRkYqIiLBbHhERoW3btuV4n7S0NCUnJ9tdAAC4EZfF7vz588rMzFSZMmXslpcpU8Z2JNOfTZ06Vf7+/rZLcHBwQYwKALjDufysBxaLxe661WrNtuw3EyZMUFJSku0SExNTECMCAO5wLotdqVKl5O7unm0vLiEhIdve3m+8vLzk5+dnd8GtCfQvptPfTlVIudy/zLYg1KgSpONfvaqi3hxNi4Jz4cIFhQSV1ulTp1w6x4H9+1W5UgXb6YKQf1wWO09PT9WvX19r19qfGmPt2rVq0qSJi6YqPJ4fEKE1m/YrOj5RkhRcNkDLZw/W+W1vKGb9NL0x9m8q4uGe5zZCK5TS0jeeUvT6qTq3eaY+nj5ApQN9c1zXs4iHdnwyXql73lGtquVtyw8ej9OuA6c17IlWzntywA3MnD5VDz7USRUrVZIkRUdHq1uXTirpX0wVypbSqBHP6dq1a3luIy0tTSOHD1OFsqVU0r+Y/vZoZ505cybbev9b86WaNWmkAF8fVShbSj26d7XdVjM8XA3ua6g5b81y6vNDdi59GXPUqFGaN2+ePvjgA0VFRWnkyJGKjo7W008/7cqxjOftVUR9uzTWwpXbJV0/lc+Kt59RMR9Ptek/S30mLFCXNnU0fXTXXLdR1NtTq+cOkdVqVcdBc9S6/yx5FnHXZ28NzvFl6NdHPKL4n5Ny3NaiVTs0qHszubnl/PI14Eypqan6cMF89RvwpCQpMzNTXTs/pCtXrujbjVu0aPEn+nzlZxr3/Og8t/P8qBFa9d+VWrT4E327cYtSUlLU7ZGHlZmZaVtn5YrPNLBfb/Xp21/fR+7T+u+2qkfPx+y206dvf73/3rt294PzufQbVHr06KELFy7olVdeUXx8vGrWrKk1a9aoYsWKrhzLeO2bVldGZqbtHHVtG4cp7O6yuqfjv2xBGv/mSr3/8hOa/M4XunzlarZtNK5ztyoGldT9vabbbh80+WPFb5qplg2rasMfvkMzoml1tbk/TL2en6cOD9TItq2126IU6F9Mzerfo+9+OJofTxmw+fqr/8nDw0P3N24sSVq39htFRR3SsTUxCgoKkiRNm/GGBg3sp5dfnZLj2yVJSUlauGC+5i/8SK3btJUkffDhx7onNFjrv12ndhHtlZGRoTGjhuv1aTPVb8BA232rVqtmt612Ee2VeOGCNm/6Ti1btc6vp13oufwAlWeffVanTp1SWlqaIiMj1bx5c1ePZLwH6lXR7kO/f3C/Ua1QHfwpzm7Pa+22Q/L2KqK6YTkf8erl6SGr1aq0axm2ZVevZSgzM0tN6lS2LSsd6Ku5k3pp4KRF+iU155eF0jMytf9orJrWrZzj7YAzbdm8SfXqN7Bd37lju2rUqGkLnXQ9QGlpadqzOzLHbezZHan09HS1bff7R6eCgoJUo0ZN7di+7dd1disuNlZubm66v0FdhQaX0yMPd9ShgwfttuXp6anwWrW1dctmZz5N/InLY4eCVzEo0C5sZUr6KeFPX9586XKq0q6lq2ypnA8C+n7/KV1JvaYpwx+Rj3cRFfX21NQRXeTu7mZ3n/dfeUL/Wb7FLq45iUu4pIpBfFM88t/p06dUrtzvYTt39qxK/+mguICAAHl6eub6MaizZ8/K09NTAQEBdstLlymjc7/e5+TJE5Kk1159SeP+8YI++3y1SgQEKKJNCyUmJtrdL6h8eZcfLGM6YlcIeXt56mpaht2ynL4h1WKx5Lhcks5fTNHjY+frweY1dX7rGzq3eab8ivto96FoZWZlSZKe7dVCfsW8NfODb244U2pauop6F3H4uQCOupqaKm9vb7tlOb3PnNfHoHLzx/tk/fp7MG78RD3atZvq1a+v9+ctkMVi0Yrln9rdz8fbR7+k/uLQY8ExnPWgELpwKUUBfkVt189dSNZ94fbvk5bw9ZFnEQ+du5D7t9R8u+OwanR+WSVLFFNGRpaSUlJ1cu3rOh17/VQ+Le+rqobhoUraOdvuflsXj9Un/9ulp178yLYswL+oTsacd8KzA/JWsmQpXbx00Xa9TNmy+uH7nXbrXLx4Uenp6bl+DKps2bK6du2aLl68aLd393NCgu5vfP1o8nLlykmS7g2rbrvdy8tLlULvVkyM/SsdFy8mKvRuXsbPT+zZFUL7Dp/RvXeXtV3f+eNJ1agcZPfyY9vGYbqalq49UTf+4P6FS1eUlJKqFvdVVenA4lr93X5J0ugZy9Wwx1Q16jlNjXpOU5dh17/ztPf4BXrpnS/stlGjcpD2Hsl+2DbgbLXr1tXhQ4ds1xvd31gHDx5QfHy8bdm6td/Iy8tLdevVz3EbdevVV5EiRfTtut8/OhUfH6+DBw/YYle3Xn15eXnp2NHfD9ZKT09X9OlTCgmx/+Py4MEDqlOnrlOeH3JG7AqhtdujVP3ucirh6yNJWrc9SlEnzmr+a31Uu1oFtWxYVVNHPqoFK7fZjrQMustfe1e8oAY1fv8l7d35fjUMr6TQCqXU88H7tHjGQM1ZvMF2IteYsxd16Kd42+W35SdiflZswiXbdkLKBSqotL82cM48FIB27drr0KGDunjx+t5d23YRCgurroH9emvvnj3asP5bTRg3Rv0HPmU7EjM2Nla1a96rH77/XtL1E7f26z9Q48eO1ob132rvnj0a0PcJ1awZbjs608/PT08OelqvvjJZ69Z+o6NHjui5Ic9Ikrr+rbttntOnTikuNlatfr0f8gcvYxZCB4/HaXdUtLpF1NP8z7YqK8uqrs+9q9kTemj9glFKTUvXsq92afybK2338fBwV7XQsvL5wzedVK1UWq8M66xA/6I6HZeoGfO/1tsfr3d4nr93bKB12w8rOv7ijVcGblPN8HDVq99An326TE8OGix3d3etWPWlRgx7Vq1bNJWPj4/+3vMxTZvxT9t9MtLTdfTIEaX+4X21GW/MkruHh57o9XelpqaqVes2en/+Qrm7//5lDFOnz5SHh4cG9uut1NRU3dewkf73zXq7lz6XLV2itu0i+MhVPnP5yVtvBydvvXXtH6iuqSMfVf2/vS5X/hPwLOKhA/99UX0nLNT2fSdcNsedipO33pqv/rdGE8aNUeTeA3Jzc90LXGlpaaoZdo8+/GiJmjRt6rI57lSOnLyVPbtC6usth1QluLTKl/bXmXOXXDZHSLlATZ//NaFDgerQ8UEdP3ZMsbGxLj17SvTp0xo3fiKhKwDs2QF3MPbsUJg5smfHASoAAOMROwCA8YgdAMB4xA4AYDxiBwAwHrEDABiP2AEAjEfsAADGI3YAAOMROwCA8YgdAMB4xA4AYDxiBwAwHrEDABiP2AEAjEfsAADGI3YAAOMROwCA8YgdAMB4xA4AYDxiBwAwHrEDABiP2AEAjEfsAADGI3YAAOMROwCA8YgdAMB4xA4AYDxiBwAwHrEDABiP2AEAjEfsAADGI3YAAOMROwCA8YgdAMB4xA4AYDxiBwAwHrEDABiP2AEAjEfsAADGI3YAAOMROwCA8YgdAMB4xA4AYDxiBwAwHrEDABiP2AEAjEfsAADGI3YAAON53MxKq1atuukNdu7c+ZaHAQAgP9xU7Lp06XJTG7NYLMrMzLydeQAAcLqbil1WVlZ+zwEAQL65rffsrl696qw5AADINw7HLjMzU6+++qrKly+v4sWL68SJE5KkSZMmaf78+U4fEACA2+Vw7KZMmaKFCxdqxowZ8vT0tC0PDw/XvHnznDocAADO4HDsFi1apPfff1+PP/643N3dbctr1aqlw4cPO3U4AACcweHYxcbGqkqVKtmWZ2VlKT093SlDAQDgTA7HrkaNGtq8eXO25Z9++qnq1q3rlKEAAHCmm/rowR9NnjxZvXv3VmxsrLKysrRixQodOXJEixYt0urVq/NjRgAAbovDe3adOnXS0qVLtWbNGlksFr344ouKiorSF198oXbt2uXHjAAA3BaH9+wkqX379mrfvr2zZwEAIF/cUuwkadeuXYqKipLFYlFYWJjq16/vzLkAAHAah2N35swZ9erVS1u3blWJEiUkSZcuXVKTJk20ZMkSBQcHO3tGAABui8Pv2Q0YMEDp6emKiopSYmKiEhMTFRUVJavVqoEDB+bHjAAA3BaH9+w2b96sbdu2qVq1arZl1apV05w5c9S0aVOnDgcAgDM4vGcXEhKS44fHMzIyVL58eacMBQCAMzkcuxkzZmjYsGHatWuXrFarpOsHqwwfPlz//Oc/nT4gAAC366ZexgwICJDFYrFdv3Lliho1aiQPj+t3z8jIkIeHhwYMGHDTJ3oFAKCg3FTsZs+enc9jAACQf24qdn379s3vOQAAyDe3/KFySUpNTc12sIqfn99tDQQAgLM5fIDKlStXNHToUJUuXVrFixdXQECA3QUAgL8ah2M3duxYrV+/XnPnzpWXl5fmzZunl19+WUFBQVq0aFF+zAgAwG1x+GXML774QosWLVLLli01YMAANWvWTFWqVFHFihW1ePFiPf744/kxJwAAt8zhPbvExESFhoZKuv7+XGJioiTpgQce0KZNm5w7HQAATuBw7O6++26dOnVKklS9enUtW7ZM0vU9vt++GBoAgL8Sh2PXv39/7du3T5I0YcIE23t3I0eO1PPPP+/0AQEAuF0Ov2c3cuRI2/9v1aqVDh8+rF27dqly5cqqXbu2U4cDAMAZbutzdtL1L4YOCQlxxiwAAOSLm4rd22+/fdMbfO655255GAAA8sNNxW7WrFk3tTGLxeKa2JWrKhXxKfjHBVwsITnN1SMALnPZgX//NxW7kydP3vIwAAC4msNHYwIAcKchdgAA4xE7AIDxiB0AwHjEDgBgvFuK3ebNm/XEE0+ocePGio2NlSR99NFH2rJli1OHAwDAGRyO3Weffab27dvLx8dHe/bsUVra9c85XL58Wa+//rrTBwQA4HY5HLvXXntN//73v/Wf//xHRYoUsS1v0qSJdu/e7dThAABwBodjd+TIETVv3jzbcj8/P126dMkZMwEA4FQOx65cuXI6fvx4tuVbtmzR3Xff7ZShAABwJodjN3jwYA0fPlw7d+6UxWJRXFycFi9erDFjxujZZ5/NjxkBALgtDp/iZ+zYsUpKSlKrVq109epVNW/eXF5eXhozZoyGDh2aHzMCAHBbbul8dlOmTNHEiRN16NAhZWVlqXr16ipevLizZwMAwClu+eStRYsWVYMGDZw5CwAA+cLh2LVq1UoWiyXX29evX39bAwEA4GwOx65OnTp219PT07V3714dOHBAffv2ddZcAAA4jcOxy+2s5S+99JJSUlJueyAAAJzNaV8E/cQTT+iDDz5w1uYAAHAap8Vu+/bt8vb2dtbmAABwGodfxuzatavddavVqvj4eO3atUuTJk1y2mAAADiLw7Hz9/e3u+7m5qZq1arplVdeUUREhNMGAwDAWRyKXWZmpvr166fw8HAFBgbm10wAADiVQ+/Zubu7q3379kpKSsqveQAAcDqHD1AJDw/XiRMn8mMWAADyhcOxmzJlisaMGaPVq1crPj5eycnJdhcAAP5qHD5ApUOHDpKkzp07231tmNVqlcViUWZmpvOmAwDACRyO3YYNG/JjDgAA8o3DsQsNDVVwcHC2L4O2Wq2KiYlx2mAAADiLw+/ZhYaG6ueff862PDExUaGhoU4ZCgAAZ3I4dr+9N/dnKSkpfF0YAOAv6aZfxhw1apQkyWKxaNKkSSpatKjttszMTO3cuTPb6X8AAPgruOnY7dmzR9L1Pbv9+/fL09PTdpunp6dq166tMWPGOH9CAABu003H7rejMPv376+33npLfn5++TYUAADO5PDRmAsWLMiPOQAAyDdOO58dAAB/VcQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETvc0Jju9bTlzb8pYdlTOv1xfy2b2FH3lC9hu93D3U2v9WusH97pqfPLB+nEh/00b1QblQss6rqhgQLyr1kzVLGkt17+xxhXj4I8EDvcULOaQfr3lwfUYsxnenjSKrm7u2n1q51V1MtDklTUy0N1Kt+laZ/sUuPhy9Tz9f/pnqAS+nTSQy6eHMhf+3bv0v8tmq+wGuGuHgU3QOxwQ49MXq2Pvz2sqOhE7T95QYNnf6uQ0r6qW+UuSVLyL9f08KRV+mzLcR2LvaTvj5zTqPc2q/49pRV8V3EXTw/kjyspKRr+dD9NnzVX/iVKuHoc3ACxg8P8inlJki6mpOW+TlFPZWVZdSmPdYA72aSxw9W6XUc90LKNq0fBTfBw9QC480x/sqm2HozTodOJOd7uVcRdr/ZrrKXfHdXl1PQCng7If6tWLNOBH/dq1bqtrh4FN4nYwSGznm6u8Eol1Wbsihxv93B300djI+RmsWj43O8KeDog/8XFxujlf4zRR8tXy9vb29Xj4CYRO9y0Nwc308ONKqnt+JWKvXAl2+0e7m5aPL69Kpb1U8d/fM5eHYy0f+8enf85QQ+3bmxblpmZqZ3btujDee/qWHyy3N3dXTghckLscFNmPd1MnRvfrYgJn+v0ucvZbv8tdJWD/NVhwudKvMx7dTBT0+at9M2WSLtlY4YOUuV7quqZ4WMI3V8UscMNzX6muXq0qKrur61Ryi/pKlPi+ufnkn5J09VrmXJ3s+j/JnRQ3cql1PWVL+Xu5mZbJzHlqtIzslw5PuBUxX19VS2sht2yosWKKiCwZLbl+Otwaew2bdqkmTNnKjIyUvHx8Vq5cqW6dOniypGQg8EPXf8M0dppj9otf2rWt/r428MqX6q4Ot0fKkn6fk5Pu3UiJqzU5v1xBTMoAOTCpbG7cuWKateurf79+6tbt26uHAV58Hn4X3neHp1w+YbrACZbumqtq0fADbg0dh07dlTHjh1dOQIAoBC4o96zS0tLU1ra7wc+JCcnu3AaAMCd4o76BpWpU6fK39/fdgkODnb1SACAO8AdFbsJEyYoKSnJdomJiXH1SACAO8AdFTsvLy/5+fnZXXBrAn29dPrj/gop7evSOWpUDNTxhX1tZ1AACsLFxAuqVy1YMdGnXDrH4UMH1KhmZf1yJfuXNMC57qjYwXme715fa74/peiE6x8QD76ruJa/+KDOLx+kmMUD9MagZirikfc/jzIlimr+qLY6+VF/nV8+SNtm/12PNq1st87h+b2VunqI3eXVvvfbbj94OlG7jp7TsC61nf8kgVz8a/ZMtWn/oIJDKkmSYs9Ea8BjXXVvcKDq3FNek8eP0rVr1/Lcxv99OE89OrdTjYp3qWJJbyUlXcq2TtM6VVWxpLfdZdrLL9huv7d6TdWu10Dz3n3bmU8POXDpn9MpKSk6fvy47frJkye1d+9eBQYGKiQkxIWTmc3b0119I8L06EurJUlubhatmPywzielqs3YFQr09da8UW1ksUij3tuc63bmj24r/2Ke6v7qlzqfdFU9Wt6jj8ZGqOnIT7XvxHnbei9/vFMLvjpku55y1f5rxBatO6w5Q1po5qe7lZVldfKzBexdTU3V0o8XauHSzyVd/6qv/j0fVWDJUlr+5XpdSrygUUOektVq1SvTZ+W6ndTUVLVoHaEWrSM0/dVJua43asKL6tV7gO16sWL2p736+2N99I/RwzRk5Fi+fSUfuXTPbteuXapbt67q1q0rSRo1apTq1q2rF1980ZVjGa99/YrKyLRq5+FzkqS2dYMVFhygAW+s1b4T57Vh3xmNn79V/dtXl69PkVy30+jespr7xY/adTRBp84la/rSSF26ck11Kt9lt17KL9d07tIvtsuVP8Vu7e5oBfp6q1nNIOc/WeBPNqz7Wh4eHqp/3/VXGDZtWKdjR6L01r8XqGatOnqgZRu98Oo0ffLRB7qcxxHfA58epmdHPK+6DRrm+XjFi/uqdJmytkux4vaxa966nS5dvKAdWzfd/pNDrlwau5YtW8pqtWa7LFy40JVjGe+BmkHafSzBdr3RvWV1MDpR8Ym/2JatjYyRt6eH6lYpnet2th2K09+a3aOA4l6yWKTuzavIq4i7Nu2PtVtv1N/q6cz/DdSOt3to7N/rZ3t5ND0jS/tPXlDTGsQO+e/77VsUXqee7fruH3aoWlgNlSn3+7+/Fq3bKS0tTfv37b7tx3v37TdUu0qQOrZoqDlvTMv28qinp6fCatTSDzs4XVB+4qiAQqhiaV/FJ/7+hniZgKJKuPiL3TqXrqQpLT1TZQOK5rqd3tO/0UfjIhT3yZNKz8jUL2kZ6jFljU6e/f2v4X+t+lF7fvpZl1LS1KBqab3St7EqlfHTs3M22G0r7kKKKrr4YBkUDmeiT6tM2XK26z8nnFOpu+z/qPMvESBPT0/9nHDuth6r/+ChqlmrjvxLBGjv7h8049UXFRN9SjPe+rfdemXKBelM9OnbeizkjdgVQt5eHrp6IdNuWU7vlFkkWXO85bqXejdSQHFvdZz4X11ITlWn++/W4vEd1HbcCh389cSuc/67z7b+gVMXdCklTUv+0VEvLNxmd2aE1GuZHJGJAnH1aqq8vOzPQ2exWLKtZ7Vac1zuiCefec72/8NqhMvfP0DP9O+lCZOnKCCwpO02bx9vpaam3tZjIW8cjVkIXUi+qoDiXrbr5y7+ojJ/2oMrUcxLnkXcde5izr+AoWX99EynWhr81npt3HdG+09e0OtLftDu4wka/HB4ro/9/ZHrfylXLlfCbnlAcS+dT+aXHfkvoGRJJSVdtF2/q3SZbHtwSZcuKj09Pdse3+2q9+v7e6dO/GS3/NLFiwosWcqpjwV7xK4Q2vfTz7o3JNB2fefhs6oREmj3kmXbesG6ei1De44n5LQJ217Yn4+ezMyyyi2Pv4Zr3339F/rsRfvPFdWoGKi9P53P6S6AU9UIr6PjRw7brte7734diTqoc2fjbcs2bVgnLy8vhdeul9MmbtnB/ddf6Shdtqzd8qNRB1WjFh+/yU/ErhBauzta1UMCVKLY9b27dXtiFBVzUfNHt1Xtu0upZe0KmjqgiRZ8fch2tvGgksW0993H1KDq9b90j5y5pONxl/TO0JZqULW0Qsv6afijddSmTrC+2HFSktTo3jIa9kht1QotpYplfNXtgSp6Z2hLfbHjpGJ+TrHNE1LaV0Eli2vD3jMF/JNAYdSidTsdPXxISZeu7901b9VW91QL08hnBujAj3u15bv1mvLiePXsPUC+v35xxdm4WLVuVEt7I3+wbSfh3Fkd3L9Pp05e30s7cuiADu7fp0sXr7+EH/nDDs17920d3L9P0adPavXnyzVh1FC16/Cwylf4/aNVMdGndDY+Tg+0aF1QP4JCiTdJCqGDpxO1+/jP6tasiuZ/dVBZWVZ1fXm1Zj/TQutndFXqtUwt++6oxs///egwD3c3VQsOkM+ve3QZmVnq8tJqvda3sZZPekjFfYrop/gkPTlrnb7edf2N9rT0TP2tWRX9o9d98iriruiEy/rg60N687M9dvP8vcU9WrcnWtE/Zz8DOuBs91avqfA69bX68+V6vN9Tcnd314JPVuqF54er24Ot5O3to0e69dDEV6bZ7pOeka6fjh9VaurvB3ItXvgfzZ4xxXa9+8NtJUn/nPO+uj/WR56eXlq9crnemjFFadfSVKFCiHr16a+nh422m2fVZ8vUvFVbVQiumM/PvHCzWK3WO/ZTvMnJyfL395dXxExZivi4epw7SvsGFTV1QBPVH7JErvwX4OnhpgPvP6G+M7/R9qizrhvkDnVk0ZOuHuGOtH7tV5ry4nit3bpbbm6ue4ErLS1NLe+robf/s0j3NWrisjnuVJeTk1UztLSSkpJu+PWR7NkVUl/vOq0qQf4qX7K4zpxPufEd8klIaV9NXxZJ6FCgWrfroFMnjutsfKyCyrvu7CmxMdEaOmocoSsA7NkBdzD27FCYObJnxwEqAADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxvNw9QC3w2q1Xv/fjKsungRwjcvJya4eAXCZlMuXJf3egrxYrDez1l/UmTNnFBwc7OoxAAAuFBMTowoVKuS5zh0du6ysLMXFxcnX11cWi8XV4xQ6ycnJCg4OVkxMjPz8/Fw9DlDg+B1wLavVqsuXLysoKEhubnm/K3dHv4zp5uZ2w5oj//n5+fGLjkKN3wHX8ff3v6n1OEAFAGA8YgcAMB6xwy3z8vLS5MmT5eXl5epRAJfgd+DOcUcfoAIAwM1gzw4AYDxiBwAwHrEDABiP2AEAjEfscMvmzp2r0NBQeXt7q379+tq8ebOrRwIKxKZNm9SpUycFBQXJYrHo888/d/VIuAFih1uydOlSjRgxQhMnTtSePXvUrFkzdezYUdHR0a4eDch3V65cUe3atfXOO++4ehTcJD56gFvSqFEj1atXT++++65tWVhYmLp06aKpU6e6cDKgYFksFq1cuVJdunRx9SjIA3t2cNi1a9cUGRmpiIgIu+URERHatm2bi6YCgNwROzjs/PnzyszMVJkyZeyWlylTRmfPnnXRVACQO2KHW/bn0ypZrVZOtQTgL4nYwWGlSpWSu7t7tr24hISEbHt7APBXQOzgME9PT9WvX19r1661W7527Vo1adLERVMBQO7u6JO3wnVGjRql3r17q0GDBmrcuLHef/99RUdH6+mnn3b1aEC+S0lJ0fHjx23XT548qb179yowMFAhISEunAy54aMHuGVz587VjBkzFB8fr5o1a2rWrFlq3ry5q8cC8t3GjRvVqlWrbMv79u2rhQsXFvxAuCFiBwAwHu/ZAQCMR+wAAMYjdgAA4xE7AIDxiB0AwHjEDgBgPGIHADAesQMKQKVKlTR79mzbdVed3fqll15SnTp1cr1948aNslgsunTp0k1vs2XLlhoxYsRtzbVw4UKVKFHitrYB5IXYAS4QHx+vjh073tS6NwoUgBvjuzGBm3Tt2jV5eno6ZVtly5Z1ynYA3Bz27FAotWzZUkOHDtXQoUNVokQJlSxZUi+88IL++O15lSpV0muvvaZ+/frJ399fTz31lCRp27Ztat68uXx8fBQcHKznnntOV65csd0vISFBnTp1ko+Pj0JDQ7V48eJsj//nlzHPnDmjnj17KjAwUMWKFVODBg20c+dOLVy4UC+//LL27dsni8Uii8Vi++7FpKQkDRo0SKVLl5afn59at26tffv22T3OtGnTVKZMGfn6+mrgwIG6evWqQz+nCxcuqFevXqpQoYKKFi2q8PBwLVmyJNt6GRkZef4sr127prFjx6p8+fIqVqyYGjVqpI0bNzo0C3A7iB0KrQ8//FAeHh7auXOn3n77bc2aNUvz5s2zW2fmzJmqWbOmIiMjNWnSJO3fv1/t27dX165d9eOPP2rp0qXasmWLhg4dartPv379dOrUKa1fv17Lly/X3LlzlZCQkOscKSkpatGiheLi4rRq1Srt27dPY8eOVVZWlnr06KHRo0erRo0aio+PV3x8vHr06CGr1aqHHnpIZ8+e1Zo1axQZGal69eqpTZs2SkxMlCQtW7ZMkydP1pQpU7Rr1y6VK1dOc+fOdehndPXqVdWvX1+rV6/WgQMHNGjQIPXu3Vs7d+506GfZv39/bd26VZ988ol+/PFHde/eXR06dNCxY8ccmge4ZVagEGrRooU1LCzMmpWVZVs2btw4a1hYmO16xYoVrV26dLG7X+/eva2DBg2yW7Z582arm5ubNTU11XrkyBGrJOuOHTtst0dFRVklWWfNmmVbJsm6cuVKq9Vqtb733ntWX19f64ULF3KcdfLkydbatWvbLfv222+tfn5+1qtXr9otr1y5svW9996zWq1Wa+PGja1PP/203e2NGjXKtq0/2rBhg1WS9eLFi7mu8+CDD1pHjx5tu36jn+Xx48etFovFGhsba7edNm3aWCdMmGC1Wq3WBQsWWP39/XN9TOB28Z4dCq37779fFovFdr1x48Z64403lJmZKXd3d0lSgwYN7O4TGRmp48eP2700abValZWVpZMnT+ro0aPy8PCwu9+9996b55GGe/fuVd26dRUYGHjTs0dGRiolJUUlS5a0W56amqqffvpJkhQVFZXt/IKNGzfWhg0bbvpxMjMzNW3aNC1dulSxsbFKS0tTWlqaihUrZrdeXj/L3bt3y2q1qmrVqnb3SUtLyzY/kF+IHZCHP/9HPSsrS4MHD9Zzzz2Xbd2QkBAdOXJEkuz+w38jPj4+Ds+VlZWlcuXK5fi+lzMP4X/jjTc0a9YszZ49W+Hh4SpWrJhGjBiha9euOTSru7u7IiMjbX9E/KZ48eJOmxXIC7FDobVjx45s1++5555s/0H+o3r16ungwYOqUqVKjreHhYUpIyNDu3btUsOGDSVJR44cyfNza7Vq1dK8efOUmJiY496dp6enMjMzs81x9uxZeXh4qFKlSrnOsmPHDvXp08fuOTpi8+bNeuSRR/TEE09Iuh6uY8eOKSwszG69vH6WdevWVWZmphISEtSsWTOHHh9wFg5QQaEVExOjUaNG6ciRI1qyZInmzJmj4cOH53mfcePGafv27RoyZIj27t2rY8eOadWqVRo2bJgkqVq1aurQoYOeeuop7dy5U5GRkXryySfz3Hvr1auXypYtqy5dumjr1q06ceKEPvvsM23fvl3S9aNCT548qb179+r8+fNKS0tT27Zt1bhxY3Xp0kVff/21Tp06pW3btumFF17Qrl27JEnDhw/XBx98oA8++EBHjx7V5MmTdfDgQYd+RlWqVNHatWu1bds2RUVFafDgwTp79qxDP8uqVavq8ccfV58+fbRixQqdPHlSP/zwg6ZPn641a9Y4NA9wq4gdCq0+ffooNTVVDRs21JAhQzRs2DANGjQoz/vUqlVL3333nY4dO6ZmzZqpbt26mjRpksqVK2dbZ8GCBQoODlaLFi3UtWtX28cDcuPp6alvvvlGpUuX1oMPPqjw8HBNmzbNtofZrVs3dejQQa1atdJdd92lJUuWyGKxaM2aNWrevLkGDBigqlWrqmfPnjp16pTKlCkjSerRo4defPFFjRs3TvXr19fp06f1zDPPOPQzmjRpkurVq6f27durZcuWtig7+rNcsGCB+vTpo9GjR6tatWrq3Lmzdu7cqeDgYIfmAW6VxWr9w4dhgEKiZcuWqlOnjt1XeAEwF3t2AADjETsAgPF4GRMAYDz27AAAxiN2AADjETsAgPGIHQDAeMQOAGA8YgcAMB6xAwAYj9gBAIxH7AAAxvt/FEmUb+P53acAAAAASUVORK5CYII=",
|
1525 |
+
"text/plain": [
|
1526 |
+
"<Figure size 500x500 with 1 Axes>"
|
1527 |
+
]
|
1528 |
+
},
|
1529 |
+
"metadata": {},
|
1530 |
+
"output_type": "display_data"
|
1531 |
+
}
|
1532 |
+
],
|
1533 |
+
"source": [
|
1534 |
+
"# create a np.array with selected_model values\n",
|
1535 |
+
"\n",
|
1536 |
+
"conf_matrix = np.array([[evaluation_counts_output['True Negatives'].values[0], evaluation_counts_output['False Positives'].values[0]],\n",
|
1537 |
+
" [evaluation_counts_output['False Negatives'].values[0], evaluation_counts_output['True Positives'].values[0]]])\n",
|
1538 |
+
"\n",
|
1539 |
+
"fig, ax = plot_confusion_matrix(\n",
|
1540 |
+
" conf_mat=conf_matrix,\n",
|
1541 |
+
" show_absolute=True,\n",
|
1542 |
+
" show_normed=True\n",
|
1543 |
+
")\n",
|
1544 |
+
"\n",
|
1545 |
+
"display(evaluation_score_output[['Accuracy', 'Precision', 'Recall', 'F1-score']])"
|
1546 |
+
]
|
1547 |
+
}
|
1548 |
+
],
|
1549 |
+
"metadata": {
|
1550 |
+
"kernelspec": {
|
1551 |
+
"display_name": "base",
|
1552 |
+
"language": "python",
|
1553 |
+
"name": "python3"
|
1554 |
+
},
|
1555 |
+
"language_info": {
|
1556 |
+
"codemirror_mode": {
|
1557 |
+
"name": "ipython",
|
1558 |
+
"version": 3
|
1559 |
+
},
|
1560 |
+
"file_extension": ".py",
|
1561 |
+
"mimetype": "text/x-python",
|
1562 |
+
"name": "python",
|
1563 |
+
"nbconvert_exporter": "python",
|
1564 |
+
"pygments_lexer": "ipython3",
|
1565 |
+
"version": "3.9.16"
|
1566 |
+
},
|
1567 |
+
"orig_nbformat": 4
|
1568 |
+
},
|
1569 |
+
"nbformat": 4,
|
1570 |
+
"nbformat_minor": 2
|
1571 |
+
}
|